Water Consumption Assessment of Afforestation and Natural Vegetation Areas with a Remote Sensing Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Standardized Precipitation-Evapotranspiration Index
2.3. Actual Evapotranspiration
2.3.1. Landsat Data
2.3.2. Data Processing
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fisher, J.B.; Melton, F.; Middleton, E.; Hain, C.; Anderson, M.; Allen, R.; McCabe, M.F.; Hook, S.; Baldocchi, D.; Townsend, P.A.; et al. The Future of Evapotranspiration: Global Requirements for Ecosystem Functioning, Carbon and Climate Feedbacks, Agricultural Management, and Water Resources. Water Resour. Res. 2017, 53, 2618–2626. [Google Scholar] [CrossRef]
- Food of the United Nations (FAO). Remote Sensing Determination of Evapotranspiration: Algorithms, Strengths, Weaknesses, Uncertainty and Best Fit-for-Purpose; FAO: Cairo, Egypt, 2023. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO—Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Baldocchi, D.; Falge, E.; Gu, L.; Olson, R.; Hollinger, D.; Running, S.; Anthoni, P.; Bernhofer, C.; Davis, K.; Evans, R.; et al. FLUXNET: A New Tool to Study the Temporal and Spatial Variability of Ecosystem-Scale Carbon Dioxide, Water Vapor, and Energy Flux Densities. Bull. Am. Meteorol. Soc. 2001, 82, 2415–2437. [Google Scholar] [CrossRef]
- Fuentes, I.; Vervoort, R.W.; McPhee, J. Global Evapotranspiration Models and Their Performance at Different Spatial Scales: Contrasting a Latitudinal Gradient against Global Catchments. J. Hydrol. 2024, 628, 130477. [Google Scholar] [CrossRef]
- Bastiaanssen, W.G.M.; Menenti, M.; Feddes, R.A.; Holtslag, A.A.M. A Remote Sensing Surface Energy Balance Algorithm for Land (SEBAL). 1. Formulation. J. Hydrol. 1998, 212–213, 198–212. [Google Scholar] [CrossRef]
- Allen, R.G.; Tasumi, M.; Morse, A.; Trezza, R.; Wright, J.L.; Bastiaanssen, W.; Kramber, W.; Lorite, I.; Robison, C.W. Satellite-Based Energy Balance for Mapping Evapotranspiration with Internalized Calibration (METRIC)—Applications. J. Irrig. Drain. Eng. 2007, 133, 395–406. [Google Scholar] [CrossRef]
- Teixeira, A. Determining Regional Actual Evapotranspiration of Irrigated Crops and Natural Vegetation in the São Francisco River Basin (Brazil) Using Remote Sensing and Penman-Monteith Equation. Remote Sens. 2010, 2, 1287–1319. [Google Scholar] [CrossRef]
- Silva, C.O.F.; Teixeira, A.H.d.C.; Manzione, R.L. Agriwater: An R Package for Spatial Modelling of Energy Balance and Actual Evapotranspiration Using Satellite Images and Agrometeorological Data. Environ. Model. Softw. 2019, 120, 104497. [Google Scholar] [CrossRef]
- Barboza, N.; Laguna, H.; Mila, F. Apoyos y Gravámenes En La Actividad Forestal. In Anuario OPYPA 2021; MGAP: Montevideo, Uruguay, 2021; Available online: https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/comunicacion/publicaciones/anuario-opypa-2021/estudios/apoyos-gravamenes-actividad-forestal-1 (accessed on 17 April 2025).
- Olmos, V.M.; Pienika, E. Contribution of the Forest Sector to the Uruguayan Economy: A First Approach with National Accounts. J. Sci. 2022, 68, 116–119. [Google Scholar] [CrossRef]
- DGF Dirección General Forestal; MGAP Ministerio de Ganadería Agricultura y Pesca. Resultados Cartografía Forestal; MGAP: Montevideo, Uruguay, 2021; Available online: https://www.gub.uy/ministerio-ganaderia-agricultura-pesca/comunicacion/noticias/nueva-cartografia-forestal-2021 (accessed on 17 April 2025).
- Reichert, J.M.; Rodrigues, M.F.; Peláez, J.J.Z.; Lanza, R.; Minella, J.P.G.; Arnold, J.G.; Cavalcante, R.B.L. Water Balance in Paired Watersheds with Eucalyptus and Degraded Grassland in Pampa Biome. Agric. For. Meteorol. 2017, 237–238, 282–295. [Google Scholar] [CrossRef]
- Ebling, É.D.; Reichert, J.M.; Zuluaga Peláez, J.J.; Rodrigues, M.F.; Valente, M.L.; Lopes Cavalcante, R.B.; Reggiani, P.; Srinivasan, R. Event-Based Hydrology and Sedimentation in Paired Watersheds under Commercial Eucalyptus and Grasslands in the Brazilian Pampa Biome. Int. Soil. Water Conserv. Res. 2021, 9, 180–194. [Google Scholar] [CrossRef]
- Jorge, B.C.S.; Winck, B.R.; da Silva Menezes, L.; Bellini, B.C.; Pillar, V.D.; Podgaiski, L.R. Grassland Afforestation with Eucalyptus Affect Collembola Communities and Soil Functions in Southern Brazil. Biodivers. Conserv. 2022, 32, 275–295. [Google Scholar] [CrossRef]
- Alonso, J.; Silveira, L.; Vervoort, R.W. Assessing Effects of Afforestation on Streamflow in Uruguay: From Small to Large Basins. Hydrol. Process 2024, 38, e15272. [Google Scholar] [CrossRef]
- Silveira, L.; Gamazo, P.; Alonso, J.; Martínez, L. Effects of Afforestation on Groundwater Recharge and Water Budgets in the Western Region of Uruguay. Hydrol. Process 2016, 30, 3596–3608. [Google Scholar] [CrossRef]
- Cano, D.; Cacciuttolo, C.; Custodio, M.; Nosetto, M. Effects of Grassland Afforestation on Water Yield in Basins of Uruguay: A Spatio-Temporal Analysis of Historical Trends Using Remote Sensing and Field Measurements. Land 2023, 12, 185. [Google Scholar] [CrossRef]
- Mer, F.; Vervoort, R.W.; Baethgen, W. Building Trust in SWAT Model Scenarios through a Multi-Institutional Approach in Uruguay. Socio-Environ. Syst. Model. 2020, 2, 17892. [Google Scholar] [CrossRef]
- Hoogar, R.; Malakannavar, S.; Hoogar, C.R.; Sujatha, H. Impact of Eucalyptus Plantations on Ground Water and Soil Ecosystem in Dry Regions. J. Pharmacogn. Phytochem. 2019, 8, 2929. [Google Scholar]
- Gallego, F.; Camba Sans, G.; Di Bella, C.M.; Tiscornia, G.; Paruelo, J.M. Performance of Real Evapotranspiration Products and Water Yield Estimations in Uruguay. Remote Sens. Appl. 2023, 32, 101043. [Google Scholar] [CrossRef]
- Navas, R.; Tiscornia, G.; Berger, A.G.; Otero, A. Evaluación de La Evapotranspiración de MODIS16A2 En Tres Resoluciones Espaciales En Uruguay. Agrociencia Urug. 2021, 25, 429. [Google Scholar] [CrossRef]
- Baeza, S.; Vélez-Martin, E.; De Abelleyra, D.; Banchero, S.; Gallego, F.; Schirmbeck, J.; Veron, S.; Vallejos, M.; Weber, E.; Oyarzabal, M.; et al. Two Decades of Land Cover Mapping in the Río de La Plata Grassland Region: The MapBiomas Pampa Initiative. Remote Sens. Appl. 2022, 28, 100834. [Google Scholar] [CrossRef]
- MapBiomas. Pampa Trinacional: Argentina, Brasil y Uruguay (Colección 3). 2023. Available online: https://pampa.mapbiomas.org/pt/home-3/ (accessed on 17 April 2025).
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Beguería, S.; Vicente-Serrano, S.M.; Reig, F.; Latorre, B. Standardized Precipitation Evapotranspiration Index (SPEI) Revisited: Parameter Fitting, Evapotranspiration Models, Tools, Datasets and Drought Monitoring. Int. J. Climatol. 2014, 34, 3001–3023. [Google Scholar] [CrossRef]
- Teixeira, A.H.d.C.; Hernandez, F.B.T.; Andrade, R.G.; Leivas, J.F.; Bolfe, E.L. Energy Balance with Landsat Images in Irrigated Central Pivots with Corn Crop in the São Paulo State, Brazil. In Proceedings of the SPIE—The International Society for Optical Engineering, San Diego, CA, USA, 17–21 August 2014; Volume 9239, pp. 219–228. [Google Scholar] [CrossRef]
- Safre, A.L.S.; Nassar, A.; Torres-Rua, A.; Aboutalebi, M.; Saad, J.C.C.; Manzione, R.L.; de Castro Teixeira, A.H.; Prueger, J.H.; McKee, L.G.; Alfieri, J.G.; et al. Performance of Sentinel-2 SAFER ET Model for Daily and Seasonal Estimation of Grapevine Water Consumption. Irrig. Sci. 2022, 40, 635–654. [Google Scholar] [CrossRef]
- Teixeira, A.; Pacheco, E.; Silva, C.; Dompieri, M.; Leivas, J. SAFER Applications for Water Productivity Assessments with Aerial Camera Onboard a Remotely Piloted Aircraft (RPA). A Rainfed Corn Study in Northeast Brazil. Remote Sens. Appl. 2021, 22, 100507. [Google Scholar] [CrossRef]
- Silva, C.O.F.; Manzione, R.L.; Albuquerque Filho, J.L. Large-Scale Spatial Modeling of Crop Coefficient and Biomass Production in Agroecosystems in Southeast Brazil. Horticulturae 2018, 4, 33. [Google Scholar] [CrossRef]
- Silva, C.O.F.; Manzione, R.L.; Albuquerque Filho, J.L. Combining Remotely Sensed Actual Evapotranspiration and GIS Analysis for Groundwater Level Modeling. Environ. Earth Sci. 2019, 78, 462. [Google Scholar] [CrossRef]
- Wagner Wolff Francisco, J.P.; Flumignan, D.L.; Marin, F.R.; Folegatti, M. V Optimized Algorithm for Evapotranspiration Retrieval via Remote Sensing. Agric. Water Manag. 2022, 262, 107390. [Google Scholar] [CrossRef]
- Rouse, J.; Haas, R.; Schell, J. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA: Greenbelt, MD, USA, 1974. [Google Scholar]
- Silva, C.O.F.; Teixeira, A.H.D.C.; Manzione, R.L. Agriwater: Evapotranspiration and Energy Fluxes Spatial Analysis. CRAN: Contributed Packages, 2023. [Google Scholar] [CrossRef]
- Rodgers, J.L.; Nicewander, W.A. Thirteen Ways to Look at the Correlation Coefficient. Am. Stat. 1988, 42, 59–66. [Google Scholar] [CrossRef]
- Willmott, C.J. On the Validation of Models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Chai, T.; Draxler, R.R. Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?—Arguments against Avoiding RMSE in the Literature. Geosci. Model. Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J. V River Flow Forecasting through Conceptual Models Part I—A Discussion of Principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Cataldo, D.; Bordet, F.; Bruno, L. Efecto de La Bajante Extrema 2020-2023 Sobre La Reproducción de Peces Migradores En El Río Uruguay. Innotec 2024, 27, e653. [Google Scholar] [CrossRef] [PubMed]
- Nion, C.F.; Isasa, I.D. Spatial Distribution of Pesticide Use Based on Crop Rotation Data in La Plata River Basin: A Case Study from an Agricultural Region of Uruguay. Environ. Monit. Assess. 2024, 196, 633. [Google Scholar] [CrossRef]
- Rodríguez-Gallego, L.; Lescano, C.; Pasquariello, S.; Rodó, E.; Cardoso, A.; Serra, S.; Martínez, A.; Costa, S.; Nin, M.; Fernández, A. Proliferación de Plantas Sumergidas En La Laguna Garzón: Causas, Consecuencias y Recomendaciones de Manejo. Innotec 2024, 28, e655. [Google Scholar]
- Giuliano, F.; Navia, D.; Ruberl, H. The Macroeconomic Impact of Climate Shocks in Uruguay; World Bank: Washington, DC, USA, 2024. [Google Scholar]
- Conte, A.S. La Sequía 2020-2023 en la Argentina y su Impacto en la Agricultura; Consejo Nacional de Investigaciones Científicas y Técnicas: Buenos Aires, Argentina, 2024. [Google Scholar]
- Nosetto, M.D.; Jobbágy, E.G.; Paruelo, J.M. Land-Use Change and Water Losses: The Case of Grassland Afforestation across a Soil Textural Gradient in Central Argentina. Glob. Change Biol. 2005, 11, 1101–1117. [Google Scholar] [CrossRef]
- Silveira, L.; Alonso, J. Runoff Modifications Due to the Conversion of Natural Grasslands to Forests in a Large Basin in Uruguay. Hydrol. Process 2009, 23, 320–329. [Google Scholar] [CrossRef]
- Dresel, P.E.; Dean, J.F.; Perveen, F.; Webb, J.A.; Hekmeijer, P.; Adelana, S.M.; Daly, E. Effect of Eucalyptus Plantations, Geology, and Precipitation Variability on Water Resources in Upland Intermittent Catchments. J. Hydrol. 2018, 564, 723–739. [Google Scholar] [CrossRef]
- Dieguez, H.; Piñeiro, G.; Paruelo, J. Unraveling Impacts on Carbon, Water and Energy Exchange of Pinus Plantations in South American Temperate Ecosystems. Sci. Total Environ. 2024, 953, 176150. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Kong, J.; Gao, Y.; Chen, Z.; Lin, Y.; Zeng, S.; Su, Y.; Li, J.; He, Q.; Qiu, Q. A Simulated Drier Climate Reduces Growth and Alters Functional Traits of Eucalyptus Trees: A Three-Year Experiment in South China. For. Ecol. Manag. 2023, 549, 121435. [Google Scholar] [CrossRef]
- Tupinambá-Simões, F.; Bravo, F.; Guerra-Hernández, J.; Pascual, A. Assessment of Drought Effects on Survival and Growth Dynamics in Eucalypt Commercial Forestry Using Remote Sensing Photogrammetry. A Showcase in Mato Grosso, Brazil. For. Ecol. Manag. 2022, 505, 119930. [Google Scholar] [CrossRef]
- Keenan, R.J. Climate Change Impacts and Adaptation in Forest Management: A Review. Ann. For. Sci. 2015, 72, 145–167. [Google Scholar] [CrossRef]
- FAO. Voluntary Guidelines on the Responsible Governance of Tenure of Land, Fisheries and Forests in the Context of National Food Security; Revised; FAO: Rome, Italy, 2022. [Google Scholar]
- Haas, H.; Kalin, L.; Sun, G.; Kumar, S. Understanding the Effects of Afforestation on Water Quantity and Quality at Watershed Scale by Considering the Influences of Tree Species and Local Moisture Recycling. J. Hydrol. 2024, 640, 131739. [Google Scholar] [CrossRef]
- Buechel, M.; Slater, L.; Dadson, S. Broadleaf Afforestation Impacts on Terrestrial Hydrology Insignificant Compared to Climate Change in Great Britain. Hydrol. Earth Syst. Sci. 2024, 28, 2081–2105. [Google Scholar] [CrossRef]
- Farooqi, T.J.A.; Portela, R.; Xu, Z.; Pan, S.; Irfan, M.; Ali, A. Advancing Forest Hydrological Research: Exploring Global Research Trends and Future Directions through Scientometric Analysis. J. Res. 2024, 35, 128. [Google Scholar] [CrossRef]
Satellite | Year (n = 11) | Dates (n = 97) |
---|---|---|
Landsat 8 | 2014 | 15 March 2014, 2 May 2014, 3 June 2014, 19 June 2014, 21 July 2014, 22 August 2014, 7 September 2014, 23 September 2014, 10 November 2014 |
2015 | 29 January 2015, 18 March 2015, 3 April 2015, 19 April 2015, 5 May 2015, 21 May 2015, 9 August 2015, 29 November 2015 | |
2016 | 16 January 2016, 23 May 2016, 8 June 2016, 28 September 2016, 30 October 2016, 1 December 2016, 17 December 2016 | |
2017 | 7 March 2017, 10 May 2017, 11 June 2017, 29 July 2017, 15 September 2017 | |
2018 | 6 February 2018, 10 March 2018, 26 March 2018, 13 May 2018, 29 May 2018, 17 August 2018, 4 October 2018, 5 November 2018, 21 November 2018, 7 December 2018 | |
2019 | 3 July 2019, 4 August 2019, 5 September 2019, 21 September 2019, 8 November 2019, 24 November 2019, 10 December 2019 | |
2020 | 27 January 2020, 28 February 2020, 16 April 2020, 18 May 2020, 3 June 2020, 22 August 2020, 9 October 2020, 28 December 2020 | |
Landsat 8 and Landsat 9 | 2021 | 13 January 2021, 14 February 2021, 3 April 2021, 19 April 2021, 8 July 2021, 28 October 2021, 13 November 2021, 7 December 2021, 23 December 2021 |
2022 | 1 February 2022, 9 February 2022, 17 February 2022, 21 March 2022, 29 March 2022, 14 April 2022, 30 April 2022, 20 August 2022, 5 September 2022, 7 October 2022, 16 November 2022, 24 November 2022 | |
2023 | 3 January 2023, 12 February 2023, 8 March 2023, 1 April 2023, 9 April 2023, 17 April 2023, 12 June 2023, 16 September 2023, 10 October 2023, 26 October 2023, 19 November 2023 | |
2024 | 30 January 2024, 7 February 2024, 23 February 2024, 10 March 2024, 30 June 2024, 24 July 2024, 4 October 2024, 20 October 2024, 28 October 2024, 13 November 2024, 23 December 2024 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santarosa, L.V.; de Oliveira Ferreira Silva, C.; Hirigoyen, A.; Quaggio, C.S. Water Consumption Assessment of Afforestation and Natural Vegetation Areas with a Remote Sensing Approach. Water 2025, 17, 1597. https://doi.org/10.3390/w17111597
Santarosa LV, de Oliveira Ferreira Silva C, Hirigoyen A, Quaggio CS. Water Consumption Assessment of Afforestation and Natural Vegetation Areas with a Remote Sensing Approach. Water. 2025; 17(11):1597. https://doi.org/10.3390/w17111597
Chicago/Turabian StyleSantarosa, Lucas Vituri, César de Oliveira Ferreira Silva, Andrés Hirigoyen, and Carolina Stager Quaggio. 2025. "Water Consumption Assessment of Afforestation and Natural Vegetation Areas with a Remote Sensing Approach" Water 17, no. 11: 1597. https://doi.org/10.3390/w17111597
APA StyleSantarosa, L. V., de Oliveira Ferreira Silva, C., Hirigoyen, A., & Quaggio, C. S. (2025). Water Consumption Assessment of Afforestation and Natural Vegetation Areas with a Remote Sensing Approach. Water, 17(11), 1597. https://doi.org/10.3390/w17111597