The Formation of the North Qilian Shan through Time: Clues from Detrital Zircon Fission-Track Data from Modern River Sediments
Abstract
:1. Introduction
2. Geological Setting
2.1. Qilian Shan
2.2. Hei River
3. Methods and Materials
4. Results
5. Discussion
5.1. The Meso-Neoproterozoic and Paleozoic Magmatic Activity
5.2. Early Cretaceous Cooling
5.3. Early Cenozoic Exhumation of the North Qilian Shan
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yin, A.; Harrison, T.M. Geologic Evolution of the Himalayan-Tibetan Orogen. Annu. Rev. Earth Planet. Sci. 2000, 28, 211–280. [Google Scholar] [CrossRef] [Green Version]
- Jolivet, M.; Brunel, M.; Seward, D.; Xu, Z.; Yang, J.; Roger, F.; Tapponnier, P.; Malavieille, J.; Arnaud, N.; Wu, C. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan plateau: Fission-track constraints. Tectonophysics 2001, 343, 111–134. [Google Scholar] [CrossRef]
- Yang, J.; Xu, Z.; Zhang, J.; Chu, C.-Y.; Zhang, R.; Liou, J.-G. Tectonic significance of early Paleozoic high-pressure rocks in Altun-Qaidam-Qilian Mountains, northwest China. Geol. Soc. Am. Mem. 2001, 194, 151–170. [Google Scholar] [CrossRef]
- Xu, Z.; Yang, J.; Wu, C.; Li, H.; Zhang, J.; Qi, X.; Song, S.; Qiu, H. Timing and mechanism of formation and exhumation of the Northern Qaidam ultrahigh-pressure metamorphic belt. J. Asian Earth Sci. 2006, 28, 160–173. [Google Scholar]
- Xiao, W.; Windley, B.F.; Yong, Y.; Yan, Z.; Yuan, C.; Liu, C.-Z.; Li, J. Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China. J. Southeast Asian Earth Sci. 2009, 35, 323–333. [Google Scholar] [CrossRef]
- Song, S.; Niu, Y.; Su, L.; Xia, X. Tectonics of the North Qilian orogen, NW China. Gondwana Res. 2013, 23, 1378–1401. [Google Scholar] [CrossRef]
- Zuza, A.V.; Wu, C.; Reith, R.C.; Yin, A.; Li, J.; Zhang, J.; Zhang, Y.; Wu, L.; Liu, W. Tectonic evolution of the Qilian Shan: An early Paleozoic orogen reactivated in the Cenozoic. GSA Bull. 2017, 130, 881–925. [Google Scholar] [CrossRef]
- Yu, S.; Peng, Y.; Zhang, J.; Li, S.; Santosh, M.; Li, Y.; Liu, Y.; Gao, X.; Ji, W.; Lv, P.; et al. Tectono-thermal evolution of the Qilian orogenic system: Tracing the subduction, accretion and closure of the Proto-Tethys Ocean. Earth-Sci. Rev. 2021, 215, 103547. [Google Scholar] [CrossRef]
- George, A.; Marshallsea, S.J.; Wyrwoll, K.-H.; Jie, C.; Yanchou, L. Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan Plateau, revealed by apatite fission-track and vitrinite-reflectance analysis. Geology 2001, 29, 939–942. [Google Scholar] [CrossRef]
- Yin, A.; Rumelhart, P.E.; Butler, R.; Cowgill, E.; Harrison, T.M.; Foster, D.A.; Ingersoll, R.V.; Qing, Z.; Xian, Z.; Xiao, W.; et al. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Geol. Soc. Am. Bull. 2002, 114, 1257–1295. [Google Scholar] [CrossRef]
- Lease, R.; Burbank, D.W.; Clark, M.K.; Farley, K.; Zheng, D.; Zhang, H. Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau. Geology 2011, 39, 359–362. [Google Scholar] [CrossRef]
- Duvall, A.R.; Clark, M.K.; Kirby, E.; Farley, K.A.; Craddock, W.H.; Li, C.; Yuan, D.-Y. Low-temperature thermochronometry along the Kunlun and Haiyuan Faults, NE Tibetan Plateau: Evidence for kinematic change during late-stage orogenesis. Tectonics 2013, 32, 1190–1211. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.; Garzione, C.N.; Jolivet, M.; Guo, Z.; Zhang, D.; Zhang, C.; Zhang, Q. Initial Deformation of the Northern Tibetan Plateau: Insights from Deposition of the Lulehe Formation in the Qaidam Basin. Tectonics 2019, 38, 741–766. [Google Scholar] [CrossRef]
- He, P.; Song, C.; Wang, Y.; Meng, Q.; Wang, D.; Feng, Y.; Chen, L.; Feng, W. Early Cenozoic exhumation in the Qilian Shan, northeastern margin of the Tibetan Plateau: Insights from detrital apatite fission track thermochronology. Terra Nova 2020, 32, 415–424. [Google Scholar] [CrossRef]
- Lin, X.; Jolivet, M.; Liu-Zeng, J.; Cheng, F.; Tian, Y.; Li, C.A. Mesozoic-Cenozoic cooling history of the Eastern Qinghai Nan Shan (NW China): Apatite low-temperature thermochronology constraints. Palaeogeogr. Palaeoclim. Palaeoecol. 2021, 572, 110416. [Google Scholar] [CrossRef]
- Jolivet, M.; Cheng, F.; Zuza, A.V.; Guo, Z.; Dauteuil, O. Large-scale topography of the North Tibetan ranges as a proxy to contrasted crustal-scale deformation modes. J. Geol. Soc. 2022. [Google Scholar] [CrossRef]
- Meyer, B.; Tapponnier, P.; Bourjot, L.; Métivier, F.; Gaudemer, Y.; Peltzer, G.; Shunmin, G.; Zhitai, C. Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophys. J. Int. 1998, 135, 1–47. [Google Scholar] [CrossRef]
- Vincent, S.J.; Allen, M.B. Evolution of the Minle and Chaoshui Basins, China: Implications for Mesozoic strike-slip basin formation in Central Asia. GSA Bull. 1999, 111, 725–742. [Google Scholar] [CrossRef]
- Horton, B.K.; Dupontnivet, G.; Zhou, J.; Waanders, G.L.; Butler, R.F.; Wang, J. Mesozoic-Cenozoic evolution of the Xining-Minhe and Dangchang basins, northeastern Tibetan Plateau: Magnetostratigraphic and biostratigraphic results. J. Geophys. Res. Earth Surf. 2004, 109, B04402. [Google Scholar] [CrossRef]
- Lin, X.B.; Chen, H.; Wyrwoll, K.H.; Batt, G.E.; Liao, L.; Xiao, J. The uplift history of the Haiyuan-Liupan Shan region northeast of the present Tibetan Plateau: Integrated constraint from stratigraphy and thermochronology. J. Geol. 2011, 119, 372–393. [Google Scholar] [CrossRef]
- Cheng, F.; Jolivet, M.; Guo, Z.; Lu, H.; Zhang, B.; Li, X.; Zhang, D.; Zhang, C.; Zhang, H.; Wang, L.; et al. Jurassic-early Cenozoic tectonic inversion in the Qilian Shan and Qaidam Basin, North Tibet: New insight from seismic reflection, isopach mapping and drill core data. J. Geophys. Res. Solid Earth 2019, 124, 12077–12098. [Google Scholar] [CrossRef]
- Li, B.; Zuza, A.V.; Chen, X.; Hu, D.; Shao, Z.; Qi, B.; Xiong, X. Cenozoic multi-phase deformation in the Qilian Shan and out-of-sequence development of the northern Tibetan Plateau. Tectonophysics 2020, 782, 228423. [Google Scholar] [CrossRef]
- Zheng, D.; Clark, M.K.; Zhang, P.; Zheng, W.; Farley, K. Erosion, fault initiation and topographic growth of the North Qilian Shan (northern Tibetan Plateau). Geosphere 2010, 6, 937–941. [Google Scholar] [CrossRef] [Green Version]
- Pan, B.; Li, Q.; Hu, X.; Gao, H.; Li, Z. Cretaceous and Cenozoic cooling history of the eastern Qilian Shan, north-eastern margin of the Tibetan Plateau: Evidence from apatite fission-track analysis. Terra Nova 2013, 25, 431–438. [Google Scholar]
- An, K.; Lin, X.; Wu, L.; Yang, R.; Chen, H.; Cheng, X.; Xia, Q.; Zhang, F.; Ding, W.; Gao, S.; et al. An immediate response to the Indian-Eurasian collision along the northeastern Tibetan Plateau: Evidence from apatite fission track analysis in the Kuantan Shan-Hei Shan. Tectonophysics 2019, 774, 228278. [Google Scholar] [CrossRef]
- Tong, K.; Li, Z.; Zhu, L.; Tao, G.; Zhang, Y.; Yang, W.; Zhang, J. Fold-and-thrust deformation of the hinterland of Qilian Shan, northeastern Tibetan Plateau since Mesozoic with implications for the plateau growth. J. Southeast Asian Earth Sci. 2019, 198, 104131. [Google Scholar] [CrossRef]
- Yu, J.; Pang, J.; Wang, Y.; Zheng, D.; Liu, C.; Wang, W.; Xiao, L. Mid-Miocene uplift of the northern Qilian Shan as a result of the northward growth of the northern Tibetan Plateau. Geosphere 2019, 15, 423–432. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Lin, X.; Wu, L.; Chen, H.; Xiao, A.; Gong, J.; Yang, S. The Exhumation History of North Qaidam Thrust Belt Constrained by Apatite Fission Track Thermochronology: Implication for the Evolution of the Tibetan Plateau. Acta Geol. Sin. 2016, 90, 870–883. [Google Scholar]
- Zuza, A.V.; Cheng, X.; Yin, A. Testing models of Tibetan Plateau formation with Cenozoic shortening estimates across the Qilian Shan–Nan Shan thrust belt. Geosphere 2016, 12, 501–532. [Google Scholar] [CrossRef] [Green Version]
- Lin, X.; Tian, Y.; Donelick, R.A.; Liu-Zeng, J.; Cleber, S.J.; Li, C.A.; Wu, Q.; Li, Z. Mesozoic and Cenozoic tectonics of the northeastern edge of the Tibetan plateau: Evidence from modern river detrital apatite fission-track age constraints. J. Southeast Asian Earth Sci. 2018, 170, 84–95. [Google Scholar] [CrossRef]
- Cheng, F.; Jolivet, M.; Guo, Z.; Wang, L.; Zhang, C.; Li, X. Cenozoic evolution of the Qaidam basin and implications for the growth of the northern Tibetan plateau: A review. Earth-Sci. Rev. 2021, 220, 103730. [Google Scholar] [CrossRef]
- Li, B.; Zuza, A.V.; Chen, X.; Wang, Z.-Z.; Shao, Z.; Levy, D.A.; Wu, C.; Xu, S.; Sun, Y. Pre-cenozoic evolution of the northern Qilian Orogen from zircon geochronology: Framework for early growth of the northern Tibetan Plateau. Palaeogeogr. Palaeoclim. Palaeoecol. 2020, 562, 110091. [Google Scholar] [CrossRef]
- Xia, L.Q.; Li, X.M.; Yu, J.Y.; Wang, G.Q. Mid-late neoproterozoic to early paleozoic volcanism and tectonic evolution of the Qilianshan, NW China. GeoResJ 2016, 9–12, 1–41. [Google Scholar] [CrossRef]
- Chen, Y.X.; Song, S.G.; Niu, Y.L.; Wei, C.J. Melting of continental crust during subduction initiation: A case study from the Chaidanuo peraluminous granite in the North Qilian suture zone. Geochim. Cosmochim. Acta 2014, 132, 311–336. [Google Scholar] [CrossRef]
- Zhao, L.; Yu, J.; Zhao, J.; Fan, X.; Chen, S. LA-ICP-MS zircon U-Pb age, geochemistry of Chaidano Mountain granite mass in the western part of North Qilian Shan. Gansu Geol. 2018, 27, 8–16. (In Chinese) [Google Scholar]
- Tseng, C.-Y.; Yang, H.-Y.; Yusheng, W.; Dunyi, L.; Wen, D.-J.; Lin, T.-C.; Tung, K.-A. Finding of Neoproterozoic (~775 Ma) magmatism recorded in metamorphic complexes from the North Qilian orogen: Evidence from SHRIMP zircon U-Pb dating. Chin. Sci. Bull. 2006, 51, 963–970. [Google Scholar] [CrossRef]
- Zhang, J.X.; Meng, F.C.; Wan, Y.S. A cold Early Palaeozoic subduction zone in the North Qilian Mountains, NW China: Petrological and U-Pb geochronological constraints. J. Metamorph. Geol. 2007, 25, 285–304. [Google Scholar] [CrossRef]
- Tartèse, R.; Ruffet, G.; Poujol, M.; Boulvais, P.; Ireland, T.R. Simultaneous resetting of the muscovite K-Ar and monazite U-Pb geochronometers: A story of fluids. Terra Nova 2011, 23, 390–398. [Google Scholar] [CrossRef] [Green Version]
- Carter, A.; Bristow, C.S. Detrital zircon geochronology: Enhancing the quality of sedimentary source information through improved methodology and combined U-Pb and fission-track techniques. Basin Res. 2000, 12, 47–57. [Google Scholar] [CrossRef]
- Jolivet, M.; Roger, F.; Xu, Z.Q.; Paquette, J.L.; Cao, H. Mesozoic-Cenozoic evolution of the Danba dome (Songpan-Garzê, east Tibet) as inferred from LA-ICPMS U-Pb and fission-track data. J. Asian Earth Sci. 2015, 102, 180–204. [Google Scholar] [CrossRef]
- Roger, F.; Teyssier, C.; Respaut, J.-P.; Rey, P.; Jolivet, M.; Whitney, D.; Paquette, J.-L.; Brunel, M. Timing of formation and exhumation of the Montagne Noire double dome, French Massif Central. Tectonophysics 2014, 640–641, 53–69. [Google Scholar] [CrossRef]
- Song, S.; Niu, Y.; Zhang, L.; Wei, C.; Liou, J.G.; Su, L. Tectonic evolution of early Paleozoic HP metamorphic rocks in the North Qilian Mountains, NW China: New perspectives. J. Southeast Asian Earth Sci. 2009, 35, 334–353. [Google Scholar] [CrossRef]
- Zhang, S.; Jian, X.; Pullen, A.; Fu, L.; Liang, H.; Hong, D.; Zhang, W. Tectono-magmatic events of the Qilian orogenic belt in northern Tibet: New insights from detrital zircon geochronology of river sands. Int. Geol. Rev. 2020, 63, 917–940. [Google Scholar] [CrossRef]
- Lin, X.; Zheng, D.; Sun, J.; Windley, B.F.; Tian, Z.; Gong, Z.; Jia, Y. Detrital apatite fission track evidence for provenance change in the Subei Basin and implications for the tectonic uplift of the Danghe Nan Shan (NW China) since the mid-Miocene. J. Southeast Asian Earth Sci. 2015, 111, 302–311. [Google Scholar] [CrossRef]
- He, P.; Song, C.; Wang, Y.; Meng, Q.; Chen, L.; Yao, L.; Huang, R.; Feng, W.; Chen, S. Cenozoic deformation history of the Qilian Shan (northeastern Tibetan Plateau) constrained by detrital apatite fission-track thermochronology in the northeastern Qaidam Basin. Tectonophysics 2018, 749, 1–11. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, D.; Li, C.; Wang, Y.; Zhang, Z.; Pang, J.; Wang, Y.; Yu, J.; Wang, Y.; Zheng, W.; et al. Cenozoic Exhumation of the Qilian Shan in the Northeastern Tibetan Plateau: Evidence from Low-Temperature Thermochronology. Tectonics 2020, 39, e2019TC005705. [Google Scholar] [CrossRef]
- He, P.; Song, C.; Wang, Y.; Chen, L.; Chang, P.; Wang, Q.; Ren, B. Cenozoic exhumation in the Qilian Shan, northeastern Tibetan Plateau: Evidence from detrital fission track thermochronology in the Jiuquan Basin. J. Geophys. Res. Solid Earth 2017, 122, 6910–6927. [Google Scholar] [CrossRef]
- Dai, S.; Fang, X.; Song, C.; Gao, J.; Gao, D.; Li, J. Early tectonic uplift of the northern Tibetan Plateau. Chin. Sci. Bull. 2005, 50, 1642–1652. [Google Scholar] [CrossRef]
- Song, C.; Fang, X.; Li, J.; Gao, J.; Zhao, Z.; Fan, M. Tectonic uplift and sedimentary evolution of the Jiuxi Basin in the northern margin of the Tibetan Plateau since 13 Ma BP. Sci. China Ser. D Earth Sci. 2001, 44, 192–202. [Google Scholar] [CrossRef]
- Bovet, P.M.; Ritts, B.D.; Gehrels, G.; Abbink, A.O.; Darby, B.; Hourigan, J. Evidence of Miocene crustal shortening in the North Qilian Shan from Cenozoic stratigraphy of the western Hexi Corridor, Gansu Province, China. Am. J. Sci. 2009, 309, 290–329. [Google Scholar] [CrossRef]
- An, K.; Lin, X.; Wu, L.; Cheng, X.; Chen, H.; Ding, W.; Li, C. Reorganization of sediment dispersal in the Jiuxi Basin at ~17 Ma and its implications for uplift of the NE Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2018, 511, 558–576. [Google Scholar] [CrossRef]
- Shi, W.; Wang, F.; Yang, L.; Wu, L.; Zhang, W. Diachronous Growth of the Altyn Tagh Mountains: Constraints on Propagation of the Northern Tibetan Margin From (U-Th)/He Dating. J. Geophys. Res. Solid Earth 2018, 123, 6000–6018. [Google Scholar] [CrossRef]
- Fang, X.; Liu, D.; Song, C.; Dai, S.; Meng, Q. Oligocene slow and Miocene–Quaternary rapid deformation and uplift of the Yumu Shan and North Qilian Shan: Evidence from high-resolution magnetostratigraphy and tectonosedimentology. Geol. Soc. Lond. Spéc. Publ. 2012, 373, 149–171. [Google Scholar] [CrossRef]
- Hu, X.; Chen, D.; Pan, B.; Chen, J.; Zhang, J.; Chang, J.; Gong, C.; Zhao, Q. Sedimentary evolution of the foreland basin in the NE Tibetan Plateau and the growth of the Qilian Shan since 7 Ma. GSA Bull. 2019, 131, 1744–1760. [Google Scholar] [CrossRef] [Green Version]
- Ma, Z.; Li, X.; Peng, T.; Zhang, J.; Dou, L.; Yu, H.; Liu, J.; Ye, X.; Feng, Z.; Li, M.; et al. Landscape evolution of the Dabanshan planation surface: Implications for the uplift of the eastern tip of the Qilian Mountains since the Late Miocene. Geomorphology 2020, 356, 107091. [Google Scholar] [CrossRef]
- Jolivet, M.; Dominguez, S.; Charreau, J.; Chen, Y.; Li, Y.; Wang, Q. Mesozoic and Cenozoic tectonic history of the central Chinese Tian Shan: Reactivated tectonic structures and active deformation. Tectonics 2010, 29, TC6019. [Google Scholar] [CrossRef] [Green Version]
- De Pelsmaeker, E.; Jolivet, M.; Laborde, A.; Poujol, M.; Robin, C.; Zhimulev, F.I.; Nachtergaele, S.; Glorie, S.; De Clercq, S.; Batalev, V.Y.; et al. Source-to-sink dynamics in the Kyrgyz Tien Shan from the Jurassic to the Paleogene: Insights from sedimentological and detrital zircon U-Pb analyses. Gondwana Res. 2018, 54, 180–204. [Google Scholar] [CrossRef] [Green Version]
- Urueña-Suárez, C.L.; Peñ-Urueñ, M.L.; Muñz-Rocha, J.A.; Rayo-Rocha, L.P.; Villa-mizar-Escalante, N.; Amaya-Ferreira, S.; Ibanez-Mejia, M.; Bernet, M. Zircon U-Pb and fission-track dating applied to resolving sediment provenance in modern rivers draining the Eastern and Central Cordilleras, Colombia. Geol. Colomb. Vol. 3 Paleogene-Neogene. Serv. Geológico Colomb. Publ. Geológicas Espec. 2020, 37, 1–23. [Google Scholar]
- Chen, L.; Wang, Y.; He, P.; Song, C.; Meng, Q.; Feng, W.; Chen, W.; Wang, X. Mesozoic-Cenozoic multistage tectonic deformation of the Qilian Shan constrained by detrital apatite fission track and zircon U-Pb geochronology in the Yumu Shan area. Tectonophysics 2021, 822, 229151. [Google Scholar] [CrossRef]
- Garver, J.I.; Brandon, M.T.; Roden, T.M.; Kamp, P.J. Exhumation history of orogenic highlands determined by detrital fission-track thermochronology. Geol. Soc. Lond. Spec. Publ. 1999, 154, 283–304. [Google Scholar] [CrossRef] [Green Version]
- Carter, A.; Bristow, C.S. Linking hinterland evolution and continental basin sedimentation by using detrital zircon thermochronology: A study of the Khorat Plateau Basin, eastern Thailand. Basin Res. 2003, 15, 271–285. [Google Scholar] [CrossRef]
- Bernet, M.; Garver, J.I. Fission-track Analysis of Detrital Zircon. Rev. Miner. Geochem. 2005, 58, 205–237. [Google Scholar] [CrossRef]
- Carrapa, B.; Bin Hassim, M.F.; Kapp, P.A.; DeCelles, P.G.; Gehrels, G. Tectonic and erosional history of southern Tibet recorded by detrital chronological signatures along the Yarlung River drainage. GSA Bull. 2016, 129, 570–581. [Google Scholar] [CrossRef]
- Dunn, C.A.; Enkelmann, E.; Ridgway, K.D.; Allen, W.K. Source to sink evaluation of sediment routing in the Gulf of Alaska and Southeast Alaska: A thermochronometric perspective. J. Geophys. Res. Earth Surf. 2017, 122, 711–734. [Google Scholar] [CrossRef]
- Glotzbach, C.; Busschers, F.S.; Winsemann, J. Detrital thermochronology of Rhine, Elbe and Meuse river sediment (Central Europe): Implications for provenance, erosion and mineral fertility. Geol. Rundsch. 2017, 107, 459–479. [Google Scholar] [CrossRef]
- Bootes, N.; Enkelmann, E.; Lease, R. Late Miocene to Pleistocene Source to Sink Record of Exhumation and Sediment Routing in the Gulf of Alaska From Detrital Zircon Fission-Track and U-Pb Double Dating. Tectonics 2019, 38, 2703–2726. [Google Scholar] [CrossRef]
- Huyghe, P.; Bernet, M.; Galy, A.; Naylor, M.; Cruz, J.; Gyawali, B.; Gemignani, L.; Mugnier, J.-L. Rapid exhumation since at least 13 Ma in the Himalaya recorded by detrital apatite fission-track dating of Bengal fan (IODP Expedition 354) and modern Himalayan river sediments. Earth Planet. Sci. Lett. 2020, 534, 116078. [Google Scholar] [CrossRef]
- Yamada, R.; Tagami, T.; Nishimura, S.; Ito, H. Annealing kinetics of fission tracks in zircon: An experimental study. Chem. Geol. 1995, 122, 249–258. [Google Scholar] [CrossRef]
- Tagami, T.; Shimada, C. Natural long-term annealing of the zircon fission track system around a granitic pluton. J. Geophys. Res. Earth Surf. 1996, 101, 8245–8255. [Google Scholar] [CrossRef]
- Tian, Y.; Kohn, B.P.; Hu, S.; Gleadow, A.J.W. Postorogenic rigid behavior of the eastern Songpan-Ganze terrane: Insights from low-temperature thermochronology and implications for intracontinental deformation in central Asia. Geochem. Geophys. Geosyst. 2013, 15, 453–474. [Google Scholar] [CrossRef]
- Liu-Zeng, J.; Zhang, J.; McPhillips, D.; Reiners, P.; Wang, W.; Pik, R.; Zeng, L.; Hoke, G.; Xie, K.; Xiao, P.; et al. Multiple episodes of fast exhumation since Cretaceous in southeast Tibet, revealed by low-temperature thermochronology. Earth Planet. Sci. Lett. 2018, 490, 62–76. [Google Scholar] [CrossRef] [Green Version]
- Cheng, F.; Jolivet, M.; Dupont-Nivet, G.; Wang, L.; Yu, X.; Guo, Z. Lateral extrusion along the Altyn Tagh Fault, Qilian Shan (NE Tibet): Insight from a 3D crustal budget. Terra Nova 2015, 27, 416–425. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, Y.; Huang, B.; Dong, Y.; Li, S.; Zhang, G.; Yu, S. Geological reconstructions of the East Asian blocks: From the breakup of Rodinia to the assembly of Pangea. Earth-Sci. Rev. 2018, 186, 262–286. [Google Scholar] [CrossRef]
- Dong, Y.; Sun, S.; Santosh, M.; Zhao, J.; Sun, J.; He, D.; Shi, X.; Hui, B.; Cheng, C.; Zhang, G. Central China Orogenic Belt and amalgamation of East Asian continents. Gondwana Res. 2021, 100, 131–194. [Google Scholar] [CrossRef]
- Wu, C.; Yin, A.; Zuza, A.; Zhang, J.; Liu, W.; Ding, L. Pre-Cenozoic geologic history of the central and northern Tibetan Plateau and the role of Wilson cycles in constructing the Tethyan orogenic system. Lithosphere 2016, 8, 254–292. [Google Scholar] [CrossRef] [Green Version]
- Yin, A.; Nie, S. A Phanerozoic palinspastic reconstruction of China and its neighboring region. In The Tectonic Evolution of Asia; Yin, A., Harrison, T.M., Eds.; Cambridge University: New York, NY, USA, 1996; pp. 442–485. [Google Scholar]
- Gehrels, G.E.; Yin, A.; Wang, X.-F. Detrital-zircon geochronology of the northeastern Tibetan plateau. GSA Bull. 2003, 115, 881–896. [Google Scholar] [CrossRef]
- Blakey, R.C.; Fielding, C.R.; Frank, T.D.; Isbell, J.L. Gondwana Paleogeography from Assembly to Breakup—A 500 m. y. Odyssey; Geological Society of America: Boulder, CO, USA, 2008; Volume 441, pp. 1–28. [Google Scholar] [CrossRef]
- Dewey, J.F.; Shackleton, R.M.; Chengfa, C.; Yiyin, S. The tectonic evolution of the Tibetan Plateau. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Sci. 1988, 327, 379–413. [Google Scholar]
- Kapp, P.A.; Yin, A.; Manning, C.; Harrison, T.M.; Taylor, M.; Ding, L. Tectonic evolution of the early Mesozoic blueschist-bearing Qiangtang metamorphic belt, central Tibet. Tectonics 2003, 22, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Jolivet, M. Mesozoic tectonic and topographic evolution of Central Asia and Tibet: A preliminary synthesis. Geol. Soc. Lond. Spéc. Publ. 2015, 427, 19–55. [Google Scholar] [CrossRef]
- Ritts, B.D.; Biffi, U. Mesozoic Northeast Qaidam Basin: Response to Contractional Reactivation of the Qilian Shan, and Implications for the Extent of Mesozoic Intracontinental Deformation in Central Asia; Geological Society of America: Boulder, CO, USA, 2001. [Google Scholar] [CrossRef]
- Kapp, P.; DeCelles, P.G.; Gehrels, G.E.; Heizler, M.; Ding, L. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. GSA Bull. 2007, 119, 917–933. [Google Scholar] [CrossRef]
- Chen, S.; Wang, H.; Wei, J.; Lv, Z.; Gan, H.; Jin, S. Sedimentation of the Lower Cretaceous Xiagou Formation and its response to regional tectonics in the Qingxi Sag, Jiuquan Basin, NW China. Cretac. Res. 2013, 47, 72–86. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.H.; Zhang, Z.C.; Li, J.F. Meso-Cenozoic tectonic evolution in the northeastern margin of the Tibetan Plateau: Evidence from apatite and zircon fission tracks. Chin. J. Geophys. 2021, 64, 2017–2034. (In Chinese) [Google Scholar]
- Wang, Y.; Chen, X.; Zhang, Y.; Yin, Z.; Zuza, A.V.; Yin, A.; Shao, Z. Superposition of Cretaceous and Cenozoic deformation in northern Tibet: A far-field response to the tectonic evolution of the Tethyan orogenic system. GSA Bull. 2022, 134, 501–525. [Google Scholar] [CrossRef]
- Fang, X.; Zhao, Z.; Li, J.; Yan, M.D.; Pan, B.T.; Song, C.H.; Dai, S. Magnetostratigraphy of the late Cenozoic Laojunmiao anticline in the northern Qilian Mountains and its implications for the northern Tibetan Plateau uplift. China Sci. Earth Sci. 2005, 48, 97–106. [Google Scholar] [CrossRef]
- Gansu BGMR (Bureau of Geology and Mineral Resources). Regional Geology Evolution of Gansu Province; Geological Publishing House: Beijing, China, 1989; pp. 1–692. (In Chinese) [Google Scholar]
- Qinghai BGMR (Bureau of Geology and Mineral Resources). Regional Geology of Qinghai Province; Geological Publishing House: Beijing, China, 1991; pp. 1–662. (In Chinese) [Google Scholar]
- Gong, H.; Zhao, H.; Xie, W.; Kang, W.; Zhang, R.; Yang, L.; Zhang, Y.; Song, J.; Zhang, Y. Tectono-thermal events of the North Qilian Orogenic Belt, NW China: Constraints from detrital zircon U-Pb ages of Heihe River sediments. J. Southeast Asian Earth Sci. 2017, 138, 647–656. [Google Scholar] [CrossRef]
- Cawood, P.A.; Nemchin, A.A.; Freeman, M.; Sircombe, K. Linking source and sedimentary basin: Detrital zircon record of sediment flux along a modern river system and implications for provenance studies. Earth Planet. Sci. Lett. 2003, 210, 259–268. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, P.; Yu, J.; Wang, Y.; Zheng, D.; Zheng, W.; Zhang, H.; Pang, J. Constraints on mountain building in the northeastern Tibet: Detrital zircon records from synorogenic deposits in the Yumen Basin. Sci. Rep. 2016, 6, 27604. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Chen, Y.; Li, D.; Bao, C.; Chen, Y.; Xue, H. Detrital zircon record of rivers’ sediments in the North Qilian Orogenic Belt: Implications of the tectonic evolution of the northeastern Tibetan Plateau. Geol. J. 2018, 54, 2208–2228. [Google Scholar] [CrossRef]
- Naeser, N.D.; Zeitler, P.K.; Naeser, C.W.; Cerveny, P.F. Provenance studies by fission-track dating of zircon-etching and counting procedures. Int. J. Radiat. Appl. Instrum. Part D Nucl. Tracks Radiat. Meas. 1987, 13, 121–126. [Google Scholar] [CrossRef]
- Garver, J.I. Etching zircon age standards for fission-track analysis. Radiat. Meas. 2003, 37, 47–53. [Google Scholar] [CrossRef]
- Bernet, M.; Brandon, M.T.; Garver, J.I.; Molitor, B.R. Fundamentals of detrital zircon fission-track analysis for provenance and exhumation studies with examples from the European Alps. Geol. Soc. Am. Spec. Publ. 2004, 378, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Gleadow, A.; Hurford, A.; Quaife, R. Fission track dating of zircon: Improved etching techniques. Earth Planet. Sci. Lett. 1976, 33, 273–276. [Google Scholar] [CrossRef]
- Lanphere, M.A.; Baadsgaard, H. Precise K–Ar, 40Ar/39Ar, Rb–Sr and U/Pb mineral ages from the 27.5 Ma Fish Canyon Tuff reference standard. Chem. Geol. 2001, 175, 653–671. [Google Scholar] [CrossRef]
- Soares, C.J.; Guedes, S.; Hadler, J.C.; Mertz-Kraus, R.; Zack, T.; Iunes, P.J. Novel calibration for LA-ICP-MS-based fission-track thermochronology. Phys. Chem. Miner. 2013, 41, 65–73. [Google Scholar] [CrossRef]
- Donelick, R.A.; O’Sullivan, P.B.; Ketcham, R.A. Apatite Fission-Track Analysis. Rev. Mineral. Geochem. 2005, 58, 49–94. [Google Scholar] [CrossRef]
- Hurford, A.J.; Green, P.F. The zeta age calibration of fission-track dating. Chem. Geol. 1983, 41, 285–317. [Google Scholar] [CrossRef]
- Hasebe, N.; Barbarand, J.; Jarvis, K.; Carter, A.; Hurford, A.J. Apatite fission-track chronometry using laser ablation ICP-MS. Chem. Geol. 2004, 207, 135–145. [Google Scholar] [CrossRef]
- Bernet, M.; van der Beek, P.; Pik, R.; Huyghe, P.; Mugnier, J.-L.; Labrin, E.; Szulc, A. Miocene to Recent exhumation of the central Himalaya determined from combined detrital zircon fission-track and U/Pb analysis of Siwalik sediments, western Nepal. Basin Res. 2006, 18, 393–412. [Google Scholar] [CrossRef] [Green Version]
- Vermeesch, P. On the visualisation of detrital age distributions. Chem. Geol. 2012, 312-313, 190–194. [Google Scholar] [CrossRef]
- Tung, K.-A.; Yang, H.-Y.; Liu, D.-Y.; Zhang, J.-X.; Yang, H.-J.; Shau, Y.-H.; Tseng, C.-Y. The amphibolite-facies metamorphosed mafic rocks from the Maxianshan area, Qilian block, NW China: A record of early Neoproterozoic arc magmatism. J. Southeast Asian Earth Sci. 2012, 46, 177–189. [Google Scholar] [CrossRef]
- Song, S.; Niu, Y.; Su, L.; Zhang, C.; Zhang, L. Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: The example of the North Qaidam UHPM belt, NW China. Earth-Sci. Rev. 2014, 129, 59–84. [Google Scholar] [CrossRef]
- Wu, C.; Zuza, A.; Yin, A.; Liu, C.; Reith, R.C.; Zhang, J.; Liu, W.; Zhou, Z. Geochronology and geochemistry of Neoproterozoic granitoids in the central Qilian Shan of northern Tibet: Reconstructing the amalgamation processes and tectonic history of Asia. Lithosphere 2017, 9, 609–636. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Chen, Y.-L.; Li, D.-P.; Bao, C.; Zhang, H.-Z. Zircon U-Pb ages and Hf isotopic compositions of fluvial sediments from the Huangshui, Beichuan, and Xichuan rivers, Northwest China: Constraints on the formation and evolution history of the Central Qilian Block. Geochem. J. 2018, 52, 37–57. [Google Scholar] [CrossRef]
- Geng, Y.S.; Zhou, X.W. Early Neoproterozoic granite events in Alax area of Inner Mongolia and their geological significance: Evidence from geochronology. Acta Petrol. Mineral. 2010, 29, 779–795. [Google Scholar]
- Dan, W.; Li, X.-H.; Wang, Q.; Wang, X.-C.; Liu, Y. Neoproterozoic S-type granites in the Alxa Block, westernmost North China and tectonic implications: In situ zircon U-Pb-Hf-O isotopic and geochemical constraints. Am. J. Sci. 2014, 314, 110–153. [Google Scholar] [CrossRef]
- Ge, R.; Zhu, W.; Wilde, S.A.; He, J.; Cui, X.; Wang, X.; Bihai, Z. Neoproterozoic to Paleozoic long-lived accretionary orogeny in the northern Tarim Craton. Tectonics 2014, 33, 302–329. [Google Scholar] [CrossRef] [Green Version]
- Zong, K.; Klemd, R.; Yuan, Y.; He, Z.; Guo, J.; Shi, X.; Liu, Y.; Hu, Z.; Zhang, Z. The assembly of Rodinia: The correlation of early Neoproterozoic (ca. 900 Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Res. 2017, 290, 32–48. [Google Scholar] [CrossRef]
- Li, Z.X.; Li, X.H.; Kinny, P.D.; Wang, J.; Zhang, S.; Zhou, H. Geochronology of Neoproterozoic syn-rift magmatism in the Yangtze Craton, South China and correlations with other continents: Evidence for a mantle superplume that broke up Rodinia. Precambrian Res. 2003, 122, 85–109. [Google Scholar] [CrossRef]
- Charvet, J. The Neoproterozoic–Early Paleozoic tectonic evolution of the South China Block: An overview. J. Southeast Asian Earth Sci. 2013, 74, 198–209. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Li, X.; Wang, G.; Liu, Y.; Wang, Z.; Wang, T.; Cao, X.; Guo, X.; Somerville, I.; Li, Y.; et al. Global Meso-Neoproterozoic plate reconstruction and formation mechanism for Precambrian basins: Constraints from three cratons in China. Earth-Sci. Rev. 2019, 198, 102946. [Google Scholar] [CrossRef]
- Roger, F.; Jolivet, M.; Malavieille, J. The tectonic evolution of the Songpan-Garzê (North Tibet) and adjacent areas from Proterozoic to Present: A synthesis. J. Southeast Asian Earth Sci. 2010, 39, 254–269. [Google Scholar] [CrossRef]
- Li, M.; Wang, C.; Li, R.; Meert, J.G.; Peng, Y.; Zhang, J. Identifying late Neoproterozoic-early Paleozoic sediments in the South Qilian Belt, China: A peri-Gondwana connection in the northern Tibetan Plateau. Gondwana Res. 2019, 76, 173–184. [Google Scholar] [CrossRef]
- Meert, J.G.; Torsvik, T.H. The making and unmaking of a supercontinent: Rodinia revisited. Tectonophysics 2003, 375, 261–288. [Google Scholar] [CrossRef]
- Xu, B.; Jian, P.; Zheng, H.; Zou, H.; Zhang, L.; Liu, D. U–Pb zircon geochronology and geochemistry of Neoproterozoic volcanic rocks in the Tarim Block of northwest China: Implications for the breakup of Rodinia supercontinent and Neoproterozoic glaciations. Precambrian Res. 2005, 136, 107–123. [Google Scholar] [CrossRef]
- Fu, D.; Kusky, T.; Wilde, S.A.; Polat, A.; Huang, B.; Zhou, Z. Early Paleozoic collision-related magmatism in the eastern North Qilian orogen, northern Tibet: A linkage between accretionary and collisional orogenesis. GSA Bull. 2018, 131, 1031–1056. [Google Scholar] [CrossRef]
- Xu, Y.; Du, Y.; Cawood, P.A.; Yang, J. Provenance record of a foreland basin: Detrital zircon U–Pb ages from Devonian strata in the North Qilian Orogenic Belt, China. Tectonophysics 2010, 495, 337–347. [Google Scholar] [CrossRef]
- Song, D.; Glorie, S.; Xiao, W.; Collins, A.S.; Gillespie, J.; Jepson, G.; Li, Y. Tectono-thermal evolution of the southwestern Alxa Tectonic Belt, NW China: Constrained by apatite U-Pb and fission track thermochronology. Tectonophysics 2018, 722, 577–594. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Qu, J.; Zhang, B.; Zhao, H.; Yun, L.; Li, T.; Niu, P.; Nie, F.; Hui, J.; et al. Mesozoic intracontinental deformation of the Alxa Block in the middle part of Central Asian Orogenic Belt: A review. Int. Geol. Rev. 2021, 63, 1490–1520. [Google Scholar] [CrossRef]
- Roger, F.; Arnaud, N.; Gilder, S.; Tapponnier, P.; Jolivet, M.; Brunel, M.; Malavieille, J.; Xu, Z.; Yang, J. Geochronological and geochemical constraints on Mesozoic suturing in east central Tibet. Tectonics 2003, 22, 1037. [Google Scholar] [CrossRef]
- Roger, F.; Jolivet, M.; Malavieille, J. Tectonic evolution of the Triassic fold belts of Tibet. Comptes Rendus Geosci. 2008, 340, 180–189. [Google Scholar] [CrossRef]
- Cheng, F.; Jolivet, M.; Hallot, E.; Zhang, D.; Zhang, C.; Guo, Z. Tectono-magmatic rejuvenation of the Qaidam craton, northern Tibet. Gondwana Res. 2017, 49, 248–263. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, J.; Wang, Y.; Zhao, H.; Li, Y. Late Mesozoic-Cenozoic Exhumation of the Northern Hexi Corridor: Constrained by Apatite Fission Track Ages of the Longshoushan. Acta Geol. Sin.-Engl. Ed. 2017, 91, 1624–1643. [Google Scholar] [CrossRef]
- Liu, D.; Li, H.; Chevalier, M.-L.; Sun, Z.; Pei, J.; Pan, J.; Ge, C.; Wang, P.; Wang, H.; Wu, C. Activity of the Baiganhu Fault of the Altyn Tagh Fault System, northern Tibetan Plateau: Insights from zircon and apatite fission track analyses. Palaeogeogr. Palaeoclim. Palaeoecol. 2021, 570, 110356. [Google Scholar] [CrossRef]
- Shi, G.; Soares, C.J.; Shen, C.; Wang, H.; Yang, C.; Liang, C.; Liu, M. Combined detrital zircon fission track and U-Pb dating of the Late Paleozoic to Early Mesozoic sandstones in the Helanshan, western Ordos fold-thrust belt: Constraints for provenance and exhumation history. J. Geodyn. 2019, 130, 57–71. [Google Scholar] [CrossRef]
- Peng, H.; Wang, J.; Liu, C.; Zhang, S.; Zattin, M.; Wu, N.; Feng, Q. Thermochronological constraints on the Meso-Cenozoic tectonic evolution of the Haiyuan-Liupanshan region, northeastern Tibetan Plateau. J. Southeast Asian Earth Sci. 2019, 183, 103966. [Google Scholar] [CrossRef]
- Peng, N.; Liu, Q.; Kuang, W.; Chen, J.; Xue, P.L.; Xu, J.L.; Liu, H.; Liu, Y.X.; Xu, H.; Dong, C. The provenance of Lower Cretaceous basin in the Qilian Mountain-Beishan area: Evidence from paleocurrents, gravels, sandstone compositions and detrital zircon geochronology. Geol. Bull. China 2013, 32, 456–475. (In Chinese) [Google Scholar]
- Cheng, F.; Garzione, C.; Jolivet, M.; Wang, W.; Dong, J.; Richter, F.; Guo, Z. Provenance analysis of the Yumen Basin and northern Qilian Shan: Implications for the pre-collisional paleogeography in the NE Tibetan plateau and eastern termination of Altyn Tagh fault. Gondwana Res. 2018, 65, 156–171. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.-B.; Li, C.; Ma, X.-X. How does the elevation changing response to crustal thickening process in the central Tibetan Plateau since 120 Ma? China Geol. 2021, 4, 32–43. [Google Scholar] [CrossRef]
- Cogné, J.-P.; Kravchinsky, V.A.; Halim, N.; Hankard, F. Late Jurassic-Early Cretaceous closure of the Mongol-Okhotsk Ocean demonstrated by new Mesozoic palaeomagnetic results from the Trans-Baïkal area (SE Siberia). Geophys. J. Int. 2005, 163, 813–832. [Google Scholar] [CrossRef] [Green Version]
- Jolivet, M.; De Boisgrollier, T.; Petit, C.; Fournier, M.; Sankov, V.A.; Ringenbach, J.-C.; Byzov, L.; Miroshnichenko, A.I.; Kovalenko, S.N.; Anisimova, S.V. How old is the Baikal Rift Zone? Insight from apatite fission track thermochronology. Tectonics 2009, 28, TC3008. [Google Scholar] [CrossRef]
- Van der Voo, R.; van Hinsbergen, D.J.; Domeier, M.; Spakman, W.; Torsvik, T.H. Latest Jurassic–Earliest Cretaceous Closure of the Mongol-Okhotsk Ocean: A Paleomagnetic and Seismological-Tomographic Analysis; Geological Society of America: Boulder, CO, USA, 2015; Volume 513, pp. 589–606. [Google Scholar] [CrossRef] [Green Version]
- Qi, B.; Hu, D.; Yang, X.; Zhang, Y.; Tan, C.; Zhang, P.; Feng, C. Apatite fission track evidence for the Cretaceous–Cenozoic cooling history of the Qilian Shan (NW China) and for stepwise northeastward growth of the northeastern Tibetan Plateau since early Eocene. J. Southeast Asian Earth Sci. 2016, 124, 28–41. [Google Scholar] [CrossRef]
- Wu, C.; Zuza, A.V.; Li, J.; Haproff, P.J.; Yin, A.; Chen, X.; Ding, L.; Li, B. Late Mesozoic–Cenozoic cooling history of the northeastern Tibetan Plateau and its foreland derived from low-temperature thermochronology. GSA Bull. 2021, 133, 2393–2417. [Google Scholar] [CrossRef]
- Yin, A.; Dang, Y.-Q.; Wang, L.-C.; Jiang, W.-M.; Zhou, S.-P.; Chen, X.; Gehrels, G.E.; McRivette, M.W. Cenozoic tectonic evolution of Qaidam basin and its surrounding regions (Part 1): The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam basin. GSA Bull. 2008, 120, 813–846. [Google Scholar] [CrossRef]
- Li, Q.; Pan, B.; Hu, X.; Hu, Z.; Li, F.; Yang, S. Apatite fission track constraints on the pattern of faulting in the north Qilian Mountain. J. Earth Sci. 2013, 24, 569–578. [Google Scholar] [CrossRef]
- Jian, X.; Guan, P.; Zhang, W.; Liang, H.; Feng, F.; Fu, L. Late Cretaceous to early Eocene deformation in the northern Tibetan Plateau: Detrital apatite fission track evidence from northern Qaidam basin. Gondwana Res. 2018, 60, 94–104. [Google Scholar] [CrossRef]
- Wang, X.; Song, C.; Zattin, M.; He, P.; Song, A.; Li, J.; Wang, Q. Cenozoic pulsed deformation history of northeastern Tibetan Plateau reconstructed from fission-track thermochronology. Tectonophysics 2016, 672-673, 212–227. [Google Scholar] [CrossRef]
- Wang, F.; Shi, W.; Zhang, W.; Wu, L.; Yang, L.; Wang, Y.; Zhu, R. Differential growth of the northern Tibetan margin: Evidence for oblique stepwise rise of the Tibetan Plateau. Sci. Rep. 2017, 7, srep41164. [Google Scholar] [CrossRef]
- Wu, C.; Li, J.; Zuza, A.V.; Liu, C.; Liu, W.; Chen, X.; Jiang, T.; Li, B. Cenozoic cooling history and fluvial terrace development of the western domain of the Eastern Kunlun Range, northern Tibet. Palaeogeogr. Palaeoclim. Palaeoecol. 2020, 560, 109971. [Google Scholar] [CrossRef]
- Zattin, M.; Wang, X. Exhumation of the western Qinling mountain range and the building of the northeastern margin of the Tibetan Plateau. J. Asian Earth Sci. 2019, 177, 307–313. [Google Scholar] [CrossRef]
Sample Number | Latitude | Longitude | Number of Single-Grain Ages |
---|---|---|---|
HEH-1 | 38°16′14″ | 99°52′54″ | 20 |
HEH-2 | 38°54′05″ | 98°48′15″ | 18 |
HEH-3 | 38°37′06″ | 99°20′53″ | 17 |
HEH-4 | 38°24′24″ | 99°38′46″ | 16 |
SHL-1 | 39°29′43″ | 96°31′29″ | 7 |
HLG-1 | 38°15′06″ | 99°52′29″ | 21 |
HLG-2 | 38°15′04″ | 99°52′56″ | 21 |
STG-1 | 38°16′17″ | 99°53′12″ | 6 |
HEH-5 | 38°13′20″ | 100°10′57″ | 24 |
DBH-1 | 38°13′20″ | 100°11′03″ | 19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, X.; Jolivet, M.; Liu-Zeng, J.; Cheng, F.; Wu, Z.; Tian, Y.; Li, L.; Chen, J. The Formation of the North Qilian Shan through Time: Clues from Detrital Zircon Fission-Track Data from Modern River Sediments. Geosciences 2022, 12, 166. https://doi.org/10.3390/geosciences12040166
Lin X, Jolivet M, Liu-Zeng J, Cheng F, Wu Z, Tian Y, Li L, Chen J. The Formation of the North Qilian Shan through Time: Clues from Detrital Zircon Fission-Track Data from Modern River Sediments. Geosciences. 2022; 12(4):166. https://doi.org/10.3390/geosciences12040166
Chicago/Turabian StyleLin, Xu, Marc Jolivet, Jing Liu-Zeng, Feng Cheng, Zhonghai Wu, Yuntao Tian, Lingling Li, and Jixin Chen. 2022. "The Formation of the North Qilian Shan through Time: Clues from Detrital Zircon Fission-Track Data from Modern River Sediments" Geosciences 12, no. 4: 166. https://doi.org/10.3390/geosciences12040166
APA StyleLin, X., Jolivet, M., Liu-Zeng, J., Cheng, F., Wu, Z., Tian, Y., Li, L., & Chen, J. (2022). The Formation of the North Qilian Shan through Time: Clues from Detrital Zircon Fission-Track Data from Modern River Sediments. Geosciences, 12(4), 166. https://doi.org/10.3390/geosciences12040166