Burial-Deformation History of Folded Rocks Unraveled by Fracture Analysis, Stylolite Paleopiezometry and Vein Cement Geochemistry: A Case Study in the Cingoli Anticline (Umbria-Marche, Northern Apennines)
Abstract
:1. Introduction
2. Geological Setting
2.1. The Umbria Marche Apennine Ridge (UMAR)
2.2. The Cingoli Anticline
2.2.1. Structural Pattern
2.2.2. Sedimentary Succession
- (1)
- Upper Triassic anhydrites and dolostones, grouped in the Anidridi di Burano, unconformably deposited above the continental deposits of the Verrucano and the Hercynian basement; at the top of the Anidridi di Burano, euxinic interstratified marls are present.
- (2)
- The Calcare Massiccio, formed by massive peridital limestones dated from Hettangian to Sinemurian (ca. 201–191 Ma).
- (3)
- Four main Jurassic formations: (i) the Corniola, limestones with cherts beds (early Sinemurian–early Toarcian, ca. 199–183 Ma); (ii) the Rosso Ammonitico, nodular marly limestones dated Toarcian (ca. 183–174 Ma); (iii) the marls and cherty limestones of the Calcari e Marne a Posidonia (late Toarcian-early Bajocian, ca. 174–170 Ma); (iv) the Calcari Diasprigni, dominated by radiolarian-rich cherty limestones and cherts and, on top, by micritic limestones and marls bearing abundant Saccocoma sp. fragments (late Bajocian-early Tithonian, ca. 170–152 Ma). Because of the horst and graben structures related to the Jurassic extensional tectonics, these deposits accumulated in the hanging wall basins forming thick (hundreds of meters) “basinal” successions, while thin (up to few tens of meters), fossil-rich and condensed successions (Bugarone Group) accumulated on top of footwall blocks of Jurassic faults during the same time span (i.e., from early Pliensbachian to early Tithonian; ca. 191–152 Ma) [82,83,104,105,106].
- (4)
- The Maiolica, micritic limestones associated with chert beds (Tithonian–earliest Aptian, ca. 152–124 Ma).
- (5)
- Shales and marls of the Marne a Fucoidi (Aptian-Albian, ca. 124–100 Ma).
- (6)
- The “Scaglia” group is composed of micritic limestones with cherts intercalations (late Aptian-Aquitanian, ca. 113–21 Ma), and divided into four formations: (i) the Scaglia Bianca (Cenomanian-earliest Turonian, ca. 100–94 Ma); (ii) the Scaglia Rossa (earliest Turonian-Lutetian, ca. 94–41 Ma), subdivided into three members; (iii) the Scaglia Variegata (Lutetian-Priabonian, ca. 48–34 Ma) and (iv) the Scaglia Cinerea (Rupelian-earliest Aquitanian, ca. 34–22 Ma).
- (7)
- Bisciaro (Aquitanian-Burdigalian, ca. 22–16 Ma) and Schlier (Langhian-Tortonian, ca. 16–7 Ma) formations, hemipelagic limestones, marly limestones and marls.
- (8)
- Siliciclastic foredeep deposits, grouped in two major sequences: (i) Messinian arenitic and pelitic turbidites (ca. 7–5 Ma), composed by the Laga formation and the Gessoso-Solfifera Group with the San Donato and Colombacci formations; (ii) arenites, pelites and fossiliferous marine clays and marls of the Argille Azzure, early to middle Pliocene in age (ca. 5–3 Ma). In this area, the Messinian and Pliocene deposits are continuous and widespread, and provide an almost complete record of the deformation history of the ridge’s outer domains. In particular, growth strata observed in the San Donato and Colombacci formations within the Aliforni Syncline postdate flexural turbidites of the Laga formation, consequently broadly constraining fold growth to late Messinian-Zanclean (ca. 6–4 Ma) [62,63].
3. Materials and Methods
3.1. Fracture-Stylolite Network Characterization and Striated Fault Planes Analysis
3.2. Rock Mechanical Properties
3.3. Sedimentary Stylolite Roughness Inversion
3.4. O-C Stable Isotopes
3.5. Carbonate Clumped-Isotope Paleothermometry (Δ47)
3.6. Burial Model
4. Results
4.1. Fracture-Stylolite Network Characterization and Striated Fault Planes Analysis
- -
- set I gathers bedding-perpendicular joints oriented N180 to N020 (after unfolding). This set is observed over the entire anticline, predates sets II and III, because it is intersected and abutted by a set of stylolites with peaks oriented N045, which are themselves intersected and abutted by the joints/veins of set II (Figure 4C).
- -
- set II gathers joints and veins with N045 ± 10° orientation, present throughout the study area. They are perpendicular to bedding strike. This set postdates set I and predates set III.
- -
- set III comprises bedding-perpendicular N130 to N160-oriented joints parallel to bedding strike (i.e., N135-140 in the North and N160 in the South). They are mainly parallel to the axis of the anticline and crosscut or abut all other joint/vein sets (Figure 4C).
- -
- another set of E-W fractures, poorly represented at the scale of the anticline (i.e., only in the northern part, in three sites of measurements), includes N070 to N110-oriented joints (after unfolding) and perpendicular to the bedding, developed after set II. Because of the low number of measurements (i.e., 25 of 3000 fractures analyzed) and because they systematically developed near faults (Figure 3), this family of fractures is considered as minor and of local meaning only, and therefore not affiliated to a major set. Consequently, it will not be interpreted thereafter.
- -
- in the northern backlimb, conjugate NW-SE trending reverse faults reveal a compressional stress regime with a σ1 axis roughly oriented N045;
- -
- in the northern forelimb, N170–180-oriented normal faults indicate either an extensional regime with σ3 oriented N045, or, more likely correspond to tilted oblique-slip reverse faults consistent with a pre-tilting N020 compression;
- -
- in the southern backlimb, the few fault-slip data preclude any reliable stress tensor calculation. The dataset is however consistent with a post-tilting σ1 oriented N045 and σ3 oriented N135.
4.2. Young Modulus Estimate
4.3. Sedimentary Stylolite Roughness Inversion
- -
- Maiolica: [0.27 ± 0.06; 1.76 ± 0.40] mm
- -
- Scaglia Rossa: [0.36 ± 0.08; 1.17 ± 0.27] mm
- -
- Scaglia Variegata: [0.75 ± 0.17; 1.75 ± 0.40] mm
4.4. Burial Model
4.5. Oxygen and Carbon Stable Isotopes
4.6. Carbonate Clumped-Isotope Paleothermometry (Δ47)
5. Interpretation of Results
5.1. Sequence of Mesostructures in Relation to Folding
5.2. Evolution of the Burial Depth
- -
- Maiolica: from 720 ± 85 m to 1840 ± 220 m;
- -
- Scaglia Rossa: from 880 ± 100 m to 1590 ± 190 m;
- -
- Scaglia Variegata: from 720 ± 85 m to 1100 ± 130 m.
5.3. Fluid System
6. Discussion
- (i)
- (ii)
- this pre-contractional stage is partly coeval with an E-W extension related to the flexure of the Adriatic foreland [63,101], the onset of which is set to early Burdigalian (ca. 21 Ma, as defined by the inflection point of the burial curves), and which ended by middle Messinian (ca. 6.3 Ma, Figure 8). This E-W extension would be at the origin of the development of a network of N-S fractures (set I). Pre-folding N-S striking joints have already been described in this anticline [61], and in other anticlines, Monte Nero [121] and Monte Catria [66], without being related to regional extension. In the Conero anticline, however, [68] related a set of N-S, high angle to bedding, joints and veins associated with normal faults to a flexural event. Further considerations provide the existence of polyphase syndepositional normal faulting: the Barremian [146,147,148] and late Cretaceous phases of stretching (e.g., [95,149,150], well known in the Umbria-Marche-Sabina area, could have developed set I joints in the Maiolica and Scaglia Rossa, as well as the development of stylolites in the Mesozoic rocks.
- (iii)
- LPS stage, a pre/early-folding compressional stage with σ1 NE-SW-oriented related to the Apenninic contraction [66,97,98,99]. The onset of this stage corresponds to the switch from formerly vertical to horizontal σ1, associated with a N045 compression marked by the fractures and stylolites of set II. This stage of deformation is consistent regionally as it has been documented in the Monte Nero [121], Conero [68], and Monte Catria [66] anticlines, and identified in numerous folds of the UMAR [52,54]. Based on T47 precipitation temperature and burial history, the LPS stage started since the middle Messinian (ca. 6.3 Ma). It has been reported in other case studies that the fold growth and associated underlying ramp activation is likely to be responsible for the uplift we reconstructed ca. 5.8 Ma [60]. Thus, we consider the LPS stage to have lasted from 6.3 Ma to 5.8 Ma;
- (iv)
- fold growth stage, characterized by a compression parallel to regional shortening, i.e., NE-SW-oriented [29] and local extension perpendicular to fold axis and related with strata curvature at fold hinge [60]. Based on the dating of the LPS, fold growth started at 5.8 Ma yet the T47 points towards a related N135 striking joints/veins development during the latest Neogene-early Pliocene (ca. 5.2 to 3.9 Ma, Figure 8). That difference in timing suggests a 0.6 My long fault activity and strata tilting before curvature became high enough to developed outer-arc extension fractures;
- (v)
- LSFT, post-dating the fold growth stage and still associated with a NE-SW contractional trend. At this stage shortening is no longer accommodated by e.g., limb rotation [60] and is associated with tectonic stylolites with N045-oriented peaks. The E-W fractures locally measured cannot be associated with this deformation stage, because no consistent chronological relationships with the syn-folding fracture sets were identified. Isotopic analyses (Figure 8) suggest the onset of the LSFT by the Pliocene (ca. 3.9 Ma). Despite the record of recent seismic activity in this northern part of the Apennines, linked to a post-orogenic NE-SW extension [151], the end of this deformation stage can precisely be determined neither from previous studies carried out in Cingoli [61] nor from data collected during this study.
7. Conclusions
- -
- different stages of deformation were recognized: (i) E-W extension related to foreland flexure (σ1 vertical); (ii) N045 oriented LPS; (iii) fold growth; (iv) LSFT, under a horizontal N045 contraction. Mesostructural analyses also support that the arcuate geometry of the Cingoli Anticline is a primary feature, probably linked to the oblique reactivation of a N-S inherited normal fault.
- -
- the burial history of strata was reconstructed with high resolution using roughness inversion applied to sedimentary stylolites. Our results highlight that this paleopiezometric technique yields consistent maximum depth estimates down to 2500 m, in agreement with previous studies in the western part of the UMAR.
- -
- the timing of deformation, and particularly the duration of the Apenninic contractional stages, was reconstructed from combined paleopiezometric, isotopic and mesostructral data. Following foreland flexure (ca. 21.2 to 6.3 Ma), LPS was dated from middle Messinian to early Pliocene (ca. 6.3 to 5.8 Ma) and fold growth occurred between early and middle Pliocene (ca. 5.8 to 3.9 Ma). The precise duration of LSFT remains out of reach. The duration of the fold growth phase is in line with previous estimates based on other proxies such as K-Ar and U-Pb absolute dating [71].
- -
- the O and C stable isotope signatures and clumped isotopes of ∆47 of vein cements imply that the paleofluid system that prevailed during LPS and folding in this structure involve marine local fluids with limited interaction with the host rock, in agreement with earlier findings in the eastern UMAR.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Barton, C.A.; Zoback, M.D. Stress perturbations associated with active faults penetrated by boreholes: Possible evidence for near-complete stress drop and a new technique for stress magnitude measurement. J. Geophys. Res. 1994, 99, 9373–9390. [Google Scholar] [CrossRef]
- Zoback, M.L.; Zoback, M.D. Chapter 24: Tectonic stress field of the continental United States. Mem. Geol. Soc. Am. 1989, 172, 523–539. [Google Scholar] [CrossRef]
- Sibson, R.H. Crustal stress, faulting and fluid flow. Geol. Soc. Spec. Publ. 1994, 78, 69–84. [Google Scholar] [CrossRef]
- Sanderson, D.J.; Zhang, X. Stress-controlled localization of deformation and fluid flow in fractured rocks. Geol. Soc. Spec. Publ. 2004, 231, 299–314. [Google Scholar] [CrossRef]
- Sanderson, D.J.; Zhang, X. Critical stress localization of flow associated with deformation of well-fractured rock masses, with implications for mineral deposits. Geol. Soc. Spec. Publ. 1999, 155, 69–81. [Google Scholar] [CrossRef]
- Mourgues, R.; Gressier, J.B.; Bodet, L.; Bureau, D.; Gay, A. “Basin scale” versus “localized” pore pressure/stress coupling—Implications for trap integrity evaluation. Mar. Pet. Geol. 2011, 28, 1111–1121. [Google Scholar] [CrossRef]
- Beaudoin, N.; Lacombe, O. Recent and future trends in paleopiezometry in the diagenetic domain: Insights into the tectonic paleostress and burial depth history of fold-and-thrust belts and sedimentary basins. J. Struct. Geol. 2018, 114, 357–365. [Google Scholar] [CrossRef]
- Tavani, S.; Storti, F.; Lacombe, O.; Corradetti, A.; Muñoz, J.A.; Mazzoli, S. A review of deformation pattern templates in foreland basin systems and fold-and-thrust belts: Implications for the state of stress in the frontal regions of thrust wedges. Earth-Sci. Rev. 2015, 141, 82–104. [Google Scholar] [CrossRef]
- Bergbauer, S.; Pollard, D.D. A new conceptual fold-fracture model including prefolding joints, based on the Emigrant Gap anticline, Wyoming. Bull. Geol. Soc. Am. 2004, 116, 294–307. [Google Scholar] [CrossRef]
- Bellahsen, N.; Fiore, P.; Pollard, D.D. The role of fractures in the structural interpretation of Sheep Mountain Anticline, Wyoming. J. Struct. Geol. 2006, 28, 850–867. [Google Scholar] [CrossRef]
- La Bruna, V.; Lamarche, J.; Agosta, F.; Rustichelli, A.; Giuffrida,, A.; Salardon, R.; Marie, L. Structural Diagenesis, Early Embrittlement and Fracture Setting in Shallow-Water Platform Carbonates (Monte Alpi Southern Apennines, Italy). In Proceedings of the Fifth International Conference on Fault and Top Seals; European Association of Geoscientists & Engineers: Houten, The Netherlands, 2019; Volume 2019, pp. 1–5. [Google Scholar]
- Rocher, M.; Lacombe, O.; Angelier, J.; Chen, H.W. Mechanical twin sets in calcite as markers of recent collisional events in a fold-and-thrust belt: Evidence from the reefal limestones of southwestern Taiwan. Tectonics 1996, 15, 984–996. [Google Scholar] [CrossRef] [Green Version]
- Lacombe, O.; Angelier, J.; Rocher, M.; Bergues, J.; Deffontaines, B.; Chu, H.T.; Hu, J.C.; Lee, J.C. Stress patterns associated with folding at the front of a collision belt: Example from the Pliocene reef limestones of Yutengping (Taiwan). Bull. Soc. Geol. Fr. 1996, 167, 361–374. [Google Scholar]
- Rocher, M.; Lacombe, O.; Angelier, J.; Deffontaines, B.; Verdier, F. Cenozoic folding and faulting in the south Aquitaine Basin (France): Insights from combined structural and paleostress analyses. J. Struct. Geol. 2000, 22, 627–645. [Google Scholar] [CrossRef]
- Amrouch, K.; Lacombe, O.; Bellahsen, N.; Daniel, J.M.; Callot, J.P. Stress and strain patterns, kinematics and deformation mechanisms in a basement-cored anticline: Sheep Mountain Anticline, Wyoming. Tectonics 2010, 29. [Google Scholar] [CrossRef] [Green Version]
- Amrouch, K.; Beaudoin, N.; Lacombe, O.; Bellahsen, N.; Daniel, J.M. Paleostress magnitudes in folded sedimentary rocks. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Callot, J.P.; Breesch, L.; Guilhaumou, N.; Roure, F.; Swennen, R.; Vilasi, N. Paleo-fluids characterisation and fluid flow modelling along a regional transect in Northern United Arab Emirates (UAE). Arab. J. Geosci. 2010, 3, 413–437. [Google Scholar] [CrossRef] [Green Version]
- Sassi, W.; Guiton, M.L.E.; Leroy, Y.M.; Daniel, J.M.; Callot, J.P. Constraints on bed scale fracture chronology with a FEM mechanical model of folding: The case of Split Mountain (Utah, USA). Tectonophysics 2012, 576–577, 197–215. [Google Scholar] [CrossRef]
- Smart, K.J.; Ferrill, D.A.; Morris, A.P.; McGinnis, R.N. Geomechanical modeling of stress and strain evolution during contractional fault-related folding. Tectonophysics 2012, 576–577, 171–196. [Google Scholar] [CrossRef]
- Beaudoin, N.; Bellahsen, N.; Lacombe, O.; Emmanuel, L. Fracture-controlled paleohydrogeology in a basement-cored, fault-related fold: Sheep Mountain Anticline, Wyoming, United States. Geochem. Geophys. Geosyst. 2011, 12. [Google Scholar] [CrossRef] [Green Version]
- Saintot, A.; Stephenson, R.; Brem, A.; Stovba, S.; Privalov, V. Paleostress field reconstruction and revised tectonic history of the Donbas fold and thrust belt (Ukraine and Russia). Tectonics 2003, 22. [Google Scholar] [CrossRef] [Green Version]
- Laubach, S.E.; Olson, J.E.; Gale, J.F.W. Are open fractures necessarily aligned with maximum horizontal stress? Earth Planet. Sci. Lett. 2004, 222, 191–195. [Google Scholar] [CrossRef]
- Bellahsen, N.; Fiore, P.E.; Pollard, D.D. From spatial variation of fracture patterns to fold kinematics: A geomechanical approach. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Cooper, S.P.; Goodwin, L.B.; Lorenz, J.C. Fracture and fault patterns associated with basement-cored anticlines: The example of Teapot Dome, Wyoming. Am. Assoc. Pet. Geol. Bull. 2006, 90, 1903–1920. [Google Scholar] [CrossRef]
- Ahmadhadi, F.; Lacombe, O.; Daniel, J.-M. Early Reactivation of Basement Faults in Central Zagros (SW Iran): Evidence from Pre-folding Fracture Populations in Asmari Formation and Lower Tertiary Paleogeography. In Thrusts Belts and Foreland Basins. Frontiers in Earth Sciences; Lacombe, O., Roure, F., Vergés, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; pp. 205–228. [Google Scholar]
- Ahmadhadi, F.; Daniel, J.M.; Azzizadeh, M.; Lacombe, O. Evidence for pre-folding vein development in the Oligo-Miocene Asmari Formation in the Central Zagros Fold Belt, Iran. Tectonics 2008, 27. [Google Scholar] [CrossRef] [Green Version]
- Lacombe, O.; Bellahsen, N.; Mouthereau, F. Fracture patterns in the Zagros Simply Folded Belt (Fars, Iran): Constraints on early collisional tectonic history and role of basement faults. Geol. Mag. 2011, 148, 940–963. [Google Scholar] [CrossRef]
- Casini, G.; Gillespie, P.A.; Vergés, J.; Romaire, I.; Fernández, N.; Casciello, E.; Saura, E.; Mehl, C.; Homke, S.; Embry, J.C.; et al. Sub-seismic fractures in foreland fold and thrust belts: Insight from the Lurestan Province, Zagros Mountains, Iran. Pet. Geosci. 2011, 17, 263–282. [Google Scholar] [CrossRef] [Green Version]
- Tavani, S.; Storti, F.; Baus, J.; Muoz, J.A. Late thrusting extensional collapse at the mountain front of the northern Apennines (Italy). Tectonics 2012, 31. [Google Scholar] [CrossRef]
- Beaudoin, N.; Leprêtre, R.; Bellahsen, N.; Lacombe, O.; Amrouch, K.; Callot, J.P.; Emmanuel, L.; Daniel, J.M. Structural and microstructural evolution of the Rattlesnake Mountain Anticline (Wyoming, USA): New insights into the Sevier and Laramide orogenic stress build-up in the Bighorn Basin. Tectonophysics 2012, 576–577, 20–45. [Google Scholar] [CrossRef]
- Stearns, D.W.; Friedman, M. Reservoirs in Fractured Rock. In Stratigraphic Oil and Gas Fields—Classification, Exploration Methods, and Case Histories. In Stratigraphic Oil and Gas Fields—Classification, Exploration Methods, and Case Histories; AAPG Special Volumes; Goud, H.R., Ed.; The American Association of petroleum Geologist: Tulsa, OK, USA, 1972; Volume 10, pp. 82–106. [Google Scholar]
- Engelder, T. Joints and Shear Fractures in Rock; Department of Geoscience, Pennsylvania State University: State College, PA, USA, 1987; pp. 27–69. ISBN 0-12-066265-5. [Google Scholar]
- Laubach, S.E. Subsurface fractures and their relationship to stress history in East Texas basin sandstone. Tectonophysics 1988, 156, 37–49. [Google Scholar] [CrossRef]
- Laubach, S.E. Paleostress directions from the preferred orientation of closed microfractures (fluid-inclusion planes) in sandstone, East Texas basin, U.S.A. J. Struct. Geol. 1989, 11, 603–611. [Google Scholar] [CrossRef]
- Fischer, M.P.; Woodward, N.B.; Mitchell, M.M. The kinematics of break-thrust folds. J. Struct. Geol. 1992, 14, 451–460. [Google Scholar] [CrossRef]
- Cooke, M.L. Fracture localization along faults with spatially varying friction. J. Geophys. Res. Solid Earth 1997, 102, 22425–22434. [Google Scholar] [CrossRef]
- Aldega, L.; Carminati, E.; Scharf, A.; Mattern, F.; Al-Wardi, M. Estimating original thickness and extent of the Semail Ophiolite in the eastern Oman Mountains by paleothermal indicators. Mar. Pet. Geol. 2017, 84, 18–33. [Google Scholar] [CrossRef]
- Aldega, L.; Bigi, S.; Carminati, E.; Trippetta, F.; Corrado, S.; Kavoosi, M.A. The Zagros fold-and-thrust belt in the Fars province (Iran): II. Thermal evolution. Mar. Pet. Geol. 2018, 93, 376–390. [Google Scholar] [CrossRef]
- Balestra, M.; Corrado, S.; Aldega, L.; Morticelli, M.G.; Sulli, A.; Rudkiewicz, J.-L.; Sassi, W. Thermal and structural modeling of the Scillato wedge-top basin source-to-sink system: Insights into the Sicilian fold-and-thrust belt evolution (Italy). Bulletin 2019, 131, 1763–1782. [Google Scholar] [CrossRef]
- Anders, M.H.; Laubach, S.E.; Scholz, C.H. Microfractures: A review. J. Struct. Geol. 2014, 69, 377–394. [Google Scholar] [CrossRef] [Green Version]
- Becker, S.P.; Eichhubl, P.; Laubach, S.E.; Reed, R.M.; Lander, R.H.; Bodnar, R.J. A 48 m.y. history of fracture opening, temperature, and fluid pressure: Cretaceous Travis Peak Formation, East Texas basin. Bull. Geol. Soc. Am. 2010, 122, 1081–1093. [Google Scholar] [CrossRef]
- Laubach, S.E.; Fall, A.; Copley, L.K.; Marrett, R.; Wilkins, S.J. Fracture porosity creation and persistence in a basement-involved Laramide fold, Upper Cretaceous Frontier Formation, Green River Basin, USA. Geol. Mag. 2016, 153, 887–910. [Google Scholar] [CrossRef] [Green Version]
- Fall, A.; Eichhubl, P.; Cumella, S.P.; Bodnar, R.J.; Laubach, S.E.; Becker, S.P. Testing the basin-centered gas accumulation model using fluid inclusion observations:Southern Piceance Basin, Colorado. Am. Assoc. Pet. Geol. Bull. 2012, 96, 2297–2318. [Google Scholar] [CrossRef]
- Lespinasse, M. Are fluid inclusion planes useful in structural geology? J. Struct. Geol. 1999, 21, 1237–1243. [Google Scholar] [CrossRef]
- Corrado, S.; Invernizzi, C.; Aldega, L.; D’errico, M.; Di Leo, P.; Mazzoli, S.; Zattin, M. Testing the validity of organic and inorganic thermal indicators in different tectonic settings from continental subduction to collision: The case history of the Calabria–Lucania border (southern Apennines, Italy). J. Geol. Soc. London. 2010, 167, 985–999. [Google Scholar] [CrossRef]
- Schito, A.; Andreucci, B.; Aldega, L.; Corrado, S.; Di Paolo, L.; Zattin, M.; Szaniawski, R.; Jankowski, L.; Mazzoli, S. Burial and exhumation of the western border of the Ukrainian Shield (Podolia): A multi-disciplinary approach. Basin Res. 2018, 30, 532–549. [Google Scholar] [CrossRef] [Green Version]
- Beaudoin, N.; Lacombe, O.; Roberts, N.M.W.; Koehn, D. U-Pb dating of calcite veins reveals complex stress evolution and thrust sequence in the Bighorn Basin, Wyoming, USA. Geology 2018, 46, 1015–1018. [Google Scholar] [CrossRef]
- Hoareau, G.; Claverie, F.; Pécheyran, C.; Paroissin, C.; Grignard, P.-A.; Motte, G.; Chailan, O.; Girard, J.-P. Direct U-Pb dating of carbonates from micron-scale femtosecond laser ablation inductively coupled plasma mass spectrometry images using robust regression. Geochronology 2021, 3, 67–87. [Google Scholar] [CrossRef]
- Aldega, L.; Viola, G.; Casas-Sainz, A.; Marcén, M.; Román-Berdiel, T.; Lelij, R. Unraveling Multiple Thermotectonic Events Accommodated by Crustal-Scale Faults in Northern Iberia, Spain: Insights From K-Ar Dating of Clay Gouges. Tectonics 2019, 38, 3629–3651. [Google Scholar] [CrossRef]
- Hoareau, G.; Crognier, N.; Lacroix, B.; Aubourg, C.; Roberts, N.M.W.; Niemi, N.; Branellec, M.; Beaudoin, N.; Ruiz, I.S. Combination of Δ47 and U-Pb dating in tectonic calcite veins unravel the last pulses related to the Pyrenean Shortening (Spain). Earth Planet. Sci. Lett. 2021, 553, 116636. [Google Scholar] [CrossRef]
- Mangenot, X.; Bonifacie, M.; Gasparrini, M.; Götz, A.; Chaduteau, C.; Ader, M.; Rouchon, V. Coupling Δ47 and fluid inclusion thermometry on carbonate cements to precisely reconstruct the temperature, salinity and δ18O of paleo-groundwater in sedimentary basins. Chem. Geol. 2017, 472, 44–57. [Google Scholar] [CrossRef]
- Renard, F.; Schmittbuhl, J.; Gratier, J.P.; Meakin, P.; Merino, E. Three-dimensional roughness of stylolites in limestones. J. Geophys. Res. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Schmittbuhl, J.; Renard, F.; Gratier, J.P.; Toussaint, R. Roughness of stylolites: Implications of 3D high resolution topography measurements. Phys. Rev. Lett. 2004, 93, 238501. [Google Scholar] [CrossRef] [Green Version]
- Ebner, M.; Piazolo, S.; Renard, F.; Koehn, D. Stylolite interfaces and surrounding matrix material: Nature and role of heterogeneities in roughness and microstructural development. J. Struct. Geol. 2010, 32, 1070–1084. [Google Scholar] [CrossRef]
- Ebner, M.; Toussaint, R.; Schmittbuhl, J.; Koehn, D.; Bons, P. Anisotropic scaling of tectonic stylolites: A fossilized signature of the stress field? J. Geophys. Res. 2010, 115, B06403. [Google Scholar] [CrossRef] [Green Version]
- Rolland, A.; Toussaint, R.; Baud, P.; Schmittbuhl, J.; Conil, N.; Koehn, D.; Renard, F.; Gratier, J. Modeling the growth of stylolites in sedimentary rocks. J. Geophys. Res. Solid Earth 2012, 117, B6. [Google Scholar] [CrossRef] [Green Version]
- Rolland, A.; Toussaint, R.; Baud, P.; Conil, N.; Landrein, P. Morphological analysis of stylolites for paleostress estimation in limestones. Int. J. Rock Mech. Min. Sci. 2014, 67, 212–225. [Google Scholar] [CrossRef] [Green Version]
- Koehn, D.; Rood, M.P.; Beaudoin, N.; Chung, P.; Bons, P.D.; Gomez-Rivas, E. A new stylolite classification scheme to estimate compaction and local permeability variations. Sediment. Geol. 2016, 346, 60–71. [Google Scholar] [CrossRef] [Green Version]
- Bertotti, G.; de Graaf, S.; Bisdom, K.; Oskam, B.; Vonhof, H.B.; Bezerra, F.H.R.; Reijmer, J.J.G.; Cazarin, L.C. Fracturing and fluid-flow during post-rift subsidence in carbonates of the Jandaíra Formation, Potiguar Basin, NE Brazil. Basin Res. 2017, 29, 836–853. [Google Scholar] [CrossRef] [Green Version]
- Beaudoin, N.; Labeur, A.; Lacombe, O.; Koehn, D.; Billi, A.; Hoareau, G.; Boyce, A.; John, C.M.; Marchegiano, M.; Roberts, N.M.; et al. Regional-scale paleofluid system across the Tuscan Nappe–Umbria Marche Arcuate Ridge (northern Apennines) as revealed by mesostructural and isotopic analyses of stylolite-vein networks. Solid Earth 2020, 11, 1617–1641. [Google Scholar] [CrossRef]
- Petracchini, L.; Antonellini, M.; Billi, A.; Scrocca, D. Fault development through fractured pelagic carbonates of the Cingoli anticline, Italy: Possible analog for subsurface fluid-conductive fractures. J. Struct. Geol. 2012, 45, 21–37. [Google Scholar] [CrossRef]
- Calamita, F.; Cello, G.; Deiana, G.; Paltrinieri, W. Structural styles, chronology rates of deformation, and time-space relationships in the Umbria-Marche thrust system (central Apennines, Italy). Tectonics 1994, 13, 873–881. [Google Scholar] [CrossRef]
- Mazzoli, S.; Deiana, G.; Galdenzi, S.; Cello, G. Miocene fault-controlled sedimentation and thrust propagation in the previously faulted external zones of the Umbria-Marche Apennines, Italy. EGU Stephan Mueller Spec. Publ. Ser. 2002, 1, 195–209. [Google Scholar] [CrossRef]
- Calamita, F.; Cello, G.; Invernizzi, C.; Paltrinieri, W. Stile strutturale e crono- logia della deformazione lungo la traversa M. S. Vicino. Stud. Geol. Camerti 1990, 69–86. [Google Scholar] [CrossRef]
- Caricchi, C.; Aldega, L.; Corrado, S. Reconstruction of maximum burial along the Northern Apennines thrust wedge (Italy) by indicators of thermal exposure and modeling. Bull. Geol. Soc. Am. 2015, 127, 428–442. [Google Scholar] [CrossRef]
- Tavani, S.; Storti, F.; Salvini, F.; Toscano, C. Stratigraphic versus structural control on the deformation pattern associated with the evolution of the Mt. Catria anticline, Italy. J. Struct. Geol. 2008, 30, 664–681. [Google Scholar] [CrossRef]
- Petracchini, L.; Antonellini, M.; Billi, A.; Scrocca, D. Syn-thrusting polygonal normal faults exposed in the hinge of the Cingoli anticline, northern Apennines, Italy. Front. Earth Sci. 2015, 3, 67. [Google Scholar] [CrossRef] [Green Version]
- Díaz General, E.N.; Mollema, P.N.; Antonellini, M. Fracture patterns and fault development in the pelagic limestones of the Monte Conero anticline (Italy). Ital. J. Geosci. 2015, 134, 495–512. [Google Scholar] [CrossRef]
- Calamita, F.; Coppola, L.; Deiana, G.; Ivernizzi, C.; Mastrovincenzo, S. Le associazioni strutturali di Genge e M. Rotondo; un motivo ricorrente nella thrust belt umbro-marchigiana settentrionale. Boll. Della Soc. Geol. Ital. 1987, 106, 141–151. [Google Scholar]
- Invernizzi, C. Low temperature deformation in naturally deformed marly limestones from the Umbria-Marche Apennines. Ann. Tectonicae 1994, 8, 119–133. [Google Scholar]
- Curzi, M.; Aldega, L.; Bernasconi, S.M.; Berra, F.; Billi, A.; Boschi, C.; Franchini, S.; Van der Lelij, R.; Viola, G.; Carminati, E. Architecture and evolution of an extensionally-inverted thrust (Mt. Tancia Thrust, Central Apennines): Geological, structural, geochemical, and K–Ar geochronological constraints. J. Struct. Geol. 2020, 136, 104059. [Google Scholar] [CrossRef]
- Lavecchia, G.; Minelli, G.; Pialli, G. The Umbria-Marche arcuate fold belt (Italy). Tectonophysics 1988, 146, 125–137. [Google Scholar] [CrossRef]
- Elter, F.M.; Elter, P.; Eva, C.; Eva, E.; Kraus, R.K.; Padovano, M.; Solarino, S. An alternative model for the recent evolution of the Northern-Central Apennines (Italy). J. Geodyn. 2012, 54, 55–63. [Google Scholar] [CrossRef]
- Tozer, R.S.J.; Butler, R.W.H.; Corrado, S. Comparing thin- and thick-skinned thrust tectonic models of the Central Apennines, Italy. Stephan Mueller Spec. Publ. Ser. 2002, 1, 181–194. [Google Scholar] [CrossRef]
- Scisciani, V.; Agostini, S.; Calamita, F.; Pace, P.; Cilli, A.; Giori, I.; Paltrinieri, W. Positive inversion tectonics in foreland fold-and-thrust belts: A reappraisal of the Umbria-Marche Northern Apennines (Central Italy) by integrating geological and geophysical data. Tectonophysics 2014, 637, 218–237. [Google Scholar] [CrossRef]
- Mazzoli, S.; Aldega, L.; Corrado, S.; Invernizzi, C.; Zattin, M. Pliocene-quaternary thrusting, syn-orogenic extension and tectonic exhumation in the Southern Apennines (Italy): Insights from the Monte Alpi area. Spec. Pap. Soc. Am. 2006, 414, 55. [Google Scholar]
- Boccaletti, M.; Calamita, F.; Viandante, M.G. The lithospheric Apennine Neo-Chain developing since the Lower Pliocene as a result of the Africa-Europe convergence. Boll. della Soc. Geol. Ital. 2005, 124, 87–105. [Google Scholar]
- Satolli, S.; Pace, P.; Viandante, M.; Calamita, F. Lateral variations in tectonic style across cross-strike discontinuities: An example from the Central Apennines belt (Italy). Int. J. Earth Sci. 2014, 103, 2301–2313. [Google Scholar] [CrossRef]
- Brozzetti, F.; Cirillo, D.; Luchetti, L. Timing of Contractional Tectonics in the Miocene Foreland Basin System of the Umbria Pre-Apennines (Italy): An Updated Overview. Geosciences 2021, 11, 97. [Google Scholar] [CrossRef]
- Cello, G.; Mazzoli, S.; Tondi, E.; Turco, E. Active tectonics in the central Apennines and possible implications for seismic hazard analysis in peninsular Italy. Tectonophysics 1997, 272, 43–68. [Google Scholar] [CrossRef]
- Ghisetti, F.; Vezzani, L. Normal faulting, extension and uplift in the outer thrust belt of the central Apennines (Italy): Role of the Caramanico fault. Basin Res. 2002, 14, 225–236. [Google Scholar] [CrossRef]
- Santantonio, M. Pelagic carbonate platforms in the geologic record: Their classification and sedimentary and paleotectonic evolution. Am. Assoc. Pet. Geol. Bull. 1994, 78, 122–141. [Google Scholar] [CrossRef]
- Santantonio, M. Facies associations and evolution of pelagic carbonate platform/basin systems: Examples from the Italian Jurassic. Sedimentology 1993, 40, 1039–1067. [Google Scholar] [CrossRef]
- Carminati, E.; Lustrino, M.; Cuffaro, M.; Doglioni, C. Tectonics, magmatism and geodynamics of Italy: What we know and what we imagine. J. Virtual Explor. 2010, 36, 10–3809. [Google Scholar] [CrossRef]
- Bigi, S.; Milli, S.; Corrado, S.; Casero, P.; Aldega, L.; Botti, F.; Moscatelli, M.; Stanzione, O.; Falcini, F.; Marini, M.; et al. Stratigraphy, structural setting and burial history of the Messinian Laga basin in the context of Apennine foreland basin system. J. Mediterr. Earth Sci. 2009, 1, 61–84. [Google Scholar] [CrossRef]
- Bally, A.W.; Burbi, W.; Cooper, J.C.; Ghelardoni, L. Balanced sections and seismic reflection profiles across the Central Apennines. Mem. Soc. Geol. Ital. 1986, 107, 109–130. [Google Scholar]
- Ghisetti, F.; Vezzani, L. Geometric and kinematic complexities in the Marche-Abruzzi external zones (Central Apennines, Italy). Geol. Rundschau 1988, 77, 63–78. [Google Scholar] [CrossRef]
- Hill, K.; Hayward, A. Structural constraints on the Tertiary plate tectonic evolution of Italy. Mar. Pet. Geol. 1988, 5, 2–16. [Google Scholar] [CrossRef]
- Lacombe, O.; Bellahsen, N. Thick-skinned tectonics and basement-involved fold–thrust belts: Insights from selected Cenozoic orogens. Geol. Mag. 2016, 153, 763–810. [Google Scholar] [CrossRef] [Green Version]
- Hippolyte, J.-C.; Angelier, J.; Barrier, E. Compressional and extensional tectonics in an arc system: Example of the Southern Apennines. J. Struct. Geol. 1995, 17, 1725–1740. [Google Scholar] [CrossRef]
- Mazzoli, S.; Cello, G.; Deiana, G.; Galdenzi, S.; Gambini, R.; Mancinelli, A.; Mattioni, L.; Shiner, P.; Tondi, E. Modes of foreland deformation ahead of the Apennine thrust front. J. Czech Geol. Soc. 2000, 45, 246. [Google Scholar]
- Scisciani, V.; Calamita, F.; Tavarnelli, E.; Rusciadelli, G.; Ori, G.-G.; Paltrinieri, W. Foreland-dipping normal faults in the iner edges of syn-orogenic basins: A case from the Central Apennines, Italy. Tectonophysics 2001, 330, 211–224. [Google Scholar] [CrossRef]
- Calamita, F.; Paltrinieri, W.; Pelorosso, M.; Scisciani, V.; Tavarnelli, E. Inherited Mesozoic architecture of the Adria continental palaeomargin in the neogene central apennines orogenic system, Italy. Boll. Della Soc. Geol. Ital. 2003, 122, 307–318. [Google Scholar]
- Rusciadelli, G.; Viandante, M.G.; Calamita, F.; Cook, A.C. Burial-exhumation history of the central Apennines (Italy), from the foreland to the chain building: Thermochronological and geological data. Terra Nov. 2005, 17, 560–572. [Google Scholar] [CrossRef]
- Tavarnelli, E. Ancient synsedimentary structural control on thrust ramp development: An example from the Northern Apennines, Italy. Terra Nov. 2007, 8, 65–74. [Google Scholar] [CrossRef]
- Pace, P.; Calamita, F. Push-up inversion structures v. fault-bend reactivation anticlines along oblique thrust ramps: Examples from the Apennines fold-and-thrust belt (Italy). J. Geol. Soc. Lond. 2014, 171, 227–238. [Google Scholar] [CrossRef]
- Marshak, S.; Geiser, P.A.; Alvarez, W.; Engelder, T. Mesoscopic fault array of the northern Umbrian Appennine fold belt, Italy: Geometry of conjugate shear by pressure-solution slip. Geol. Soc. Am. Bull. 1982, 93, 1013–1022. [Google Scholar] [CrossRef]
- Storti, F.; Rossetti, F.; Salvini, F. Structural architecture and displacement accomodation mechanisms at the termination of the Priestley Fault, northern Victoria Land, Antarctica. Tectonophysics 2001, 341, 141–161. [Google Scholar] [CrossRef]
- Barchi, M.; Alvarez, W.; Shimabukuro, D.H. The Umbria-Marche Apennines as a double orogen: Observations and hypotheses. Ital. J. Geosci. 2012, 131, 258–271. [Google Scholar] [CrossRef]
- Calamita, F.; Deiana, G. The arcuate shape of the Umbria-Marche-Sabina Apennines (Central Italy). Tectonophysics 1988, 146, 139–147. [Google Scholar] [CrossRef]
- Deiana, G.; Cello, G.; Chiocchini, M.; Galdenzi, S.; Mazzoli, S.; Pistolesi, E.; Potetti, M.; Romano, A.; Turco, E.; Principi, M. Tectonic evolution of the external zones of the Umbria-Marche Apennines in the Monte San Vicino-Cingoli area. Boll. Della Soc. Geol. Ital. 2002, 1, 229–238. [Google Scholar]
- Cita, M.B.; Abbate, E.; Ballini, M.; Conti, A.; Falorni, P.; Germani, D.; Petti, F.M. Carta Geologica d’Italia–1: 50.000, Catalogo delle Formazioni, Unità tradizionali. Quad. Serv. Geol. D’It. Ser. III 2007, 7, 382. [Google Scholar]
- Menichetti, M. La sezione geologica Cingoli—M. Maggio-Tevere nell’Appennino umbro-marchigiano: Analisi cinematica e strutturale. Stud. Geol. Camerti 1991, special vo, 315–328. [Google Scholar]
- Centamore, E.; Chiocchini, M.; Deiana, G.; Micarelli, A.; Pieruccini, U. Contributo alla conoscenda del Giurassico dell’Appennino Umbro-Marchigiano. Stud. Geol. Camerti 1971, 1, 7–89. [Google Scholar] [CrossRef]
- Farinacci, A. Jurassic Sediments in the Umbro-Marchean Apennines: An Alternative Model; Istituto di Geologia e Paleontologia: Roma, Italy, 1981. [Google Scholar]
- Santantonio, M.; Carminati, E. Jurassic rifting evolution of the Apennines and Southern Alps (Italy): Parallels and differences. Bulletin 2011, 123, 468–484. [Google Scholar] [CrossRef]
- Koehn, D.; Renard, F.; Toussaint, R.; Passchier, C.W. Growth of stylolite teeth patterns depending on normal stress and finite compaction. Earth Planet. Sci. Lett. 2007, 257, 582–595. [Google Scholar] [CrossRef] [Green Version]
- Toussaint, R.; Aharonov, E.; Koehn, D.; Gratier, J.P.; Ebner, M.; Baud, P.; Rolland, A.; Renard, F. Stylolites: A review. J. Struct. Geol. 2018, 114, 163–195. [Google Scholar] [CrossRef] [Green Version]
- Grohmann, C.H.; Campanha, G.A. OpenStereo: Open source, cross-platform software for structural geology analysis. AGU Fall Meet. Abstr. 2010, 2010, IN31C-06. [Google Scholar]
- Angelier, J. Tectonic analysis of fault slip data sets. J. Geophys. Res. 1984, 89, 5835–5848. [Google Scholar] [CrossRef]
- Lacombe, O. Do fault slip data inversions actually yield“ paleostresses” that can be compared with contemporary stresses? A critical discussion. Comptes Rendus-Geosci. 2012, 344, 159–173. [Google Scholar] [CrossRef]
- Aydin, A.; Basu, A. The Schmidt hammer in rock material characterization. Eng. Geol. 2005, 81, 1–14. [Google Scholar] [CrossRef]
- Katz, O.; Reches, Z.; Roegiers, J.-C. Evaluation of mechanical rock properties using a Schmidt Hammer. Int. J. Rock Mech. Min. Sci. 2000, 37, 723–728. [Google Scholar] [CrossRef]
- Ebner, M.; Koehn, D.; Toussaint, R.; Renard, F. The influence of rock heterogeneity on the scaling properties of simulated and natural stylolites. J. Struct. Geol. 2009, 31, 72–82. [Google Scholar] [CrossRef] [Green Version]
- Ebner, M.; Koehn, D.; Toussaint, R.; Renard, F.; Schmittbuhl, J. Stress sensitivity of stylolite morphology. Earth Planet. Sci. Lett. 2009, 277, 394–398. [Google Scholar] [CrossRef] [Green Version]
- Koehn, D.; Ebner, M.; Renard, F.; Toussaint, R.; Passchier, C.W. Modelling of stylolite geometries and stress scaling. Earth Planet. Sci. Lett. 2012, 341–344, 104–113. [Google Scholar] [CrossRef] [Green Version]
- Beaudoin, N.; Gasparrini, M.; David, M.E.; Lacombe, O.; Koehn, D. Bedding-parallel stylolites as a tool to unravel maximum burial depth in sedimentary basins: Application to Middle Jurassic carbonate reservoirs in the Paris basin, France. Bull. Geol. Soc. Am. 2019, 131, 1239–1254. [Google Scholar] [CrossRef]
- Beaudoin, N.; Lacombe, O.; David, M.E.; Koehn, D. Does stress transmission in forelands depend on structural style? Distinctive stress magnitudes during Sevier thin-skinned and Laramide thick-skinned layer-parallel shortening in the Bighorn Basin (USA) revealed by stylolite and calcite twinning paleopiez. Terra Nov. 2020, 32, 225–233. [Google Scholar] [CrossRef]
- Simonsen, I.; Hansen, A.; Nes, O.M. Determination of the Hurst exponent by use of wavelet transforms. Phys. Rev. 1998, 58, 2779–2787. [Google Scholar] [CrossRef] [Green Version]
- Wright, K.; Cygan, R.T.; Slater, B. Structure of the (1014) surfaces of calcite, dolomite and magnesite under wet and dry conditions. Phys. Chem. Chem. Phys. 2001, 3, 839–844. [Google Scholar] [CrossRef] [Green Version]
- Beaudoin, N.; Koehn, D.; Lacombe, O.; Lecouty, A.; Billi, A.; Aharonov, E.; Parlangeau, C. Fingerprinting stress: Stylolite and calcite twinning paleopiezometry revealing the complexity of progressive stress patterns during folding—The case of the Monte Nero anticline in the Apennines, Italy. Tectonics 2016, 34, 1687–1712. [Google Scholar] [CrossRef] [Green Version]
- Vass, A.; Koehn, D.; Toussaint, R.; Ghani, I.; Piazolo, S. The importance of fracture-healing on the deformation of fluid-filled layered systems. J. Struct. Geol. 2014, 67, 94–106. [Google Scholar] [CrossRef] [Green Version]
- Dietrich, D.; McKenzie, J.A.; Song, H. Origin of calcite in syntectonic veins as determined from carbon- isotope ratios. Geology 1983, 11, 547–551. [Google Scholar] [CrossRef]
- Shemesh, A.; Ron, H.; Erel, Y.; Kolodny, Y.; Nur, A. Isotopic composition of vein calcite and its fluid inclusions: Implication to paleohydrological systems, tectonic events and vein formation processes. Chem. Geol. 1992, 94, 307–314. [Google Scholar] [CrossRef]
- Templeton, A.S. Fluids and the Heart Mountain Fault revisited. Geology 1995, 23, 929–932. [Google Scholar] [CrossRef]
- Douglas, T.A.; Chamberlain, C.P.; Poage, M.A.; Abruzzese, M.; Shultz, S.; Henneberry, J.; Layer, P. Fluid flow and the heart mountain fault: A stable isotopic, fluid inclusion, and geochronologic study. Geofluids 2003, 3, 13–32. [Google Scholar] [CrossRef]
- Vilasi, N.; Malandain, J.; Barrier, L.; Callot, J.P.; Amrouch, K.; Guilhaumou, N.; Lacombe, O.; Muska, K.; Roure, F.; Swennen, R. From outcrop and petrographic studies to basin-scale fluid flow modelling: The use of the Albanian natural laboratory for carbonate reservoir characterisation. Tectonophysics 2009, 474, 367–392. [Google Scholar] [CrossRef]
- Barbier, M.; Hamon, Y.; Callot, J.P.; Floquet, M.; Daniel, J.M. Sedimentary and diagenetic controls on the multiscale fracturing pattern of a carbonate reservoir: The Madison Formation (Sheep Mountain, Wyoming, USA). Mar. Pet. Geol. 2012, 29, 50–67. [Google Scholar] [CrossRef]
- Gasparrini, M.; Lacombe, O.; Rohais, S.; Belkacemi, M.; Euzen, T. Natural mineralized fractures from the Montney-Doig unconventional reservoirs (Western Canada Sedimentary Basin): Timing and controlling factors. Mar. Pet. Geol. 2021, 124, 104826. [Google Scholar] [CrossRef]
- Bons, P.D.; Elburg, M.A.; Gomez-Rivas, E. A review of the formation of tectonic veins and their microstructures. J. Struct. Geol. 2012, 43, 33–62. [Google Scholar] [CrossRef]
- Daëron, M.; Blamart, D.; Peral, M.; Affek, H.P. Absolute isotopic abundance ratios and the accuracy of Δ47 measurements. Chem. Geol. 2016, 442, 83–96. [Google Scholar] [CrossRef]
- Bernasconi, S.M.; Müller, I.A.; Bergmann, K.D.; Breitenbach, S.F.M.; Fernandez, A.; Hodell, D.A.; Jaggi, M.; Meckler, A.N.; Millan, I.; Ziegler, M. Reducing uncertainties in carbonate clumped isotope analysis through consistent carbonate-based standardization. Geochem. Geophys. Geosyst. 2018, 19, 2895–2914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.T.; Mucci, A.; Taylor, B.E. Phosphoric acid fractionation factors for calcite and aragonite between 25 and 75 °C: Revisited. Chem. Geol. 2007, 246, 135–146. [Google Scholar] [CrossRef]
- Daëron, M. Full propagation of analytical uncertainties in D47 measurements. Geochem. Geophys. Geosyst. 2020, 1–26. [Google Scholar] [CrossRef]
- Kele, S.; Breitenbach, S.F.M.; Capezzuoli, E.; Meckler, A.N.; Ziegler, M.; Millan, I.M.; Kluge, T.; Deák, J.; Hanselmann, K.; John, C.M.; et al. Temperature dependence of oxygen- and clumped isotope fractionation in carbonates: A study of travertines and tufas in the 6-95°C temperature range. Geochim. Cosmochim. Acta 2015, 168, 172–192. [Google Scholar] [CrossRef]
- Cardozo, N. Backtrip: Performs 1D “Airy type” Backstripping of Sedimentary Strata. 2011. Available online: https://downloadsafer.com/software/osxbackstrip/ (accessed on 30 January 2021).
- Allen, P.A.; Allen, J.R. Basin Analysis: Principles and Aplications, Blackwell Scientific Publication, 1st ed.; Blackwell Scientific Publications: Oxford, UK; London, UK, 1990; ISBN 0632024224. [Google Scholar]
- Watts, A.B. Isostasy and Flexure of the Lithosphere; Paperback; Cambridge University Press: Cambridge, UK, 2001; ISBN 9780521006002. [Google Scholar]
- Beaudoin, N.; Bellahsen, N.; Lacombe, O.; Emmanuel, L.; Pironon, J. Crustal-scale fluid flow during the tectonic evolution of the Bighorn Basin (Wyoming, USA). Basin Res. 2014, 26, 403–435. [Google Scholar] [CrossRef] [Green Version]
- Aldega, L.; Botti, F.; Corrado, S. Clay mineral assemblages and vitrinite reflectance in the Laga Basin (Central Apennines, Italy): What do they record? Clays Clay Miner. 2007, 55, 504–518. [Google Scholar] [CrossRef]
- Kim, S.T.; O’Neil, J.R. Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates. Geochim. Cosmochim. Acta 1997, 61, 3461–3475. [Google Scholar] [CrossRef]
- Di Naccio, D.; Boncio, P.; Cirilli, S.; Casaglia, F.; Morettini, E.; Lavecchia, G.; Brozzetti, F. Role of mechanical stratigraphy on fracture development in carbonate reservoirs: Insights from outcropping shallow water carbonates in the Umbria-Marche Apennines, Italy. J. Volcanol. Geotherm. Res. 2005, 148, 98–115. [Google Scholar] [CrossRef]
- Petit, J.; Barquins, M. Can natural faults propagate under mode II conditions? Tectonics 1988, 7, 1243–1256. [Google Scholar] [CrossRef]
- Homberg, C.; Hu, J.C.; Angelier, J.; Bergerat, F.; Lacombe, O. Characterization of stress perturbations near major fault zones: Insights from 2-D distinct-element numerical modelling and field studies (Jura mountains). J. Struct. Geol. 1997, 19, 703–718. [Google Scholar] [CrossRef]
- Beaudoin, N.; Lacombe, O.; Koehn, D.; David, M.E.; Farrell, N.; Healy, D. Vertical stress history and paleoburial in foreland basins unravelled by stylolite roughness paleopiezometry: Insights from bedding-parallel stylolites in the Bighorn Basin, Wyoming, USA. J. Struct. Geol. 2020, 136, 104061. [Google Scholar] [CrossRef]
- Fabbi, S.; Citton, P.; Romano, M.; Cipriani, A. Detrital events within pelagic deposits of the Umbria-Marche Basin (Northern Apennines, Italy): Further evidence of Early Cretaceous tectonics. J. Mediterr. Earth Sci. 2016, 8, 39–52. [Google Scholar]
- Cipriani, A.; Bottini, C. Early Cretaceous tectonic rejuvenation of an Early Jurassic margin in the Central Apennines: The “Mt. Cosce Breccia” . Sediment. Geol. 2019, 387, 57–74. [Google Scholar] [CrossRef]
- Cipriani, A.; Bottini, C. Unconformities, neptunian dykes and mass-transport deposits as an evidence for Early Cretaceous syn-sedimentary tectonics: New insights from the Central Apennines. Ital. J. Geosci. 2019, 138, 333–354. [Google Scholar] [CrossRef]
- Decandia, F.A. Geologia dei Monti di Spoleto (Provincia di Perugia). Boll. Della Soc. Geol. Ital. 1982, 101, 291–315. [Google Scholar]
- Marchegiani, L.; Bertotti, G.; Cello, G.; Deiana, G.; Mazzoli, S.; Tondi, E. Pre-orogenic tectonics in the Umbria-Marche sector of the Afro-Adriatic continental margin. Tectonophysics 1999, 315, 123–143. [Google Scholar] [CrossRef]
- Mazzoli, S.; Santini, S.; Macchiavelli, C.; Ascione, A. Active tectonics of the outer northern Apennines: Adriatic vs. Po Plain seismicity and stress fields. J. Geodyn. 2015, 84, 62–76. [Google Scholar] [CrossRef]
Sample | GPS | Formation | Lc (mm) | σv (MPa) * | Depth (m) |
---|---|---|---|---|---|
CIN13 | 58 | Maiolica | 0.44 ± 0.10 | 34 | 1440 |
0.60 ± 0.14 | 29 | 1250 | |||
0.77 ± 0.18 | 26 | 1100 | |||
0.84 ± 0.19 | 24 | 1040 | |||
0.30 ± 0.07 | 41 | 1740 | |||
0.27 ± 0.06 | 43 | 1840 | |||
0.31 ± 0.07 | 40 | 1700 | |||
CIN14 | 59 | Maiolica | 0.34 ± 0.08 | 38 | 1630 |
0.63 ± 0.14 | 28 | 1200 | |||
CIN3 | 60 | Maiolica | 0.39 ± 0.09 | 36 | 1540 |
0.54 ± 0.12 | 30 | 1300 | |||
0.49 ± 0.11 | 32 | 1360 | |||
CIN6 | 60 | Maiolica | 0.54 ± 0.12 | 30 | 1300 |
0.36 ± 0.08 | 37 | 1550 | |||
CIN8 | 60 | Maiolica | 0.53 ± 0.12 | 30 | 1300 |
0.76 ± 0.17 | 26 | 1100 | |||
CIN9 | 60 | Maiolica | 0.39 ± 0.09 | 36 | 1540 |
CIN10 | 60 | Maiolica | 0.36 ± 0.08 | 37 | 1600 |
0.31 ± 0.07 | 40 | 1700 | |||
0.29 ± 0.07 | 42 | 1800 | |||
CIN15 | 61 | Maiolica | 0.49 ± 0.11 | 32 | 1360 |
0.84± 0.19 | 25 | 1040 | |||
0.38 ± 0.09 | 37 | 1550 | |||
CIN17 | 61 | Maiolica | 0.85 ± 0.20 | 25 | 1040 |
CIN18 | 61 | Maiolica | 0.45 ± 0.10 | 33 | 1400 |
0.91 ± 0.21 | 23 | 1000 | |||
1.09 ± 0.25 | 22 | 900 | |||
CIN33 | 64 | Maiolica | 0.73 ± 0.17 | 26 | 1100 |
1.08 ± 0.25 | 22 | 900 | |||
0.46 ± 0.11 | 33 | 1400 | |||
0.34 ± 0.08 | 38 | 1630 | |||
CIN38 | 64 | Maiolica | 0.53 ± 0.12 | 30 | 1300 |
0.55 ± 0.13 | 30 | 1300 | |||
CIN40 | 64 | Maiolica | 0.76 ± 0.17 | 26 | 1100 |
0.46 ± 0.11 | 33 | 1400 | |||
0.32 ± 0.07 | 40 | 1700 | |||
0.56 ± 0.13 | 30 | 1300 | |||
0.35 ± 0.08 | 38 | 1600 | |||
C3 | WP_CIN3 | Maiolica | 1.76 ± 0.40 | 17 | 720 |
1.38 ± 0.32 | 19 | 810 | |||
C51 | WP_CIN23 | Maiolica | 1.18 ± 0.27 | 21 | 880 |
0.67 ± 0.15 | 27 | 1150 | |||
C56 | WP_CIN23 | Maiolica | 0.35 ± 0.08 | 38 | 1600 |
C67′ | WP_CIN29 | Maiolica | 0.75 ± 0.17 | 26 | 1100 |
0.58 ± 0.13 | 29 | 1250 | |||
C68 | WP_CIN29 | Maiolica | 0.33 ± 0.08 | 39 | 1650 |
C69 | WP_CIN29 | Maiolica | 0.74 ± 0.17 | 26 | 1100 |
0.46 ± 0.11 | 33 | 1400 | |||
C70 | WP_CIN29 | Maiolica | 0.35 ± 0.08 | 38 | 1600 |
0.34 ± 0.08 | 38 | 1600 | |||
C71 | WP_CIN29 | Maiolica | 0.38 ± 0.09 | 36 | 1540 |
C72 | WP_CIN29 | Maiolica | 0.50 ± 0.12 | 32 | 1350 |
C86 | WP_CIN38 | Maiolica | 1.33 ± 0.31 | 20 | 850 |
0.39 ± 0.09 | 36 | 1540 | |||
0.43 ± 0.10 | 34 | 1450 | |||
1.11 ± 0.26 | 22 | 900 | |||
C79 | WP_CIN36 | Scaglia Rossa | 0.38 ± 0.09 | 37 | 1550 |
C15 | WP_CIN7 | Scaglia Rossa | 0.49 ± 0.11 | 32 | 1300 |
0.51 ± 0.12 | 32 | 1300 | |||
C87 | WP_CIN8 | Scaglia Rossa | 1.17 ± 0.27 | 21 | 880 |
0.75 ± 0.17 | 26 | 1100 | |||
C21 | WP_CIN9 | Scaglia Rossa | 0.59 ± 0.14 | 29 | 1250 |
0.68 ± 0.16 | 27 | 1150 | |||
0.45 ± 0.10 | 34 | 1420 | |||
C26 | WP_CIN13 | Scaglia Rossa | 0.87 ± 0.20 | 24 | 1020 |
0.85 ± 0.20 | 24 | 1020 | |||
0.98 ± 0.23 | 23 | 960 | |||
C28 | WP_CIN13 | Scaglia Rossa | 0.45 ± 0.10 | 33 | 1400 |
C29 | WP_CIN13 | Scaglia Rossa | 0.63 ± 0.14 | 28 | 1200 |
0.64 ± 0.15 | 28 | 1200 | |||
0.84 ± 0.19 | 25 | 1040 | |||
C30 | WP_CIN14 | Scaglia Rossa | 0.36 ± 0.08 | 38 | 1600 |
0.60 ± 0.14 | 29 | 1230 | |||
0.40 ± 0.09 | 35 | 1500 | |||
C2 | WP_CIN2 | Scaglia Variegata | 0.75 ± 0.17 | 26 | 1100 |
1.26 ± 0.29 | 20 | 850 | |||
1.75 ± 0.40 | 17 | 720 |
Vein | Host-Rock | ||||
---|---|---|---|---|---|
Sample | Set | δ13C (‰VPDB) | δ18O (‰VPDB) Calcite | δ13C (‰VPDB) | δ18O (‰VPDB) Calcite |
CIN23-V1 | I | 2.04 | 2.19 | 2.15 | −2.95 |
CIN23-V2 | I | 1.90 | −0.44 | 2.15 | −2.95 |
CIN23-V3 | I | 1.91 | −1.56 | 2.15 | −2.95 |
CIN23-V4 | I | 1.98 | −0.68 | 2.15 | −2.95 |
CIN25-V1 | I | 2.06 | 1.79 | 2.10 | −2.27 |
CIN25-V2 | I | 2.06 | −0.97 | 2.10 | −2.27 |
CIN25-V3 | I | 2.08 | 2.07 | 2.10 | −2.27 |
CIN39-V1 | I | 0.05 | −0.74 | 1.08 | −1.59 |
CIN39-V2 | I | 0.10 | −0.30 | 1.08 | −1.59 |
CIN39-V3 | I | 0.31 | −0.66 | 1.08 | −1.59 |
CIN7-V1 | II | 2.48 | 1.37 | 2.47 | −1.68 |
CIN7-V2 | II | 2.97 | 2.09 | 2.47 | −1.68 |
CIN28a-V1 | II | 2.07 | 1.21 | 2.01 | −1.82 |
CIN28a-V2 | II | 1.81 | 0.58 | 2.01 | −1.82 |
CIN28a-V3 | II | 1.95 | 2.22 | 2.01 | −1.82 |
CIN26-V1 | II | 2.00 | 2.59 | 2.02 | −1.74 |
CIN26-V2 | II | 1.95 | 2.34 | 2.02 | −1.74 |
CIN26-V3 | II | 2.14 | 1.47 | 2.02 | −1.74 |
CIN26-V4 | II | 2.05 | 1.38 | 2.02 | −1.74 |
CIN28b-V1 | II | 2.08 | 2.20 | 2.03 | −1.64 |
CIN28b-V2 | II | 1.98 | 1.68 | 2.03 | −1.64 |
A13-V1 | III | 3.23 | 0.79 | 3.08 | −1.45 |
A14-V1 | III | 3.21 | 0.21 | 2.89 | −1.53 |
A14-V2 | III | 3.19 | 0.61 | 2.89 | −1.53 |
CIN37-V1 | III | 1.39 | −0.59 | 1.09 | −1.55 |
CIN37-V2 | III | 1.25 | 0.46 | 1.09 | −1.55 |
CIN37-V3 | III | 1.10 | −1.12 | 1.09 | −1.55 |
CIN37-V3 | III | 1.10 | −1.12 | 1.09 | −1.55 |
Sample | N | Set | δ13C (‰ VPDB) | δ18O (‰VPDB, Calcite) | ∆47 (‰, 1σ) | T47 (°C ± 1σ) | |
---|---|---|---|---|---|---|---|
NB_CIN23_V1 | 3 | I | 1.77 | −0.40 | 0.6299 ± 0.0058 | 38.3 ± 1.9 | |
NB_CIN25_V1prime | 3 | I | 1.93 | 1.68 | 0.6006 ± 0.0058 | 48.7 ± 2.1 | |
NB_CIN26_V1 | 3 | II | 1.92 | 2.13 | 0.5933 ± 0.0058 | 51.4 ± 2.2 | |
NB_CIN28a_V1 | 3 | II | 1.73 | −0.03 | 0.5968 ± 0.0057 | 50.0 ± 2.2 | |
NB_CIN28b_V1 | 3 | II | 2.01 | 1.95 | 0.5944 ± 0.0058 | 51.0 ± 2.2 | |
NB_CIN7_V1 | 3 | II | 2.44 | 0.86 | 0.6103 ± 0.0058 | 45.1 ± 2.1 | |
NB_A14_V1 | 3 | III | 3.08 | 0.45 | 0.6283 ± 0.0058 | 38.8 ± 2.0 | |
NB_CIN25_FAILLE | 3 | / | 2.01 | 1.77 | 0.5985 ± 0.0058 | 49.4 ± 2.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labeur, A.; Beaudoin, N.E.; Lacombe, O.; Emmanuel, L.; Petracchini, L.; Daëron, M.; Klimowicz, S.; Callot, J.-P. Burial-Deformation History of Folded Rocks Unraveled by Fracture Analysis, Stylolite Paleopiezometry and Vein Cement Geochemistry: A Case Study in the Cingoli Anticline (Umbria-Marche, Northern Apennines). Geosciences 2021, 11, 135. https://doi.org/10.3390/geosciences11030135
Labeur A, Beaudoin NE, Lacombe O, Emmanuel L, Petracchini L, Daëron M, Klimowicz S, Callot J-P. Burial-Deformation History of Folded Rocks Unraveled by Fracture Analysis, Stylolite Paleopiezometry and Vein Cement Geochemistry: A Case Study in the Cingoli Anticline (Umbria-Marche, Northern Apennines). Geosciences. 2021; 11(3):135. https://doi.org/10.3390/geosciences11030135
Chicago/Turabian StyleLabeur, Aurélie, Nicolas E. Beaudoin, Olivier Lacombe, Laurent Emmanuel, Lorenzo Petracchini, Mathieu Daëron, Sebastian Klimowicz, and Jean-Paul Callot. 2021. "Burial-Deformation History of Folded Rocks Unraveled by Fracture Analysis, Stylolite Paleopiezometry and Vein Cement Geochemistry: A Case Study in the Cingoli Anticline (Umbria-Marche, Northern Apennines)" Geosciences 11, no. 3: 135. https://doi.org/10.3390/geosciences11030135
APA StyleLabeur, A., Beaudoin, N. E., Lacombe, O., Emmanuel, L., Petracchini, L., Daëron, M., Klimowicz, S., & Callot, J. -P. (2021). Burial-Deformation History of Folded Rocks Unraveled by Fracture Analysis, Stylolite Paleopiezometry and Vein Cement Geochemistry: A Case Study in the Cingoli Anticline (Umbria-Marche, Northern Apennines). Geosciences, 11(3), 135. https://doi.org/10.3390/geosciences11030135