Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = Langmuir–Blodgett assembly

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1850 KB  
Article
Self-Assembling Conjugated Organic Materials with a Silazane Anchor Group: Synthesis, Self-Organization, and Semiconductor Properties
by Elizaveta A. Bobrova, Maxim S. Skorotetсky, Bogdan S. Kuleshov, Victoria P. Gaidarzhi, Askold A. Trul, Elena V. Agina, Oleg V. Borshchev and Sergey A. Ponomarenko
Nanomaterials 2026, 16(2), 124; https://doi.org/10.3390/nano16020124 - 16 Jan 2026
Viewed by 189
Abstract
An efficient synthetic method for the preparation of self-assembling conjugated organic materials with a silazane anchor group based on direct hydrosilylation reaction is reported. A novel organic semiconductor molecule, NH(Si-Und-BTBT-Hex)2, consisting of a polar silazane anchor group linked through undecylenic (Und) [...] Read more.
An efficient synthetic method for the preparation of self-assembling conjugated organic materials with a silazane anchor group based on direct hydrosilylation reaction is reported. A novel organic semiconductor molecule, NH(Si-Und-BTBT-Hex)2, consisting of a polar silazane anchor group linked through undecylenic (Und) aliphatic spacers to conjugated blocks based on benzothieno[3,2-b][1]benzothiophene (BTBT) and solubilizing hexyl (Hex) end groups, was synthesized. Its self-organization on the air-water interface and solid substrates into ultrathin layers obtained by the Langmuir–Schaefer or Langmuir–Blodgett methods was investigated. Monolayer organic field-effect transistors manufactured from NH(Si-Und-BTBT-Hex)2 showed operation in the p-type mode. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

16 pages, 1420 KB  
Article
Light-Driven Quantum Dot Dialogues: Oscillatory Photoluminescence in Langmuir–Blodgett Films
by Tefera Entele Tesema
Nanomaterials 2025, 15(14), 1113; https://doi.org/10.3390/nano15141113 - 18 Jul 2025
Viewed by 740
Abstract
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm [...] Read more.
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm laser illumination on the red absorption edge of the blue-emitting smaller QDs (QD450), the red-emitting larger QDs (QD645) exhibited oscillatory temporal dynamics in their photoluminescence (PL), characterized by a pronounced blueshift in the emission peak wavelength and an abrupt decrease in peak intensity. Conversely, excitation by a 405 nm laser on the blue absorption edge induced a drastic redshift in the emission wavelength over time. These significant shifts in emission spectra are attributed to photon- and anisotropic-strain-assisted interlayer atom transfer. The findings provide new insights into strain-driven atomic rearrangements and their impact on the photophysical behavior of QD systems. Full article
Show Figures

Graphical abstract

14 pages, 4572 KB  
Article
Synergistic Enhancement of Near-Infrared Electrochromic Performance in W18O49 Nanowire Thin Films via Copper Doping and Langmuir–Blodgett Assembly
by Yueyang Wu, Honglong Ning, Ruiqi Luo, Muyun Li, Zijian Zhang, Rouqian Huang, Junjie Wang, Mingyue Peng, Runjie Zhuo, Rihui Yao and Junbiao Peng
Inorganics 2025, 13(6), 200; https://doi.org/10.3390/inorganics13060200 - 14 Jun 2025
Viewed by 1831
Abstract
The development of high-performance electrochromic materials demands innovative approaches to simultaneously control the nanoscale architecture and the electronic structure. We present a dual-modification strategy that synergistically combines copper doping with the Langmuir–Blodgett (LB) assembly to overcome the traditional performance trade-offs in tungsten oxide-based [...] Read more.
The development of high-performance electrochromic materials demands innovative approaches to simultaneously control the nanoscale architecture and the electronic structure. We present a dual-modification strategy that synergistically combines copper doping with the Langmuir–Blodgett (LB) assembly to overcome the traditional performance trade-offs in tungsten oxide-based electrochromic systems. Cu-doped W18O49 nanowires with varying Cu concentrations (0–12 mol%) were synthesized hydrothermally and assembled into thin films via the LB technique, with LB precursors characterized by contact angle, surface tension, viscosity, and thermogravimetric-differential scanning calorimetry (TG-DSC) analyses. The films were systematically evaluated using scanning electron microscopy, X-ray photoelectron spectroscopy, chronoamperometry, and transmittance spectroscopy. Experimental results reveal an optimal Cu-doping concentration of 8 mol%, achieving a near-infrared optical modulation amplitude of 76.24% at 1066 nm, rapid switching kinetics (coloring/bleaching: 5.0/3.0 s), and a coloration efficiency of 133.00 cm2/C. This performance is speculated to be a balance between Cu-induced improvements in ion intercalation kinetics and LB-ordering degradation caused by lattice strain and interfacial charge redistribution, while mitigating excessive doping effects such as structural deterioration and thermodynamic instability. The work establishes a dual-modification framework for designing high-performance electrochromic interfaces, emphasizing the critical role of surface chemistry and nanoscale assembly in advancing adaptive optoelectronic devices like smart windows. Full article
(This article belongs to the Special Issue Optical and Quantum Electronics: Physics and Materials)
Show Figures

Figure 1

20 pages, 5993 KB  
Review
Nanostructured Bubble Thin Films—From Simple Fabrication to Scalable Applications: A Review
by Naif Ahmed Alshehri
Nanomaterials 2025, 15(11), 868; https://doi.org/10.3390/nano15110868 - 4 Jun 2025
Cited by 2 | Viewed by 1232
Abstract
Several applications for nanotechnology necessitate the assembly of nanomaterials over large areas with precise orientation and density. Some techniques, such as Langmuir–Blodgett, contact printing, electric field directed assembly, and flow-assisted alignment, have been used to meet such a requirement. However, it remains uncertain [...] Read more.
Several applications for nanotechnology necessitate the assembly of nanomaterials over large areas with precise orientation and density. Some techniques, such as Langmuir–Blodgett, contact printing, electric field directed assembly, and flow-assisted alignment, have been used to meet such a requirement. However, it remains uncertain whether these techniques can be used for scaling up nanomaterial thin films onto large solid and flexible substrates. Accordingly, this review paper addresses such an issue by reviewing two recent flexible and scalable methods: blown bubble films (BBFs) and the bubble deposition method (BDM). It specifically offers a comprehensive account of these two bubble thin film methods along with their recent applications. It also discusses how nanomaterial thin films are made to fabricate devices. It finally provides some recommendations for further research and applications. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

8 pages, 4783 KB  
Article
Fabrication and Self-Assembly Behavior of BPEF and BBPEF Composite Langmuir–Blodgett Films with Photovoltaic Conversion Properties
by Feifei Wang, Lei Ge, Lin Li, Tianyue Zhao and Tifeng Jiao
Nanomaterials 2024, 14(18), 1514; https://doi.org/10.3390/nano14181514 - 18 Sep 2024
Viewed by 1544
Abstract
The LB films prepared through the Langmuir–Blodgett (LB) technique are of significant importance for the fabrication of functional films such as optoelectronic materials and sensors. In this study, 9,9-bis (4-(2-hydroxy-ethoxy) phenyl) fluorene (BPEF) and 9,9-bis [3-phenyl-4-(β-hydroxy-ethoxy) phenyl] fluorene (BBPEF) were combined with saffron [...] Read more.
The LB films prepared through the Langmuir–Blodgett (LB) technique are of significant importance for the fabrication of functional films such as optoelectronic materials and sensors. In this study, 9,9-bis (4-(2-hydroxy-ethoxy) phenyl) fluorene (BPEF) and 9,9-bis [3-phenyl-4-(β-hydroxy-ethoxy) phenyl] fluorene (BBPEF) were combined with saffron T (ST), methylene blue (MB) and Rhodamine B (RhB) dyes by LB technique to prepare ordered composite films. The nanostructures and morphologies of the composite films were analyzed by transmission electron microscopy (TEM) and atomic force microscopy (AFM). It was found that the films exhibited distinct aggregation morphologies. The UV-VIS absorption spectra showed that the concentration of dye molecules had a significant effect on the spectral characteristics. The contact Angle test shows that the prepared composite films are hydrophobic. The photovoltaic conversion performance of LB composite films was studied by transient photocurrent response experiments. It was found that BPEF/dye and BBPEF/dye composite films exhibited significant responses in photocurrent. In particular, BPEF/RhB and BBPEF/RhB composite films demonstrated excellent photoresponsive performance. This study used LB technology in combination with BPEF and BBPEF to demonstrate enhanced photocurrent and stable performance of LB film, which provided ideas for expanding the application range of materials. Full article
Show Figures

Figure 1

15 pages, 2481 KB  
Article
Graphene Oxide Surface Modification of Reverse Osmosis (RO) Membrane via Langmuir–Blodgett Technique: Balancing Performance and Antifouling Properties
by Dmitrii I. Petukhov, James Weston, Rishat G. Valeev and Daniel J. Johnson
Membranes 2024, 14(8), 172; https://doi.org/10.3390/membranes14080172 - 7 Aug 2024
Cited by 8 | Viewed by 3781
Abstract
The reverse osmosis water treatment process is prone to fouling issues, prompting the exploration of various membrane modification techniques to address this challenge. The primary objective of this study was to develop a precise method for modifying the surface of reverse osmosis membranes [...] Read more.
The reverse osmosis water treatment process is prone to fouling issues, prompting the exploration of various membrane modification techniques to address this challenge. The primary objective of this study was to develop a precise method for modifying the surface of reverse osmosis membranes to enhance their antifouling properties. The Langmuir–Blodgett technique was employed to transfer aminated graphene oxide films assembled at the air–liquid interface, under specific surface pressure conditions, to the polyamide surface with pre-activated carboxylic groups. The microstructure and distribution of graphene oxide along the modified membrane were characterized using SEM, AFM, and Raman mapping techniques. Modification carried out at the optimal surface pressure value improved the membrane hydrophilicity and reduced the surface roughness, thereby enhancing the antifouling properties against colloidal fouling. The flux recovery ratio after modification increased from 65% to 87%, maintaining high permeability. The modified membranes exhibited superior performance compared to the unmodified membranes during long-term fouling tests. This membrane modification technique can be easily scaled using the roll-to-roll approach and requires minimal consumption of the modifier used. Full article
(This article belongs to the Section Membrane Fabrication and Characterization)
Show Figures

Figure 1

17 pages, 2852 KB  
Article
Langmuir–Blodgett Transfer of Nanocrystal Monolayers: Layer Compaction, Layer Compression, and Lattice Stretching of the Transferred Layer
by Reken N. Patel, Brian Goodfellow, Andrew T. Heitsch, Detlef-M. Smilgies and Brian A. Korgel
Nanomaterials 2024, 14(14), 1192; https://doi.org/10.3390/nano14141192 - 12 Jul 2024
Cited by 1 | Viewed by 2859
Abstract
Grazing incidence small angle X-ray scattering (GISAXS) was used to study the structure and interparticle spacing of monolayers of organic ligand-stabilized iron oxide nanocrystals floating at the air–water interface on a Langmuir trough, and after transfer to a solid support via the Langmuir–Blodgett [...] Read more.
Grazing incidence small angle X-ray scattering (GISAXS) was used to study the structure and interparticle spacing of monolayers of organic ligand-stabilized iron oxide nanocrystals floating at the air–water interface on a Langmuir trough, and after transfer to a solid support via the Langmuir–Blodgett technique. GISAXS measurements of the nanocrystal arrangement at the air–water interface showed that lateral compression decreased the interparticle spacing of continuous films. GISAXS also revealed that Langmuir–Blodgett transfer of the nanocrystal layers to a silicon substrate led to a stretching of the film, with a significant increase in interparticle spacing. Full article
Show Figures

Figure 1

19 pages, 6601 KB  
Review
Recent Progress in the Applications of Langmuir–Blodgett Film Technology
by Wenhui Gu, Qing Li, Ran Wang, Lexin Zhang, Zhiwei Liu and Tifeng Jiao
Nanomaterials 2024, 14(12), 1039; https://doi.org/10.3390/nano14121039 - 17 Jun 2024
Cited by 19 | Viewed by 9545
Abstract
Langmuir–Blodgett (LB) film technology is an advanced technique for the preparation of ordered molecular ultra-thin films at the molecular level, which transfers a single layer of film from the air/water interface to a solid substrate for the controlled assembly of molecules. LB technology [...] Read more.
Langmuir–Blodgett (LB) film technology is an advanced technique for the preparation of ordered molecular ultra-thin films at the molecular level, which transfers a single layer of film from the air/water interface to a solid substrate for the controlled assembly of molecules. LB technology has continually evolved over the past century, revealing its potential applications across diverse fields. In this study, the latest research progress of LB film technology is reviewed, with emphasis on its latest applications in gas sensors, electrochemical devices, and bionic films. Additionally, this review evaluates the strengths and weaknesses of LB technology in the application processes and discusses the promising prospects for future application of LB technology. Full article
Show Figures

Figure 1

16 pages, 9116 KB  
Article
Interfacing Langmuir–Blodgett and Pickering Emulsions for the Synthesis of 2D Nanostructured Films: Applications in Copper Ion Adsorption
by Andrei Honciuc, Oana-Iuliana Negru and Mirela Honciuc
Nanomaterials 2024, 14(9), 809; https://doi.org/10.3390/nano14090809 - 6 May 2024
Viewed by 2561
Abstract
This research focuses on developing a 2D thin film comprising a monolayer of silica nanoparticles functionalized with polyethyleneimine (PEI), achieved through a novel integration of Langmuir–Blodgett (L-B) and Pickering emulsion techniques. The primary aim was to create a nanostructured film that exhibits dual [...] Read more.
This research focuses on developing a 2D thin film comprising a monolayer of silica nanoparticles functionalized with polyethyleneimine (PEI), achieved through a novel integration of Langmuir–Blodgett (L-B) and Pickering emulsion techniques. The primary aim was to create a nanostructured film that exhibits dual functionality: iridescence and efficient metal ion adsorption, specifically Cu(II) ions. The methodology combined L-B and Pickering emulsion polymerization to assemble and stabilize a nanoparticle monolayer at an oil/water interface, which was then polymerized under UV radiation to form an asymmetrically structured film. The results demonstrate that the film possesses a high adsorption efficiency for Cu(II) ions, with the enhanced mechanical durability provided by a reinforcing layer of polyvinyl alcohol/glycerol. The advantage of combining L-B and Pickering emulsion technology is the ability to generate 2D films from functional nanoparticle monolayers that are sufficiently sturdy to be deployed in applications. The 2D film’s practical applications in environmental remediation were confirmed through its ability to adsorb and recover Cu(II) ions from aqueous solutions effectively. We thus demonstrate the film’s potential as a versatile tool in water treatment applications owing to its combined photonic and adsorptive properties. This work paves the way for future research on the use of nanoengineered films in environmental and possibly photonic applications focusing on enhancing the film’s structural robustness and exploring its broader applicability to other pollutants and metal ions. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles (Second Edition))
Show Figures

Figure 1

16 pages, 5327 KB  
Article
Insights into Early Phases of Phycocyanin Crystal Formation via SONICC Spectroscopy
by Eugenia Pechkova, Paola Ghisellini, Stefano Fiordoro, Cristina Rando and Roberto Eggenhöffner
Crystals 2024, 14(5), 395; https://doi.org/10.3390/cryst14050395 - 25 Apr 2024
Cited by 2 | Viewed by 2029
Abstract
This research delves into the early nucleation stages of phycocyanin, a protein pivotal for its fluorescent properties and crystalline stability and holding considerable potential for biotechnological applications. The paper contrasts traditional crystallization methods with the innovative Langmuir–Blodgett nanotemplate approach, aiming to enhance molecular [...] Read more.
This research delves into the early nucleation stages of phycocyanin, a protein pivotal for its fluorescent properties and crystalline stability and holding considerable potential for biotechnological applications. The paper contrasts traditional crystallization methods with the innovative Langmuir–Blodgett nanotemplate approach, aiming to enhance molecular assembly and nucleation processes. The study employs Langmuir–Blodgett nanotemplates alongside second-order nonlinear imaging of chiral crystal (SONICC) spectroscopy. This combination is designed to orderly organize phycocyanin molecules and provide a sensitive visualization of early-stage crystal formation, capturing the intricate dynamics of protein crystallization. The experiments were conducted under controlled conditions, where surface pressure was maintained at 26 mN/m and barrier speed at 70 cm/min to optimize the monolayer formation at the air–water interface. The Langmuir–Blodgett method, compared to traditional vapor diffusion techniques, shows improvements in the uniformity and efficiency of nucleation. The sensitivity of SONICC spectroscopy significantly enhances the visualization of the nucleation process, revealing a more structured and uniform crystalline assembly in the early stages of formation. This method demonstrates a substantial improvement in nucleation dynamics, leading to a more orderly growth process and potentially larger, well-ordered crystals. Integrating Langmuir–Blodgett nanotemplates with SONICC spectroscopy offers a significant step in understanding protein crystallization processes with insights into the nucleation and growth of protein crystals and broad implications for refining crystallography methodologies of protein-based biomaterials, contributing to the advancement of structural biology and materials science. Full article
(This article belongs to the Section Biomolecular Crystals)
Show Figures

Figure 1

38 pages, 8389 KB  
Review
Materials Nanoarchitectonics at Dynamic Interfaces: Structure Formation and Functional Manipulation
by Katsuhiko Ariga
Materials 2024, 17(1), 271; https://doi.org/10.3390/ma17010271 - 4 Jan 2024
Cited by 15 | Viewed by 4647
Abstract
The next step in nanotechnology is to establish a methodology to assemble new functional materials based on the knowledge of nanotechnology. This task is undertaken by nanoarchitectonics. In nanoarchitectonics, we architect functional material systems from nanounits such as atoms, molecules, and nanomaterials. In [...] Read more.
The next step in nanotechnology is to establish a methodology to assemble new functional materials based on the knowledge of nanotechnology. This task is undertaken by nanoarchitectonics. In nanoarchitectonics, we architect functional material systems from nanounits such as atoms, molecules, and nanomaterials. In terms of the hierarchy of the structure and the harmonization of the function, the material created by nanoarchitectonics has similar characteristics to the organization of the functional structure in biosystems. Looking at actual biofunctional systems, dynamic properties and interfacial environments are key. In other words, nanoarchitectonics at dynamic interfaces is important for the production of bio-like highly functional materials systems. In this review paper, nanoarchitectonics at dynamic interfaces will be discussed, looking at recent typical examples. In particular, the basic topics of “molecular manipulation, arrangement, and assembly” and “material production” will be discussed in the first two sections. Then, in the following section, “fullerene assembly: from zero-dimensional unit to advanced materials”, we will discuss how various functional structures can be created from the very basic nanounit, the fullerene. The above examples demonstrate the versatile possibilities of architectonics at dynamic interfaces. In the last section, these tendencies will be summarized, and future directions will be discussed. Full article
(This article belongs to the Special Issue Nanoarchitectonics in Materials Science)
Show Figures

Figure 1

13 pages, 5145 KB  
Article
The Label-Free Detection and Identification of SARS-CoV-2 Using Surface-Enhanced Raman Spectroscopy and Principal Component Analysis
by Lu Zhou, Ambra Vestri, Valentina Marchesano, Massimo Rippa, Domenico Sagnelli, Gerardo Picazio, Giovanna Fusco, Jiaguang Han, Jun Zhou and Lucia Petti
Biosensors 2023, 13(12), 1014; https://doi.org/10.3390/bios13121014 - 5 Dec 2023
Cited by 15 | Viewed by 3373
Abstract
The World Health Organization (WHO) declared in a May 2023 announcement that the COVID-19 illness is no longer categorized as a Public Health Emergency of International Concern (PHEIC); nevertheless, it is still considered an actual threat to world health, social welfare and economic [...] Read more.
The World Health Organization (WHO) declared in a May 2023 announcement that the COVID-19 illness is no longer categorized as a Public Health Emergency of International Concern (PHEIC); nevertheless, it is still considered an actual threat to world health, social welfare and economic stability. Consequently, the development of a convenient, reliable and affordable approach for detecting and identifying SARS-CoV-2 and its emerging new variants is crucial. The fingerprint and signal amplification characteristics of surface-enhanced Raman spectroscopy (SERS) could serve as an assay scheme for SARS-CoV-2. Here, we report a machine learning-based label-free SERS technique for the rapid and accurate detection and identification of SARS-CoV-2. The SERS spectra collected from samples of four types of coronaviruses on gold nanoparticles film, fabricated using a Langmuir–Blodgett self-assembly, can provide more spectroscopic signatures of the viruses and exhibit low limits of detection (<100 TCID50/mL or even <10 TCID50/mL). Furthermore, the key Raman bands of the SERS spectra were systematically captured by principal component analysis (PCA), which effectively distinguished SARS-CoV-2 and its variant from other coronaviruses. These results demonstrate that the combined use of SERS technology and PCA analysis has great potential for the rapid analysis and discrimination of multiple viruses and even newly emerging viruses without the need for a virus-specific probe. Full article
(This article belongs to the Special Issue High-Efficiency Surface-Enhanced Raman Scattering Biosensing)
Show Figures

Figure 1

48 pages, 11120 KB  
Review
Exploring Deposition Techniques and Supramolecular Arrangement in Thin Films for Sensor Applications
by Celina M. Miyazaki, Cibely S. Martin, Maíza S. Ozório, Henry S. Kavazoi, Carlos J. L. Constantino and Priscila Aléssio
Chemosensors 2023, 11(10), 524; https://doi.org/10.3390/chemosensors11100524 - 5 Oct 2023
Cited by 13 | Viewed by 4879
Abstract
In recent decades, many research efforts have been dedicated to finding highly sensitive devices for fast and reliable identification and quantification of an expanding range of analytes. As a result, there has been an increased number of publications dedicated to this area and [...] Read more.
In recent decades, many research efforts have been dedicated to finding highly sensitive devices for fast and reliable identification and quantification of an expanding range of analytes. As a result, there has been an increased number of publications dedicated to this area and a consequent increase in the number of review papers on the subject. However, unlike most review articles, we chose to explore the impact of supramolecular arrangement (or deeper, when possible, approaching the molecular organization) and assembly variables on sensing performance. This review briefly discusses the methods used to determine the molecular organization of thin films. We also examine various deposition techniques, including Langmuir-Blodgett, Langmuir-Schaefer, Layer-by-Layer assembly, electrodeposition, and spray pyrolysis, describing mainly (but not limited to) the advances in the last five years in developing thin films for sensors, with a particular emphasis on how the supramolecular arrangement can influence the sensing properties of these films. Full article
(This article belongs to the Special Issue Developments on Supramolecular Thin Films to Sensing Applications)
Show Figures

Figure 1

12 pages, 3483 KB  
Article
Construction of Amphiphilic Indocyanine–Green–Based Langmuir Film and Drop–Casting Film with Photoelectric Conversion Properties
by Jing Chen, Na Li, Lin Li, Chongling Wang, Dongxue Han and Tifeng Jiao
Coatings 2023, 13(8), 1423; https://doi.org/10.3390/coatings13081423 - 14 Aug 2023
Cited by 2 | Viewed by 2031
Abstract
Molecular self–assembly is the automatic formation of functional assemblies of different structural components through weak, reversible, non–covalent interactions on the basis of molecular recognition. Amphiphilic molecules have a natural advantage in self–assembly at the gas/liquid interface. In this work, two amphiphilic molecules with [...] Read more.
Molecular self–assembly is the automatic formation of functional assemblies of different structural components through weak, reversible, non–covalent interactions on the basis of molecular recognition. Amphiphilic molecules have a natural advantage in self–assembly at the gas/liquid interface. In this work, two amphiphilic molecules with a special molecular structure, indocyanine green (ICG) and a derivative of indocyanine green (CCS), were combined with two dye molecules (tetraphenylporphyrin tetrasulfonic acid hydrate (TPPS) and nickel (II) phthalocyanine–tetrasulfonic acid tetrasodium salt (TsNiPc) for self–assembly through the Langmuir–Blodgett (LB) technique. The nanostructure and assembly behavior in ordered self–assembled films are effectively regulated by inducing dye molecules to form different types of aggregates (H– and J–aggregates). In addition, we prepared composite films containing the same functional components using the conventional drop–casting technique and performed a series of comparative experiments with LB films. The degree of hydrophilicity was found to be related to roughness, with LB composite films being flatter and denser, with the lowest roughness and the best hydrophobicity compared to drop–casting films. Notably, the LB films showed better optoelectronic properties under the same conditions, providing new clues for the application of optoelectronic functional ultrathin film devices. Full article
(This article belongs to the Special Issue Innovative Thin Films for Opto/Electronic Devices)
Show Figures

Figure 1

14 pages, 8911 KB  
Article
Characterization of Chiral Nanostructured Surfaces Made via Colloidal Lithography
by Sabine Portal, Carles Corbella, Oriol Arteaga, Alexander Martin, Trinanjana Mandal and Bart Kahr
Nanomaterials 2023, 13(15), 2235; https://doi.org/10.3390/nano13152235 - 2 Aug 2023
Cited by 1 | Viewed by 2008
Abstract
Optically anisotropic materials were produced via colloidal lithography and characterized using scanning electronic microscopy (SEM), confocal microscopy, and polarimetry. A compact hexagonal array mask composed of silica sub-micron particles was fabricated via the Langmuir–Blodgett self-assembly technique. Subsequently, the mask pattern was transferred onto [...] Read more.
Optically anisotropic materials were produced via colloidal lithography and characterized using scanning electronic microscopy (SEM), confocal microscopy, and polarimetry. A compact hexagonal array mask composed of silica sub-micron particles was fabricated via the Langmuir–Blodgett self-assembly technique. Subsequently, the mask pattern was transferred onto monocrystalline silicon and commercial glass substrates using ion beam etching in a vacuum. Varying the azimuthal angle while etching at oblique incidence carved screw-like shaped pillars into the substrates, resulting in heterochiral structures depending on the azimuthal angle direction. To enhance the material’s optical properties through plasmon resonance, gold films were deposited onto the pillars. Polarimetric measurements were realized at normal and oblique incidences, showing that the etching directions have a clear influence on the value of the linear birefringence and linear dichroism. The polarimetric properties, especially the chiroptical responses, increased with the increase in the angle of incidence. Full article
Show Figures

Figure 1

Back to TopTop