Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (948)

Search Parameters:
Keywords = Landsat 8 image

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 3441 KB  
Article
The Surface Is Not Superficial: Utilizing Hyper-Local Thermal Photogrammetry for Pedestrian Thermal Comfort Inquiry
by Logan Steinharter, Peter C. Ibsen, Priyanka deSouza and Melissa R. McHale
Remote Sens. 2026, 18(2), 348; https://doi.org/10.3390/rs18020348 - 20 Jan 2026
Viewed by 101
Abstract
The scale and magnitude of urban heating are often assessed using Satellite-Derived Land Surface Temperature (SD-LST). Yet, discrepancies in spatial resolution limit SD-LST’s ability to reflect pedestrian thermal experience, potentially leading to ineffective mitigation strategies. Hyper-local measurements of urban heat, defined as surface [...] Read more.
The scale and magnitude of urban heating are often assessed using Satellite-Derived Land Surface Temperature (SD-LST). Yet, discrepancies in spatial resolution limit SD-LST’s ability to reflect pedestrian thermal experience, potentially leading to ineffective mitigation strategies. Hyper-local measurements of urban heat, defined as surface temperatures (TS) at the scale of pedestrian activity (e.g., bus stops or street segments), may provide more accurate insights into thermal comfort. This study compares hyper-local ~0.01 m resolution TS collected via consumer-grade Forward-Looking Infrared (FLIR) thermography with resampled 30 m resolution SD-LST from Landsat 8 and 9 images to evaluate their utility in predicting thermal comfort indices across 60 bus stops in Denver, Colorado. During the summer of 2023, 270 FLIR measurements were collected over 19 dates, with a four-day subset (n = 33) coinciding with Landsat imagery. FLIR TS averaged 25.12 ± 5.39 °C, while SD-LST averaged 35.90 ± 12.56 °C, a significant 10.77 °C difference (95% CI: 6.81–14.73; p < 0.001). FLIR TS strongly correlated with biometeorological metrics such as air temperature and mean radiant temperature (r > 0.8; p < 0.001), while SD-LST correlations were weak (r < 0.3). Linear mixed-effects models using FLIR TS explained 50–66% of the variance in thermal comfort indices and met ISO 7726 standards. Each 1 °C increase in FLIR TS predicted a 0.75 °C rise in mean radiant temperature. These results highlight hyper-local thermography as a reliable, low-cost tool for urban heat resilience planning. Full article
Show Figures

Figure 1

27 pages, 11839 KB  
Article
Impact of Tropical Climate Anomalies on Land Cover Changes in Sumatra’s Peatlands, Indonesia
by Agus Dwi Saputra, Muhammad Irfan, Mokhamad Yusup Nur Khakim and Iskhaq Iskandar
Sustainability 2026, 18(2), 919; https://doi.org/10.3390/su18020919 - 16 Jan 2026
Viewed by 196
Abstract
Peatlands play a critical role in global and regional climate regulation by functioning as long-term carbon sinks, regulating hydrology, and modulating land–atmosphere energy exchange. Intact peat ecosystems store large amounts of organic carbon and stabilize local climate through high water retention and evapotranspiration, [...] Read more.
Peatlands play a critical role in global and regional climate regulation by functioning as long-term carbon sinks, regulating hydrology, and modulating land–atmosphere energy exchange. Intact peat ecosystems store large amounts of organic carbon and stabilize local climate through high water retention and evapotranspiration, whereas peatland degradation disrupts these functions and can transform peatlands into significant sources of greenhouse gas emissions and climate extremes such as drought and fire. Indonesia contains approximately 13.6–40.5 Gt of carbon, around 40% of which is stored on the island of Sumatra. However, tropical peatlands in this region are highly vulnerable to climate anomalies and land-use change. This study investigates the impacts of major climate anomalies—specifically El Niño and positive Indian Ocean Dipole (pIOD) events in 1997/1998, 2015/2016, and 2019—on peatland cover change across South Sumatra, Jambi, Riau, and the Riau Islands. Landsat 5 Thematic Mapper and Landsat 8 Operational Land Imager/Thermal Infrared Sensor imagery were analyzed using a Random Forest machine learning classification approach. Climate anomaly periods were identified using El Niño-Southern Oscillation (ENSO) and IOD indices from the National Oceanic and Atmospheric Administration. To enhance classification accuracy and detect vegetation and hydrological stress, spectral indices including the Normalized Difference Vegetation Index (NDVI), Modified Soil Adjusted Vegetation Index (MSAVI), Normalized Difference Water Index (NDWI), and Normalized Difference Drought Index (NDDI) were integrated. The results show classification accuracies of 89–92%, with kappa values of 0.85–0.90. The 2015/2016 El Niño caused the most severe peatland degradation (>51%), followed by the 1997/1998 El Niño (23–38%), while impacts from the 2019 pIOD were comparatively limited. These findings emphasize the importance of peatlands in climate regulation and highlight the need for climate-informed monitoring and management strategies to mitigate peatland degradation and associated climate risks. Full article
(This article belongs to the Special Issue Sustainable Development and Land Use Change in Tropical Ecosystems)
Show Figures

Figure 1

17 pages, 2743 KB  
Technical Note
Does Hyperspectral Imagery Improve Satellite-Derived Bathymetry? A Case Study from a Posidonia oceanica-Dominated Mediterranean Region
by Rosemary Jones and Anders Knudby
Remote Sens. 2026, 18(1), 46; https://doi.org/10.3390/rs18010046 - 24 Dec 2025
Viewed by 418
Abstract
Coastal bathymetric mapping is essential for marine conservation, navigation, and environmental management. Satellite-derived bathymetry (SDB) is a cost-effective solution to mapping bathymetry over large shallow areas. However, traditional multispectral instruments can produce poor depth estimates for several reasons, including image noise, atmospheric interference, [...] Read more.
Coastal bathymetric mapping is essential for marine conservation, navigation, and environmental management. Satellite-derived bathymetry (SDB) is a cost-effective solution to mapping bathymetry over large shallow areas. However, traditional multispectral instruments can produce poor depth estimates for several reasons, including image noise, atmospheric interference, waves and white caps, and where the seafloor-reflected signal is weak, e.g., in areas with deep water or a low-albedo seafloor. This study investigates the potential of PRISMA hyperspectral imagery to improve SDB performance. Through an iterative process, hyperspectral bands were added to a base Random Forest model, and model performance was assessed across different water pixel classes, including bright shallow substrates, seagrass, and deep water. The model’s performance was then compared to that of multispectral Landsat 8 imagery. The results demonstrated that adding hyperspectral bands to the base model improved bathymetric accuracy, particularly in deeper waters (25 m–30 m), where Mean Absolute Error decreased by 2.51 m from a 3-band to a 24-band model. However, the best-performing model was achieved using Landsat 8, resulting in a lower Mean Absolute Error (1.88 m) than the optimized 24-band PRISMA model (2.01 m). Our findings suggest that although additional hyperspectral bands can improve bathymetry estimation, multispectral imagery may still be more effective for general coastal bathymetry mapping despite its lower spectral resolution. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

18 pages, 10928 KB  
Article
Long-Term Monitoring of Qaraoun Lake’s Water Quality and Hydrological Deterioration Using Landsat 7–9 and Google Earth Engine: Evidence of Environmental Decline in Lebanon
by Mohamad Awad
Hydrology 2026, 13(1), 8; https://doi.org/10.3390/hydrology13010008 - 23 Dec 2025
Viewed by 698
Abstract
Globally, lakes are increasingly recognized as sensitive indicators of climate change and ecosystem stress. Qaraoun Lake, Lebanon’s largest artificial reservoir, is a critical resource for irrigation, hydropower generation, and domestic water supply. Over the past 25 years, satellite remote sensing has enabled consistent [...] Read more.
Globally, lakes are increasingly recognized as sensitive indicators of climate change and ecosystem stress. Qaraoun Lake, Lebanon’s largest artificial reservoir, is a critical resource for irrigation, hydropower generation, and domestic water supply. Over the past 25 years, satellite remote sensing has enabled consistent monitoring of its hydrological and environmental dynamics. This study leverages the advanced cloud-based processing capabilities of Google Earth Engine (GEE) to analyze over 180 cloud-free scenes from Landsat 7 (Enhanced Thematic Mapper Plus) (ETM+) from 2000 to present, Landsat 8 Operational Land Imager and Thermal Infrared Sensor (OLI/TIRS) from 2013 to present, and Landsat 9 OLI-2/TIRS-2 from 2021 to present, quantifying changes in lake surface area, water volume, and pollution levels. Water extent was delineated using the Modified Normalized Difference Water Index (MNDWI), enhanced through pansharpening to improve spatial resolution from 30 m to 15 m. Water quality was evaluated using a composite pollution index that integrates three spectral indicators—the Normalized Difference Chlorophyll Index (NDCI), the Floating Algae Index (FAI), and a normalized Shortwave Infrared (SWIR) band—which serves as a proxy for turbidity and organic matter. This index was further standardized against a conservative Normalized Difference Vegetation Index (NDVI) threshold to reduce vegetation interference. The resulting index ranges from near-zero (minimal pollution) to values exceeding 1.0 (severe pollution), with higher values indicating elevated chlorophyll concentrations, surface reflectance anomalies, and suspended particulate matter. Results indicate a significant decline in mean annual water volume, from a peak of 174.07 million m3 in 2003 to a low of 106.62 million m3 in 2025 (until mid-November). Concurrently, pollution levels increased markedly, with the average index rising from 0.0028 in 2000 to a peak of 0.2465 in 2024. Episodic spikes exceeding 1.0 were detected in 2005, 2016, and 2024, corresponding to documented contamination events. These findings were validated against multiple institutional and international reports, confirming the reliability and efficiency of the GEE-based methodology. Time-series visualizations generated through GEE underscore a dual deterioration, both hydrological and qualitative, highlighting the lake’s growing vulnerability to anthropogenic pressures and climate variability. The study emphasizes the urgent need for integrated watershed management, pollution control measures, and long-term environmental monitoring to safeguard Lebanon’s water security and ecological resilience. Full article
(This article belongs to the Special Issue Lakes as Sensitive Indicators of Hydrology, Environment, and Climate)
Show Figures

Figure 1

42 pages, 12738 KB  
Article
Spectral Indices and Principal Component Analysis for Lithological Mapping in the Erongo Region, Namibia
by Ryan Theodore Benade and Oluibukun Gbenga Ajayi
Appl. Sci. 2025, 15(24), 13251; https://doi.org/10.3390/app152413251 - 18 Dec 2025
Viewed by 442
Abstract
The mineral deposits in Namibia’s Erongo region are renowned and frequently associated with complex geological environments, including calcrete-hosted paleochannels and hydrothermal alteration zones. Mineral extraction is hindered by high operational costs, restricted accessibility and stringent environmental regulations. To address these challenges, this study [...] Read more.
The mineral deposits in Namibia’s Erongo region are renowned and frequently associated with complex geological environments, including calcrete-hosted paleochannels and hydrothermal alteration zones. Mineral extraction is hindered by high operational costs, restricted accessibility and stringent environmental regulations. To address these challenges, this study proposes an integrated approach that combines satellite remote sensing and machine learning to map and identify mineralisation-indicative zones. Sentinel 2 Multispectral Instrument (MSI) and Landsat 8 Operational Land Imager (OLI) multispectral data were employed due to their global coverage, spectral fidelity and suitability for geological investigations. Normalized Difference Vegetation Index (NDVI) masking was applied to minimise vegetation interference. Spectral indices—the Clay Index, Carbonate Index, Iron Oxide Index and Ferrous Iron Index—were developed and enhanced using false-colour composites. Principal Component Analysis (PCA) was used to reduce redundancy and extract significant spectral patterns. Supervised classification was performed using Support Vector Machine (SVM), Random Forest (RF) and Maximum Likelihood Classification (MLC), with validation through confusion matrices and metrics such as Overall Accuracy, User’s Accuracy, Producer’s Accuracy and the Kappa coefficient. The results showed that RF achieved the highest accuracy on Landsat 8 and MLC outperformed others on Sentinel 2, while SVM showed balanced performance. Sentinel 2’s higher spatial resolution enabled improved delineation of alteration zones. This approach supports efficient and low-impact mineral prospecting in remote environments. Full article
(This article belongs to the Section Environmental Sciences)
Show Figures

Figure 1

24 pages, 5160 KB  
Article
Using Satellite Remote Sensing to Estimate Rangeland Carrying Capacity for Sustainable Management of the Marismeño Horse in Doñana National Park, Spain
by Emilio Ramírez-Juidias, Ángel Díaz de la Serna-Moreno and Manuel Delgado-Pertíñez
Animals 2025, 15(24), 3507; https://doi.org/10.3390/ani15243507 - 5 Dec 2025
Viewed by 552
Abstract
Rangeland degradation poses a serious challenge for the sustainable management of free-ranging livestock in Mediterranean wetlands. In Doñana National Park, Spain, the endangered Marismeño horse depends exclusively on natural forage, making it essential to monitor vegetation productivity and grazing suitability under increasing climate [...] Read more.
Rangeland degradation poses a serious challenge for the sustainable management of free-ranging livestock in Mediterranean wetlands. In Doñana National Park, Spain, the endangered Marismeño horse depends exclusively on natural forage, making it essential to monitor vegetation productivity and grazing suitability under increasing climate variability. This study presents a satellite-based assessment of rangeland carrying capacity to support the adaptive management of this iconic breed. A six-year time series (2015–2020) of 1242 images from Landsat 8 OLI/TIRS and Sentinel-2 (L1C/L2A) was processed using ILWIS and Python-based workflows to derive vegetation indices (GNDVI, NDMI) and model aboveground biomass, forage energy, and grazing pressure across five grazing units. Results revealed strong seasonal cycles, with biomass and nutritive value peaking in spring and declining sharply in summer. Ecotonal zones such as La Vera y Sotos acted as crucial refuges during drought-induced resource shortages. The harmonized multi-sensor approach demonstrated high reliability for mapping forage dynamics and assessing carrying capacity at fine scales. This remote sensing framework offers an effective, scalable tool for sustainable livestock management in Doñana, directly supporting biodiversity conservation and the long-term resilience of Mediterranean rangeland ecosystems. Full article
(This article belongs to the Section Equids)
Show Figures

Figure 1

19 pages, 7913 KB  
Article
Integrated Satellite Driven Machine Learning Framework for Precision Irrigation and Sustainable Cotton Production
by Syeda Faiza Nasim and Muhammad Khurram
Algorithms 2025, 18(12), 740; https://doi.org/10.3390/a18120740 - 25 Nov 2025
Viewed by 477
Abstract
This study develops a satellite-based, machine-learning-based prediction algorithm to predict optimal irrigation scheduling for cotton cultivation within Rahim Yar Khan, Pakistan. The framework leverages multispectral satellite imagery (Landsat 8 and Sentinel-2), GIS-derived climatic, land surface data and real-time weather information obtained from a [...] Read more.
This study develops a satellite-based, machine-learning-based prediction algorithm to predict optimal irrigation scheduling for cotton cultivation within Rahim Yar Khan, Pakistan. The framework leverages multispectral satellite imagery (Landsat 8 and Sentinel-2), GIS-derived climatic, land surface data and real-time weather information obtained from a freely accessible weather API, eliminating the need for ground-based IoT sensors. The proposed algorithm integrates FAO-56 evapotranspiration principles and water stress indices to accurately forecast irrigation requirements across the four critical growth stages of cotton. Supervised learning algorithms, including Gradient Boosting, Random Forest, and Logistic Regression, were evaluated, with Random Forest indicating better predictive accuracy with a coefficient of determination (R2) exceeding 0.92 and a root mean square error (RMSE) of approximately 415 kg/ha, owed its capacity to handle complex, non-linear relations, and feature interactions. The model was trained on data collected during 2023 and 2024, and its predictions for 2025 were validated against observed irrigation requirements. The proposed model enabled an average 12–18% reduction in total water application between 2023 and 2025, optimizing water use deprived of compromising crop yield. By merging satellite imagery, GIS data, and weather API information, this approach provides a cost-effective, scalable solution that enables precise, stage-specific irrigation scheduling. Cloud masking was executed by applying the built-in QA bands with the Fmask algorithm to eliminate cloud and cloud-shadow pixels in satellite imagery statistics. Time series were generated by compositing monthly median values to ensure consistency across images. The novelty of our study primarily focuses on its end-to-end integration framework, its application within semi-arid agronomic conditions, and its empirical validation and accuracy calculation over direct association of multi-source statistics with FAO-guided irrigation scheduling to support sustainable cotton cultivation. The quantification of irrigation capacity, determining how much water to apply, is identified as a focus for future research. Full article
Show Figures

Figure 1

7 pages, 2224 KB  
Proceeding Paper
Temporal Analysis of Groundwater Quality in the Harran Plain: Linking Land Use Change to Water Contamination (2005–2025)
by Benan Yazici Karabulut and Abdullah İzzeddin Karabulut
Environ. Earth Sci. Proc. 2025, 36(1), 4; https://doi.org/10.3390/eesp2025036004 - 18 Nov 2025
Viewed by 441
Abstract
This study evaluates groundwater quality dynamics in the Harran Plain (∼1500 km2), a key agricultural zone within Türkiye’s Southeastern Anatolia Project (GAP). Satellite images from Landsat 5 TM and Landsat 8 OLI/TIRS were used to assess land-use changes over the years [...] Read more.
This study evaluates groundwater quality dynamics in the Harran Plain (∼1500 km2), a key agricultural zone within Türkiye’s Southeastern Anatolia Project (GAP). Satellite images from Landsat 5 TM and Landsat 8 OLI/TIRS were used to assess land-use changes over the years 1990, 2000, 2010, and 2020, with the GIS employed for classification and analysis. In this study, groundwater samples collected from twenty different locations in 2005, 2015 and 2025 were analyzed. For each sample, pH, EC, and various ion concentrations (Na, K, Cl, SO4, NO3, Ca, Mg, HCO3) were measured. All analyses were performed using standard hydrogeochemical methods. Data from 20 wells (2005–2015) revealed significant reductions in EC (8235 to 2510 µS/cm) and NO3 (720 to 327 mg/L), due to drainage systems, improved irrigation, and fertilizer management. Nonetheless, localized pollution persisted. Land-use shifts toward high-value crops improved water efficiency, while urban and industrial expansion introduced new pressures. Results emphasize integrated water–land policies for sustainable groundwater management in arid agroecosystems. Full article
(This article belongs to the Proceedings of The 2nd International Electronic Conference on Land)
Show Figures

Figure 1

19 pages, 4564 KB  
Article
Estimating and Mapping Aboveground Biomass of Vegetation in Typical Lake Flooding Wetland Based on MODIS and Landsat Images Fusion
by Xianghu Li, Yaling Lin, Zhenhe Lv, Yani Song and Xing Huang
Remote Sens. 2025, 17(22), 3754; https://doi.org/10.3390/rs17223754 - 18 Nov 2025
Cited by 1 | Viewed by 567
Abstract
Aboveground biomass (AGB) is a key indicator reflecting the metabolic mechanisms of wetland plants. This study simulated the AGB of multi-community in Poyang Lake (PYL) wetland based on long-term high-resolution (30 m, 8 d) NDVI fused from MODIS and Landsat images and analyzed [...] Read more.
Aboveground biomass (AGB) is a key indicator reflecting the metabolic mechanisms of wetland plants. This study simulated the AGB of multi-community in Poyang Lake (PYL) wetland based on long-term high-resolution (30 m, 8 d) NDVI fused from MODIS and Landsat images and analyzed the spatial distribution of AGB of different wetland plants and their relationships with wetland surface elevation. Comparative analysis showed that the cubic polynomial regression model performed the best in describing the quantitative relationship between AGB and NDVI, with the R2 of 0.83 for fitting data, the Root Mean Square Error (RMSE) of 51.8 g/m2, and prediction accuracy (G) of 71.7% for validation data. The results showed that the maximum AGB of Carex cinerascens (Cc) and Phragmites australis-Triarrhena lutarioriparia (P-T) communities during the spring growth period reached 1352 g/m2 and 1529 g/m2, respectively. The total AGB value of the Polygonum hydropiper-Phalaris arundinacea (P-P) community was the lowest from June to August, due to the flooding of PYL. Trend analysis found that the AGB of the Cc and P-P communities presented increasing trends during 2001–2020. In spatial terms, the Southern and Western areas had the largest AGB, with an average of 1340 g/m2 and 1283 g/m2, respectively, while the AGB in the Northern lake area was the lowest. Additionally, more than 78% of the total vegetation AGB was distributed in areas with elevations of 11.0–15.0 m (total AGB values of up to 332.7–376.3 × 107 kg). The changes in water level and the timing of soil exposure in PYL dominated the spatiotemporal patterns of wetland vegetation AGB. Full article
Show Figures

Figure 1

19 pages, 1602 KB  
Article
Delineation of Management Zones Based on the Agricultural Potential Concept for Potato Production Using Optical Satellite Images
by David A. Ramirez-Gonzalez, Karem Chokmani, Athyna N. Cambouris and Michelle L. D’Souza
Remote Sens. 2025, 17(22), 3709; https://doi.org/10.3390/rs17223709 - 14 Nov 2025
Cited by 1 | Viewed by 1300
Abstract
Management zones (MZs) are a key precision agriculture strategy for managing spatial variability in crops, but conventional delineation methods are costly, time-consuming, and rely on specialized equipment. Previous studies in potato production have primarily relied on single-year NDVI or proximal soil sensor data [...] Read more.
Management zones (MZs) are a key precision agriculture strategy for managing spatial variability in crops, but conventional delineation methods are costly, time-consuming, and rely on specialized equipment. Previous studies in potato production have primarily relied on single-year NDVI or proximal soil sensor data analyses, limiting their ability to capture temporal stability and variability across multiple fields. This study addresses this gap by applying multi-year, multi-source NDVI composites to characterize spatial and temporal patterns of agricultural potential across 17 commercial potato fields at McCain’s Farm of the Future, Florenceville-Bristol, New Brunswick. A total of 230 NDVI images from Sentinel-2 and Landsat 8 (2015–2023) were processed into composite metrics (mean, standard deviation, skewness) to delineate three agricultural potential (AP) MZs. Validation was conducted using 2023 potato tuber yield and soil physicochemical properties. The results showed statistically significant correlations between NDVI metrics and key soil nutrients (total carbon: |r| < 0.19; total nitrogen: |r| < 0.28), with tuber yield (|r| < 0.41). Spatial patterns of total carbon and nitrogen corresponded with delineated MZs, and tuber yield variability partially aligned with these zones. These findings demonstrate that multi-year NDVI composites provide a cost-effective and scalable approach for mapping agricultural potential, capturing both spatial and temporal variability, and supporting data-driven management decisions in potato production systems. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

21 pages, 17851 KB  
Article
Landslide Susceptibility Mapping Using Remote Sensing Interpretation and a Blending-XGBoost-CNN Model
by Baocheng Ma, Chao Yin, Feng Gao, Xilong Song and Mingyang Li
Appl. Sci. 2025, 15(22), 11969; https://doi.org/10.3390/app152211969 - 11 Nov 2025
Viewed by 970
Abstract
The accuracy of historical landslide data is a key factor affecting the precision of landslide susceptibility mapping. The degree of conformity between mathematical models and disaster-prone environments cannot be predetermined, and the optimal model needs to be determined through comparative studies. In this [...] Read more.
The accuracy of historical landslide data is a key factor affecting the precision of landslide susceptibility mapping. The degree of conformity between mathematical models and disaster-prone environments cannot be predetermined, and the optimal model needs to be determined through comparative studies. In this paper, SBAS-InSAR and the object-oriented classification method were integrated to provide data for landslide susceptibility mapping: SBAS-InSAR was used to process Sentinel-1 images, while the object-oriented classification method was applied to interpret Landsat 8 images. Eleven hazard factors were selected for landslide susceptibility modeling, and the best-performing model was determined. The influences of single and multiple hazard factors on landslide susceptibility were analyzed using Geodetector. The results showed that 246 potential landslides were identified, with a total area of 0.427 km2 and a total volume of 2.161 × 106 m3. The Blending-XGBoost-CNN model achieved the highest AUC and Precision, outperforming the XGBoost model and CNN model. The extreme high susceptible areas, high susceptible areas, moderate susceptible areas, minor susceptible areas and extreme minor susceptible areas accounted for 6.24% (91.4 km2), 15.07% (220.6 km2), 29.15% (426.8 km2), 30.58% (447.7 km2), and 18.96% (277.8 km2) of the total area, respectively. NDVI and gradient were key factors determining landslide occurrence. Elevation, slope aspect, distance from river, and land use also played significant roles in landslide occurrence. The contributions of TWI and lithology to landslide occurrence were relatively small, while those of plane curvature and distance from road were minimal. The interaction of hazard factors exhibited NE or BE relationships, not only increasing landslide risk but also potentially leading to more complex disaster patterns. This study can provide a theoretical basis for landslide prevention-oriented land use planning. Full article
Show Figures

Figure 1

26 pages, 5137 KB  
Article
Analyzing Surface Spectral Signature Shifts in Fire-Affected Areas of Elko County Nevada
by Ibtihaj Ahmad and Haroon Stephen
Fire 2025, 8(11), 429; https://doi.org/10.3390/fire8110429 - 31 Oct 2025
Viewed by 787
Abstract
This study investigates post-fire vegetation transitions and spectral responses in the Snowstorm Fire (2017) and South Sugarloaf Fire (2018) in Nevada using Landsat 8 Operational Land Imager (OLI) surface reflectance imagery and unsupervised ISODATA classification. By comparing pre-fire and post-fire conditions, we have [...] Read more.
This study investigates post-fire vegetation transitions and spectral responses in the Snowstorm Fire (2017) and South Sugarloaf Fire (2018) in Nevada using Landsat 8 Operational Land Imager (OLI) surface reflectance imagery and unsupervised ISODATA classification. By comparing pre-fire and post-fire conditions, we have assessed changes in vegetation composition, spectral signatures, and the emergence of novel land cover types. The results revealed widespread conversion of shrubland and conifer-dominated systems to herbaceous cover with significant reductions in near-infrared reflectance and elevated shortwave infrared responses, indicative of vegetation loss and surface alteration. In the South Sugarloaf Fire, three new spectral classes emerged post-fire, representing ash-dominated, charred, and sparsely vegetated conditions. A similar new class emerged in Snowstorm, highlighting the spatial heterogeneity of fire effects. Class stability analysis confirmed low persistence of shrub and conifer types, with grassland and herbaceous classes showing dominant post-fire expansion. The findings highlight the ecological consequences of high-severity fire in sagebrush ecosystems, including reduced resilience, increased invasion risk, and type conversion. Unsupervised classification and spectral signature analysis proved effective for capturing post-fire landscape change and can support more accurate, site-specific post-fire assessment and restoration planning. Full article
Show Figures

Figure 1

22 pages, 4943 KB  
Article
Novel Wall Reef Identification Method Using Landsat 8: A Case Study of Microcontinent Areas in Wangiwangi Island, Indonesia
by Wikanti Asriningrum, Azura Ulfa, Edy Trihatmoko, Nugraheni Setyaningrum, Joko Widodo, Ahmad Sutanto, Suwarsono, Gathot Winarso, Bachtiar Wahyu Mutaqin and Eko Siswanto
Geosciences 2025, 15(10), 391; https://doi.org/10.3390/geosciences15100391 - 10 Oct 2025
Viewed by 765
Abstract
This study develops a geomorphological identification methodology for wall reefs in the microcontinental environment of Wangiwangi Island, Indonesia, using medium-resolution Landsat 8 satellite imagery and morphological analysis based on Maxwell’s geomorphological framework. The uniqueness of the wall reef landform lies in the fact [...] Read more.
This study develops a geomorphological identification methodology for wall reefs in the microcontinental environment of Wangiwangi Island, Indonesia, using medium-resolution Landsat 8 satellite imagery and morphological analysis based on Maxwell’s geomorphological framework. The uniqueness of the wall reef landform lies in the fact that the lagoon elongates on limestone, resulting in a habitat and ecosystem that develops differently from those of other shelf reefs, namely, platform reefs and plug reefs. Using Optimum Index Factor (OIF) optimization and RGB image composites, four reef types were successfully identified: cuspate reefs, open ring reefs, closed ring reefs, and resorbed reefs. A field check was conducted at fifteen observation sites, which included measurements of depth, turbidity, and water quality parameters, as well as an in situ benthic habitat inventory. The analysis results showed a strong correlation between image composites, geomorphological reef classes, and ecological conditions, confirming the successful adaptation of Maxwell’s classification to the Indonesian reef system. This hybrid integrated approach successfully maps the distribution of reefs on a complex continental shelf, providing an essential database for shallow-water spatial planning, ecosystem-based conservation, and sustainable management in the Coral Triangle region. Policy recommendations include zoning schemes for protected areas based on reef landform morphology, strengthening integrative monitoring systems, and utilizing high-resolution imagery and machine learning algorithms in further research. Full article
Show Figures

Figure 1

24 pages, 8871 KB  
Article
Satellite-Derived Multi-Temporal Palm Trees and Urban Cover Changes to Understand Drivers of Changes in Agroecosystem in Al-Ahsa Oasis Using a Spectral Mixture Analysis (SMA) Model
by Abdelrahim Salih, Abdalhaleem Hassaballa and Abbas E. Rahma
Agriculture 2025, 15(19), 2043; https://doi.org/10.3390/agriculture15192043 - 29 Sep 2025
Viewed by 736
Abstract
Palm trees, referred to here as vegetation cover (VC), provide essential ecosystem services in an arid Oasis. However, because of socioeconomic transformation, the rapid urban expansion of major cities and villages at the expense of agricultural lands of the Al-Ahsa Oasis, Saudi Arabia, [...] Read more.
Palm trees, referred to here as vegetation cover (VC), provide essential ecosystem services in an arid Oasis. However, because of socioeconomic transformation, the rapid urban expansion of major cities and villages at the expense of agricultural lands of the Al-Ahsa Oasis, Saudi Arabia, has placed enormous pressure on the palm-growing area and led to the loss of productive land. These challenges highlight the need for robust, integrative methods to assess their impact on the agroecosystem. Here, we analyze spatiotemporal fluctuations in vegetation cover and its effect on the agroecosystem to determine the potential influencing factors. Data from Landsat satellites, including TM (Thematic mapper of Landsat 5), ETM+ (Enhanced Thematic mapper plus of Landsat 7), and OIL (Landsat 8) and Sentinel-2A imageries were used for analysis, while GeoEye-1 satellite images as well as socioeconomic data were applied for result validation. Principal Component Analysis (PCA) was applied to extract pure endmembers, facilitating Spectral Mixture Analysis (SMA) for mapping vegetation and urban fractions. The spatiotemporal change patterns were analyzed using time- and space-oriented detection algorithms. Results indicated that vegetation fraction patterns differed significantly; pixels with high fraction values declined significantly from 1990 to 2020. The mean vegetation fraction value varied from 0.79 to 0.37. This indicates that a reduction in palm trees was quickly occurring at a decreasing rate of −14.24%. Results also suggest that vegetation fractions decreased significantly between 1990 and 2020, and this decrease had the greatest effect on the agroecosystem situation of the Oasis. We assessed urban sprawl, and our results indicated substantial variability in average urban fractions: 0.208%, 0.247%, 0.699%, and 0.807% in 1990, 2000, 2010, and 2020, respectively. Overall, the data revealed an association between changes in palm tree fractions and urban ones, supporting strategic vegetation and/or agricultural management to enhance the agroecosystem in an arid Oasis. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

19 pages, 3620 KB  
Article
Surface Urban Heat Island Risk Index Computation Using Remote-Sensed Data and Meta Population Dataset on Naples Urban Area (Italy)
by Massimo Musacchio, Alessia Scalabrini, Malvina Silvestri, Federico Rabuffi and Antonio Costanzo
Remote Sens. 2025, 17(19), 3306; https://doi.org/10.3390/rs17193306 - 26 Sep 2025
Viewed by 1363
Abstract
Extreme climate events such as heatwaves are becoming more frequent and pose serious challenges in cities. Urban areas are particularly vulnerable because built surfaces absorb and release heat, while human activities generate additional greenhouse gases. This increases health risks, making it crucial to [...] Read more.
Extreme climate events such as heatwaves are becoming more frequent and pose serious challenges in cities. Urban areas are particularly vulnerable because built surfaces absorb and release heat, while human activities generate additional greenhouse gases. This increases health risks, making it crucial to study population exposure to heat stress. This research focuses on Naples, Italy’s most densely populated city, where intense human activity and unique geomorphological conditions influence local temperatures. The presence of a Surface Urban Heat Island (SUHI) is assessed by deriving high-resolution Land Surface Temperature (LST) in a time series ranging from 2013 to 2023, processed with the Statistical Mono Window (SMW) algorithm in the Google Earth Engine (GEE) environment. SMW needs brightness temperature (Tb) extracted from a Landsat 8 (L8) Thermal InfraRed Sensor (TIRS), emissivity from Advanced Spaceborne and Thermal Emission Radiometer Global Emissivity Database (ASTERGED), and atmospheric correction coefficients from the National Center for Environmental Prediction and Atmospheric Research (NCEP/NCAR). A total of 64 nighttime images were processed and analyzed to assess long-term trends and identify the main heat islands in Naples. The hottest image was compared with population data, including demographic categories such as children, elderly people, and pregnant women. A risk index was calculated by combining temperature values, exposure levels, and the vulnerability of each group. Results identified three major heat islands, showing that risk is strongly linked to both population density and heat island distribution. Incorporating Local Climate Zone (LCZ) classification further highlighted the urban areas most prone to extreme heat based on morphology. Full article
Show Figures

Graphical abstract

Back to TopTop