Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = Late Cenozoic deformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3187 KB  
Article
Tectonic Uplift and Hydrocarbon Generation Constraints from Low-Temperature Thermochronology in the Yindongzi Area, Ordos Basin
by Guangyuan Xing, Zhanli Ren, Kai Qi, Liyong Fan, Junping Cui, Jinbu Li, Zhuo Han and Sasa Guo
Minerals 2025, 15(9), 893; https://doi.org/10.3390/min15090893 - 22 Aug 2025
Viewed by 214
Abstract
This study investigates the uplift and exhumation history of the southern segment of the western margin of the Ordos Basin using low-temperature thermochronology, including zircon (U-Th)/He (ZHe), apatite fission-track (AFT), and apatite (U-Th)/He (AHe) data, combined with thermal history modeling. The study area [...] Read more.
This study investigates the uplift and exhumation history of the southern segment of the western margin of the Ordos Basin using low-temperature thermochronology, including zircon (U-Th)/He (ZHe), apatite fission-track (AFT), and apatite (U-Th)/He (AHe) data, combined with thermal history modeling. The study area exhibits a complex structural framework shaped by multiple deformation events, leading to the formation of extensively developed fault systems. Such faulting can adversely affect hydrocarbon preservation. To better constrain the timing of fault reactivation in this area, we carried out an integrated study involving low-temperature thermochronology and burial history modeling. The results reveal a complex, multi-phase thermal-tectonic evolution since the Late Paleozoic. The ZHe ages (291–410 Ma) indicate deep burial and heating related to Late Devonian–Early Permian tectonism and basin sedimentation, reflecting early orogenic activity along the western North China Craton. During the Late Jurassic to Early Cretaceous (165–120 Ma), the study area experienced widespread and differential uplift and cooling, controlled by the Yanshanian Orogeny. Samples on the western side of the fault show earlier and more rapid cooling than those on the eastern side, suggesting a fault-controlled, basinward-propagating exhumation pattern. The cooling period indicated by AHe data and thermal models reflects the Cenozoic uplift, likely induced by far-field compression from the rising northeastern Tibetan Plateau. These findings emphasize the critical role of inherited faults not only as thermal-tectonic boundaries during the Mesozoic but also as a pathway for hydrocarbon migration. Meanwhile, thermal history models based on borehole data further reveal that the study area underwent prolonged burial and heating during the Mesozoic, reaching peak temperatures for hydrocarbon generation in the Late Jurassic. The timing of major cooling events corresponds to the main stages of hydrocarbon expulsion and migration. In particular, the differential uplift since the Mesozoic created structural traps and migration pathways that likely facilitated hydrocarbon accumulation along the western fault zones. The spatial and temporal differences among the samples underscore the structural segmentation and dynamic response of the continental interior to both regional and far-field tectonic forces, while also providing crucial constraints on the petroleum system evolution in this tectonically complex region. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

27 pages, 49527 KB  
Article
Analyzing Recent Tectonic Activity Along the Karak Wadi Al Fayha Fault System Using Seismic, Earthquake, and Remote Sensing Data
by Mu’ayyad Al Hseinat, Malek AlZidaneen and Ghassan Sweidan
Geosciences 2025, 15(5), 177; https://doi.org/10.3390/geosciences15050177 - 14 May 2025
Viewed by 1369
Abstract
The Karak Wadi Al Fayha Fault (KWF) is a major NW-trending intraplate wrench fault system extending over 325 km from Western Karak in Jordan to Wadi Al Fayha in Saudi Arabia. Structurally linked to the Precambrian Najd Fault System, the KWF has been [...] Read more.
The Karak Wadi Al Fayha Fault (KWF) is a major NW-trending intraplate wrench fault system extending over 325 km from Western Karak in Jordan to Wadi Al Fayha in Saudi Arabia. Structurally linked to the Precambrian Najd Fault System, the KWF has been previously mapped using field observations, gravity, magnetic, and reflection seismic methods. However, these approaches lacked the vertical resolution necessary to characterize its shallow structure, leaving its influence on recent deposits and surface topography poorly understood. This study employs reflection seismic sections integrated with a Digital Elevation Model to refine terrain analysis and enhance fault mechanism solutions for determining the regional stress field pattern. Our results provide compelling evidence of the KWF’s upward propagation into the surface, as demonstrated by deformation of the uppermost Cretaceous and Cenozoic successions, distinct geomorphic features in the Digital Elevation Model, alignment of earthquake epicenters along the fault, and active landslides associated with its movement. We suggest that the reactivation of the KWF has been influenced by changing stress fields from the Late Cretaceous (Turonian) to the present. The Northwestern Arabian plate has undergone multiple tectonic stress transitions, including WNW–ESE compression associated with the Syrian Arc Fold-Belt system (Turonian–Plio-Pleistocene) and subsequent NNE–SSW extension linked to Red Sea rifting (Neogene–present). The analysis of fault mechanism solutions suggests that the latest fault movements result from the continued activity of the Irbid Rift event (Eocene) and the Dead Sea Transform Fault since the Miocene. Full article
(This article belongs to the Special Issue Applied Geophysics for Geohazards Investigations)
Show Figures

Figure 1

27 pages, 21480 KB  
Article
The Long-Term Tectonism of the Longshou Shan in the Southwest Alxa Block—Constrained by (U-Th)/He Thermochronometric Data
by Changhuan Feng, Wenjun Zheng, Jiabao Jia, Shiqi Wei and Weitao Wang
Minerals 2024, 14(2), 143; https://doi.org/10.3390/min14020143 - 28 Jan 2024
Cited by 2 | Viewed by 1749
Abstract
The Longshou Shan, located in western China, plays a crucial role in connecting the Tarim Continent with the North China Craton. It provides valuable insights into the Cenozoic intracontinental deformation, the complex dynamics of Eurasian tectonics, and the relationship between the pre-Cenozoic Tethys [...] Read more.
The Longshou Shan, located in western China, plays a crucial role in connecting the Tarim Continent with the North China Craton. It provides valuable insights into the Cenozoic intracontinental deformation, the complex dynamics of Eurasian tectonics, and the relationship between the pre-Cenozoic Tethys and Central Asian orogenic systems. Consequently, comprehending the evolution of the Phanerozoic era in this region holds immense significance. Zircon (U-Th)/He (ZHe) dating was conducted on three granite samples (n = 18) collected from the Longshou Shan. The ZHe dates of these granite rocks range from 7.2 to 517.7 Ma, showing a negative correlation with eU values. Furthermore, a limestone sample from the Longshou Shan yielded ZHe (n = 4) ages of 172.0–277.1 Ma and AHe (n = 4) ages of 17–111.9 Ma. The area has undergone complex tectonic processes involving multiple phases of uplift and burial. Using both forward and inverse modeling methods, we aim to establish plausible thermal histories. Our models reveal: (1) Late Paleozoic unroofing; (2) Early Mesozoic cooling and Late Mesozoic regional stabilization; and (3) Cenozoic reheating and subsequent cooling. By investigating the intricate thermal history of the Longshou Shan through multi-method modeling, we compare different approaches and assess the capabilities of single ZHe dating for understanding a thermal history. This research contributes to unraveling the region’s geological complexities and aids in evaluating various modeling methods. Full article
(This article belongs to the Special Issue Thermal History Modeling of Low-Temperature Thermochronological Data)
Show Figures

Figure 1

20 pages, 51633 KB  
Article
Using UAV-Based Photogrammetry Coupled with In Situ Fieldwork and U-Pb Geochronology to Decipher Multi-Phase Deformation Processes: A Case Study from Sarclet, Inner Moray Firth Basin, UK
by Alexandra Tamas, Robert E. Holdsworth, Dan M. Tamas, Edward D. Dempsey, Kit Hardman, Anna Bird, John R. Underhill, Dave McCarthy, Ken J. W. McCaffrey and David Selby
Remote Sens. 2023, 15(3), 695; https://doi.org/10.3390/rs15030695 - 24 Jan 2023
Cited by 4 | Viewed by 2885
Abstract
Constraining the age of formation and repeated movements along fault arrays in superimposed rift basins helps us to better unravel the kinematic history as well as the role of inherited structures in basin evolution. The Inner Moray Firth Basin (IMFB, western North Sea) [...] Read more.
Constraining the age of formation and repeated movements along fault arrays in superimposed rift basins helps us to better unravel the kinematic history as well as the role of inherited structures in basin evolution. The Inner Moray Firth Basin (IMFB, western North Sea) overlies rocks of the Caledonian basement, the pre-existing Devonian–Carboniferous Orcadian Basin, and a regionally developed Permo–Triassic North Sea basin system. IMFB rifting occurred mainly in the Upper Jurassic–Lower Cretaceous. The rift basin then experienced further regional tilting, uplift and fault reactivation during the Cenozoic. The Devonian successions exposed onshore along the northwestern coast of IMFB and the southeastern onshore exposures of the Orcadian Basin at Sarclet preserve a variety of fault orientations and structures. Their timing and relationship to the structural development of the wider Orcadian and IMFB are poorly understood. In this study, drone airborne optical images are used to create high-resolution 3D digital outcrops. Analyses of these images are then coupled with detailed field observations and U-Pb geochronology of syn-faulting mineralised veins in order to constrain the orientations and absolute timing of fault populations and decipher the kinematic history of the area. In addition, the findings help to better identify deformation structures associated with earlier basin-forming events. This holistic approach helped identify and characterise multiple deformation events, including the Late Carboniferous inversion of Devonian rifting structures, Permian minor fracturing, Late Jurassic–Early Cretaceous rifting and Cenozoic reactivation and local inversion. We were also able to isolate characteristic structures, fault kinematics, fault rock developments and associated mineralisation types related to these events Full article
(This article belongs to the Special Issue Remote Sensing Perspectives of Geomorphology and Tectonic Processes)
Show Figures

Figure 1

26 pages, 7441 KB  
Article
Insights into the Weathering Crust Reservoirs of Granitoids: A Case Study from Qinghai Oilfield of Qaidam Basin, Northwest China
by Xiaoqin Jiao, Huapeng Niu, Qingbin Xie, Massimiliano Zattin, Yongshu Zhang, Zhixiong Wu, Yuhe Chen, Xian Zhao, Shan Liu and Xinhong Wei
Minerals 2023, 13(1), 23; https://doi.org/10.3390/min13010023 - 23 Dec 2022
Cited by 5 | Viewed by 2175
Abstract
With proven reserves of 9.836 × 1010 m3, the largest known natural gas reservoir among terrigenous basement rocks has been discovered within the granitoids of the northern Qaidam Basin. Due to their high heterogeneity, the genesis of basement reservoirs remains [...] Read more.
With proven reserves of 9.836 × 1010 m3, the largest known natural gas reservoir among terrigenous basement rocks has been discovered within the granitoids of the northern Qaidam Basin. Due to their high heterogeneity, the genesis of basement reservoirs remains unknown. Herein, the structure of the weathering crust in granitoids and their potential controlling factors on the reservoir development mechanism are discussed using a multidisciplinary approach based on data from cores, thin sections, scanning electron microscopy (SEM), conventional and imaging logs, and physical property and major elements analyses. Moreover, the classification standard of the weathering crust structure is established. The dissolution belt holding diverse reservoir spaces accounts for more than 50% of the total porosity, while the disintegration belt is the main context for the development of cleavage fractures and crack fractures. The original pores exist mainly among the crystal grains of quartz and mica, while the secondary pores and fractures were generated by the alteration of aluminosilicate minerals as well as biotite or hornblende. The quality of these reservoirs is controlled by their mineral composition, tectonic uplift, faulting, and paleogeomorphology. The femic granitoid is the main reservoir-forming lithology in the case of dissolution, while the felsic granitoid is more likely to develop cracks. The formation of the disintegration belt is significantly linked to the presence of faulting. These belts were mostly induced by tectonic deformation along the Altyn fault belt from the late Oligocene to the early Miocene. The diversity in paleogeomorphology influences the extent of the weathering. The exhumation in the Altyn terrane from the late Jurassic to the Cenozoic corresponds to the weathering and hypergene leaching period of the weathering crust within granitoids. Three types of reservoirs are present in the rocks: fractured-porous (Type Ⅰ); porous (Type Ⅱ); and fractured (Type Ⅲ). The fractured-porous and fractured reservoirs were developed mainly in the granitic gneiss and granite, while the porous reservoir was formed in granitic diorite and granitic gneiss. The reservoirs that developed in the weathering crust of granitoids are dominated by Type Ⅰ and Type Ⅱ. The highest quality reservoir, which is the fractured-porous type, developed mainly in the dissolution belt of the weathering crust, and has a porosity ranging from 1.56% to 8.48% and a permeability ranging from 0.03 mD to 14.48 mD. The mechanisms of the development of weathering crust reservoirs provide further information for the hydrocarbon exploration of basement rocks worldwide. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

22 pages, 28360 KB  
Article
Structural Analysis and Paleostress Evolution in the Imiter Silver Mining Region, Eastern Anti Atlas, Morocco: Implications for Mineral Exploration
by Youssef Atif, Abderrahmane Soulaimani, Abdelhak Ait Lahna, Driss Yaagoub, Nasrrddine Youbi, Amin Beiranvand Pour and Mazlan Hashim
Minerals 2022, 12(12), 1563; https://doi.org/10.3390/min12121563 - 4 Dec 2022
Cited by 6 | Viewed by 3882
Abstract
Development and concentration of many ore deposits at the regional and district scales closely depend on structural geology, especially in polydeformed basements. The superposition of many deformation periods highlights the complexity of the structural context and expected potential location of mineralization zones. The [...] Read more.
Development and concentration of many ore deposits at the regional and district scales closely depend on structural geology, especially in polydeformed basements. The superposition of many deformation periods highlights the complexity of the structural context and expected potential location of mineralization zones. The formation and concentration of hydrothermal ore deposits is highly dependent on structural controls. On the NE flank of the Saghro massif (Eastern Anti-Atlas, Morocco), the Imiter silver mining region has been affected by multiple tectonic events since the Precambrian and throughout the Phanerozoic. In this investigation, a structural analysis of the different geological units revealed multi-stage deformation, beginning with the late Pan-African-Cadomian event, and ending with the last Cenozoic exhumation of the area. At least eight tectonic regimes have been identified. The Imiter basement, formed by the Cryogenian-early Ediacaran “flysch-like” Saghro Group, has been folded in low-grade metamorphic conditions, followed by an ENE-WSW brittle compressive event. These deformations occurred before to the early Ediacaran during the compressional and/or transpressional late Pan-African-Cadomian events (600–580 Ma). The unconformably overlaying deposition of the late Ediacaran Ouarzazate Group takes place in a WNW-ESE extensional setting and then involved in a NNW-SSE compressional event that occurred concurrently with a regional exhumation and erosion stages. A similar extensional event appears to have controlled the middle Cambrian sedimentation, the oldest Paleozoic deposits in this area. During the late Carboniferous, Variscan shortening was recorded by NW-SE transpressional deformation responsible for combined dextral strike-slip and southward thrusts. The Imiter silver mining region is part of the Moroccan Sub-Meseta Zone along with Paleozoic inliers of the Skoura and Tamlelt on the southern side of the High Atlas. The Mesozoic evolution began with the Late Triassic NNW-SSW transtensional tectonic regime with a northeast trending CAMP (Central Atlantic Magmatic Province) dyke during the Pangea breakup. Ultimately, the Imiter silver mining region experienced NNW-SSE Atlasic shortening during the uplift of the adjacent High Atlas. Over time, the direction of implemented tectonic stress and its effect on various geological units can elucidate the relationship between tectonism and hydrothermal silver mineralization in the Imiter region. In conclusion, structural analysis and investigation of paleostress development can be one of the most important factors for successful exploration plan and resource recovery in the Imiter region. An analysis of geological structures in determining feasible mineralization zones is crucial for future safe mining operation in the study area and can be extrapolated to other ore mining regions. Full article
Show Figures

Figure 1

20 pages, 12282 KB  
Article
The Formation of the North Qilian Shan through Time: Clues from Detrital Zircon Fission-Track Data from Modern River Sediments
by Xu Lin, Marc Jolivet, Jing Liu-Zeng, Feng Cheng, Zhonghai Wu, Yuntao Tian, Lingling Li and Jixin Chen
Geosciences 2022, 12(4), 166; https://doi.org/10.3390/geosciences12040166 - 7 Apr 2022
Cited by 9 | Viewed by 4154
Abstract
Understanding the formation of the North Qilian Shan in the NE Tibetan Plateau provides insights into the growth mechanisms of the northern region of the plateau across time. Detrital zircon fission-track (ZFT) analyses of river sediments can provide a comprehensive understanding of the [...] Read more.
Understanding the formation of the North Qilian Shan in the NE Tibetan Plateau provides insights into the growth mechanisms of the northern region of the plateau across time. Detrital zircon fission-track (ZFT) analyses of river sediments can provide a comprehensive understanding of the exhumation history during prolonged orogenesis. Here, we applied the detrital thermochronology approach to the Qilian Shan orogenic belt. This work presents the first single-grain detrital ZFT data from river-bed sediments of the upper Hei River catchment in North Qilian Shan. The single ZFT ages are widely distributed between about 1200 Ma and about 40 Ma. These data record the protracted history of the Qilian Shan region from the Neoproterozoic evolution of Rodinia and late Paleozoic amalgamation of Central Asia to the accretion of the Gondwanian blocks during the Meso-Cenozoic era. Strong post-magmatic cooling events occurred in North Qilian Shan at 1200~1000 Ma, corresponding to the assembly of the Rodinia supercontinent. The age population at 800 Ma documents the oceanic spreading in the late Neoproterozoic dismantling of Rodinia. ZFT ages ranging from about 750 Ma to 550 Ma (with age peaks at 723 Ma and 588 Ma) are consistent with the timing of the opening and spreading of the Qilian Ocean. The age peaks at 523 Ma and 450 Ma mark the progressive closure of that ocean ending with the collision of the Qilian block with the Alxa block—North China craton in the Devonian. The Qilian Ocean finally closed in Late Devonian (age peak at 375 Ma). In the late Paleozoic (275 Ma), the subduction of the Paleotethys Ocean led to extensive magmatic activity in the North Qilian Shan. During the Lower Cretaceous (145 Ma), the accretion of the Lhasa block to the south (and potentially the closure of the Mongol-Okhotsk Ocean to the northeast) triggered a renewed tectonic activity in the Qilian Shan. Finally, a poorly defined early Eocene exhumation event (50 Ma) suggests that the NE Tibetan Plateau started to deform nearly synchronously with the onset of the India-Asia collision. This study demonstrates the usefulness of combining modern-river detrital thermo-/geochronological ages and bedrock geochronological ages to understand large-scale orogenic evolution processes. Full article
(This article belongs to the Collection Tectonic and Paleo-Landscape Evolution of the Tibetan Plateau)
Show Figures

Figure 1

30 pages, 21785 KB  
Article
Burial-Deformation History of Folded Rocks Unraveled by Fracture Analysis, Stylolite Paleopiezometry and Vein Cement Geochemistry: A Case Study in the Cingoli Anticline (Umbria-Marche, Northern Apennines)
by Aurélie Labeur, Nicolas E. Beaudoin, Olivier Lacombe, Laurent Emmanuel, Lorenzo Petracchini, Mathieu Daëron, Sebastian Klimowicz and Jean-Paul Callot
Geosciences 2021, 11(3), 135; https://doi.org/10.3390/geosciences11030135 - 13 Mar 2021
Cited by 22 | Viewed by 4154
Abstract
Unravelling the burial-deformation history of sedimentary rocks is prerequisite information to understand the regional tectonic, sedimentary, thermal, and fluid-flow evolution of foreland basins. We use a combination of microstructural analysis, stylolites paleopiezometry, and paleofluid geochemistry to reconstruct the burial-deformation history of the Meso-Cenozoic [...] Read more.
Unravelling the burial-deformation history of sedimentary rocks is prerequisite information to understand the regional tectonic, sedimentary, thermal, and fluid-flow evolution of foreland basins. We use a combination of microstructural analysis, stylolites paleopiezometry, and paleofluid geochemistry to reconstruct the burial-deformation history of the Meso-Cenozoic carbonate sequence of the Cingoli Anticline (Northern Apennines, central Italy). Four major sets of mesostructures were linked to the regional deformation sequence: (i) pre-folding foreland flexure/forebulge; (ii) fold-scale layer-parallel shortening under a N045 σ1; (iii) syn-folding curvature of which the variable trend between the north and the south of the anticline is consistent with the arcuate shape of the anticline; (iv) the late stage of fold tightening. The maximum depth experienced by the strata prior to contraction, up to 1850 m, was quantified by sedimentary stylolite paleopiezometry and projected on the reconstructed burial curve to assess the timing of the contraction. As isotope geochemistry points towards fluid precipitation at thermal equilibrium, the carbonate clumped isotope thermometry (Δ47) considered for each fracture set yields the absolute timing of the development and exhumation of the Cingoli Anticline: layer-parallel shortening occurred from ~6.3 to 5.8 Ma, followed by fold growth that lasted from ~5.8 to 3.9 Ma. Full article
Show Figures

Figure 1

24 pages, 7656 KB  
Review
The Cenozoic Malaguide Basin from Sierra Espuña (Murcia, S Spain): An Example of Geological Heritage
by Santiago Moliner-Aznar, Manuel Martín-Martín, Tomás Rodríguez-Estrella and Gregorio Romero-Sánchez
Geosciences 2021, 11(1), 34; https://doi.org/10.3390/geosciences11010034 - 10 Jan 2021
Cited by 5 | Viewed by 3293
Abstract
The Cenozoic Malaguide Basin from Sierra Espuña (Internal Betic Zone, S Spain) due to the quality of outcropping, areal representation, and continuity in the sedimentation can be considered a key-basin. In the last 30 years, a large number of studies with very different [...] Read more.
The Cenozoic Malaguide Basin from Sierra Espuña (Internal Betic Zone, S Spain) due to the quality of outcropping, areal representation, and continuity in the sedimentation can be considered a key-basin. In the last 30 years, a large number of studies with very different methodological approaches have been done in the area. Models indicate an evolution from passive margin to wedge-top basin from Late Cretaceous to Early Miocene. Sedimentation changes from limestone platforms with scarce terrigenous inputs, during the Paleocene to Early Oligocene, to the deep basin with huge supplies of turbidite sandstones and conglomerates during the Late Oligocene to Early Miocene. The area now appears structured as an antiformal stack with evidence of synsedimentary tectonics. The Cenozoic tectono-sedimentary basin evolution is related to three phases: (1) flexural tectonics during most of the Paleogene times to create the basin; (2) fault and fold compartmentation of the basin with the creation of structural highs and subsiding areas related to blind-fault-propagation folds, deforming the basin from south to north during Late Oligocene to Early Aquitanian times; (3) thin-skin thrusting tectonics when the basin began to be eroded during the Late Aquitanian-Burdigalian. In recent times some works on the geological heritage of the area have been performed trying to diffuse different geological aspects of the sector to the general public. A review of the studies performed and the revisiting of the area allow proposing different key-outcrops to follow the tectono-sedimentary evolution of the Cenozoic basin from this area. Eight sites of geological interest have been selected (Cretaceous-Cenozoic boundary, Paleocene Mula Fm, Lower Eocene Espuña-Valdelaparra Fms, Middle Eocene Malvariche-Cánovas Fms, Lowermost Oligocene As Fm, Upper Oligocene-Lower Aquitanian Bosque Fm, Upper Oligocene-Aquitanian Río Pliego Fm, Burdigalian El Niño Fm) and an evaluation has been performed to obtain four parameters: the scientific value, the educational and touristic potential, and the degradation risk. The firsts three parameters obtained values above 50 being considered of “high” or “very high” interest (“very high” in most of the cases). The last parameter shows always values below 50 indicating a “moderate” or “low” risk of degradation. The obtained values allow us considering the tectono-sedimentary evolution of this basin worthy of being proposed as a geological heritage. Full article
(This article belongs to the Section Geoheritage, Geoparks and Geotourism)
Show Figures

Figure 1

23 pages, 15466 KB  
Article
Structural and Stratigraphic Setting of Campagna and Giffoni Tectonic Windows: New Insights on the Orogenic Evolution of the Southern Apennines (Italy)
by Stefano Vitale, Ernesto Paolo Prinzi, Maria Monda, Francesco D’Assisi Tramparulo and Sabatino Ciarcia
Geosciences 2020, 10(10), 405; https://doi.org/10.3390/geosciences10100405 - 10 Oct 2020
Cited by 4 | Viewed by 3516
Abstract
We present a structural study on the tectonic windows of Giffoni and Campagna, located in the western sector of the southern Apennines (Italy). We analyzed thrusts, folds, and related minor deformation structures. Here, a major in-sequence E-verging thrust fault juxtaposes Meso-Cenozoic successions of [...] Read more.
We present a structural study on the tectonic windows of Giffoni and Campagna, located in the western sector of the southern Apennines (Italy). We analyzed thrusts, folds, and related minor deformation structures. Here, a major in-sequence E-verging thrust fault juxtaposes Meso-Cenozoic successions of the Apennine Platform (Picentini Mts unit) and the Lagonegro-Molise Basin (Frigento unit). However, out-of-sequence thrusts duplicated the tectonic pile with the interposition of the upper Miocene wedge-top basin deposits of the Castelvetere Group. We reconstructed the orogenic evolution of these two tectonic windows, including five deformation phases. The first (D1) was related to the in-sequence thrusting with minor thrusts and folds, widespread both in the footwall and the hanging wall. A subsequent extension (D2) has formed normal faults crosscutting the D1 thrusts and folds. All structures were subsequently affected by two shortening stages (D3 and D4), which also deformed the upper Miocene wedge top basin deposits of the Castelvetere Group. We interpreted the D3–D4 structures as related to an out-of-sequence thrust system defined by a main frontal E-verging thrust and lateral ramps characterized by N and S vergences. Low-angle normal faults were formed in the hanging wall of the major thrusts. Out-of-sequence thrusts are observed in the whole southern Apennines, recording a crustal shortening event that occurred in the late Messinian–early Pliocene. Finally, we suggest that the two tectonic windows are the result of the formation of an E–W trending regional antiform, associated with a late S-verging back-thrust, that has been eroded and crosscut by normal faults (D5) in the Early Pleistocene. Full article
Show Figures

Figure 1

23 pages, 10340 KB  
Article
Deformation of the Cambro-Ordovician Amdeh Formation (Members 1 and 2): Characteristics, Origins, and Stratigraphic Significance (Wadi Amdeh, Saih Hatat Dome, Oman Mountains)
by Frank Mattern, Andreas Scharf, Pu-Jun Wang, Ivan Callegari, Iftikhar Abbasi, Saja Al-Wahaibi, Bernhard Pracejus and Katharina Scharf
Geosciences 2020, 10(2), 48; https://doi.org/10.3390/geosciences10020048 - 27 Jan 2020
Cited by 13 | Viewed by 6342
Abstract
The Angudan Orogeny affected Cryogenian to earliest Cambrian sedimentary rock formations of the Jabal Akhdar Dome of the Oman Mountains. These rocks were folded and cleaved at 525 ± 5 Ma. We studied the Cambro-Ordovician (Terreneuvian to Darriwillian) Amdeh Formation of the neighboring [...] Read more.
The Angudan Orogeny affected Cryogenian to earliest Cambrian sedimentary rock formations of the Jabal Akhdar Dome of the Oman Mountains. These rocks were folded and cleaved at 525 ± 5 Ma. We studied the Cambro-Ordovician (Terreneuvian to Darriwillian) Amdeh Formation of the neighboring Saih Hatat Dome to see whether this formation was also affected by the Angudan Orogeny. The Angudan deformation within the Jabal Akhdar Dome is known for its folds and cleavage. Due to age considerations (see above), we studied the folds and cleavages within the two oldest members of the Amdeh Formation (Am 1 and Am 2) in order to compare them with the ones that are known from the Jabal Akhdar Dome to possibly detect Angudan-related deformation in Am 1 and Am 2. Angudan folds of the Jabal Akhdar Dome display fold axes that are oriented NE/SW, but the two lowest members of the Amdeh Formation reveal one set of folds with subhorizontal fold axes that trend NW-NNW/SE-SSE. The lack of Angudan-related folds suggests that the lowest Amdeh Member (Am 1) postdates the Angudan Orogeny. The age of Am 1 is uncertain. Based on our structural results, we consider an upper Terreneuvian age (late stage 2) for Am 1. The folds in Am 1 and 2 are related to the Late Cretaceous–Cenozoic Semail Orogeny (term introduced here). The observed fold vergences (mainly to the W and SW) were caused by shear deformation during descent into the subduction zone by simple shear. The contact between the stratigraphically underlying Hiyam Formation and the Amdeh Formation is generally considered to be an unconformity. We observed a distinct NW/SE-striking deformation zone along the contact of both formations which is located in proximity to the largest observed fold. Tectonically, this contact is defined by the sinistral Wadi Amdeh Fault (name introduced here). The unconformity should be present in the subsurface of the southwestern fault block. Near the contact between the Hiyam and the Amdeh formations, a 20 cm thick unit of reddish cataclasite/tectonic breccia occurs within the basal part of Am 1 which represents a deformed acidic layer or sill. This rock unit could be the first evidence for Cambrian igneous activity. Full article
(This article belongs to the Special Issue Tectonics of Oman—from the Precambrian to the Present)
Show Figures

Figure 1

21 pages, 10545 KB  
Article
Dynamics of the Zones of Strong Earthquake Epicenters in the Arctic–Asian Seismic Belt
by Lyudmila P. Imaeva, Valery S. Imaev and Boris M. Koz’min
Geosciences 2019, 9(4), 168; https://doi.org/10.3390/geosciences9040168 - 12 Apr 2019
Cited by 11 | Viewed by 6423
Abstract
Our comprehensive study of the Russian Arctic region aims to clarify the features and types of seismotectonic deformation of the crust in the Arctic–Asian Seismic Belt, specifically in the zones of strong earthquakes in the Laptev Sea Segment, the Kharaulakh Segment, and the [...] Read more.
Our comprehensive study of the Russian Arctic region aims to clarify the features and types of seismotectonic deformation of the crust in the Arctic–Asian Seismic Belt, specifically in the zones of strong earthquakes in the Laptev Sea Segment, the Kharaulakh Segment, and the Chersky Seismotectonic Zone. We have analyzed modern tectonic structures and active fault systems, as well as tectonic stress fields reconstructed by tectonophysical analysis of the Late Cenozoic faults and folds. The investigated neotectonic structures are ranked with respect to the regional classification principles. Changes in the crustal stress–strain state in the lithospheric plate boundaries between the Eurasian, North American, and Okhotsk Sea Plates are analyzed, and regularities of such changes are discovered. A set of models has been constructed for the studied segments of plate boundaries with account of the dynamics of the regional geological structures. The models can give a framework for the assessment of potential seismic risks of seismogenerating structures in the Russian Arctic region. Full article
Show Figures

Figure 1

25 pages, 47710 KB  
Article
Evidence for Basement Reactivation during the Opening of the Labrador Sea from the Makkovik Province, Labrador, Canada: Insights from Field Data and Numerical Models
by Alexander L. Peace, Edward D. Dempsey, Christian Schiffer, J. Kim Welford, Ken J. W. McCaffrey, Jonathan Imber and Jordan J. J. Phethean
Geosciences 2018, 8(8), 308; https://doi.org/10.3390/geosciences8080308 - 20 Aug 2018
Cited by 27 | Viewed by 6243
Abstract
The onshore exposures adjacent to modern, offshore passive continental margins may preserve evidence of deformation from the pre-, syn-, and post-rift phases of continental breakup that allow us to investigate the processes associated with and controlling rifting and breakup. Here, we characterize onshore [...] Read more.
The onshore exposures adjacent to modern, offshore passive continental margins may preserve evidence of deformation from the pre-, syn-, and post-rift phases of continental breakup that allow us to investigate the processes associated with and controlling rifting and breakup. Here, we characterize onshore brittle deformation and pre-rift basement metamorphic mineral fabric from onshore Labrador in Eastern Canada in the Palaeoproterozoic Aillik Domain of the Makkovik Province. Stress inversion (1) was applied to these data and then compared to (2) numerical models of hybrid slip and dilation tendency, (3) independent calculations of the regional geopotential stress field, and (4) analyses of palaeo-stress in proximal regions from previous work. The stress inversion shows well-constrained extensional deformation perpendicular to the passive margin, likely related to pre-breakup rifting in the proto-Labrador Sea. Hybrid slip and dilatation analysis indicates that inherited basement structures were likely oriented in a favorable orientation to be reactivated during rifting. Reconstructed geopotential stresses illuminate changes of the ambient stress field over time and confirm the present paleo-stress estimates. The new results and numerical models provide a consistent picture of the late Mesozoic-Cenozoic lithospheric stress field evolution in the Labrador Sea region. The proto-Labrador Sea region was characterized by a persistent E–W (coast-perpendicular) extensional stress regime, which we interpret as the pre-breakup continental rifting that finally led to continental breakup. Later, the ridge push of the Labrador Sea spreading ridge maintained this general direction of extension. We see indications for anti-clockwise rotation of the direction of extension along some of the passive margins. However, extreme persistent N–S-oriented extension as indicated by studies further north in West Greenland cannot be confirmed. Full article
(This article belongs to the Special Issue Stress Quantification in Sedimentary Basins)
Show Figures

Graphical abstract

23 pages, 63798 KB  
Article
Folded Basinal Compartments of the Southern Mongolian Borderland: A Structural Archive of the Final Consolidation of the Central Asian Orogenic Belt
by Dickson Cunningham
Geosciences 2017, 7(1), 2; https://doi.org/10.3390/geosciences7010002 - 11 Jan 2017
Cited by 20 | Viewed by 8121
Abstract
The Central Asian Orogenic Belt (CAOB) records multiple Phanerozoic tectonic events involving consolidation of disparate terranes and cratonic blocks and subsequent reactivation of Eurasia’s continental interior. The final amalgamation of the CAOB terrane collage involved diachronous closure of the Permian-Triassic Solonker suture in [...] Read more.
The Central Asian Orogenic Belt (CAOB) records multiple Phanerozoic tectonic events involving consolidation of disparate terranes and cratonic blocks and subsequent reactivation of Eurasia’s continental interior. The final amalgamation of the CAOB terrane collage involved diachronous closure of the Permian-Triassic Solonker suture in northernmost China and the Jurassic Mongol-Okhotsk suture in northeast Mongolia and eastern Siberia. The distribution, style, and kinematics of deformation associated with these two terminal collision events is poorly documented in southern Mongolia and northernmost China because these regions were later tectonically overprinted by widespread Cretaceous basin and range-style crustal extension and Miocene-recent sinistral transpressional mountain building. These younger events structurally compartmentalized the crust into uplifted crystalline basement blocks and intermontane basins. Consequently, widespread Cretaceous and Late Cenozoic clastic sedimentary deposits overlie older Permian-Jurassic sedimentary rocks in most basinal areas and obscure the deformation record associated with Permian-Triassic Solonker and Jurassic Mongol-Okhotsk collisional suturing. In this report, satellite image mapping of basinal compartments that expose folded Permian-Jurassic sedimentary successions that are unconformably overlapped by Cretaceous-Quaternary clastic sediments is presented for remote and poorly studied regions of southern Mongolia and two areas of the Beishan. The largest folds are tens of kilometers in strike length, east-west trending, and reveal north-south Late Jurassic shortening (present coordinates). Late Jurassic fold vergence is dominantly northerly in the southern Gobi Altai within a regional-scale fold-and-thrust belt. Local refolding of older Permian north-south trending folds is also evident in some areas. The folds identified and mapped in this study provide new evidence for the regional distribution and kinematics of Jurassic and Permian-Triassic contractional tectonism in the southern Mongolia-northern China borderland region. The newly mapped folds are also important potential targets for hydrocarbon exploration and vertebrate paleontological discoveries. Full article
Show Figures

Figure 1

Back to TopTop