Analyzing Ecological Environmental Quality Trends in Dhaka Through Remote Sensing Based Ecological Index (RSEI)
Abstract
:1. Introduction
Study Area
2. Materials and Methods
2.1. Greenness Index
2.2. Wetness Index
2.3. Dryness
2.4. Heat Index
2.5. Calculation of RSEI
2.6. Spatial Autocorrelation Analysis
2.7. Pearson’s Correlation Analysis
3. Results
3.1. Ecological Indicators and PCA Analysis
3.2. Dynamic Changes in the EEQ
3.3. Correlation Analysis Between RSEI Variables
3.4. Spatial Autocorrelation Analysis of RSEI
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Walther, G.-R.; Post, E.; Convey, P.; Menzel, A.; Parmesan, C.; Beebee, T.J.C.; Fromentin, J.-M.; Hoegh-Guldberg, O.; Bairlein, F. Ecological Responses to Recent Climate Change. Nature 2002, 416, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global Land Change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Liu, L.; Wu, X.; Hou, X.; Zhao, S.; Liu, G. Quantitative Evaluation of Human Activity Intensity on the Regional Ecological Impact Studies. Acta Ecol. Sin. 2018, 38, 6797–6809. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Y.; Zhai, T.; He, T.; Qi, Y.; Jin, Z.; Cai, Y. The Role of Human Activity in Decreasing Ecologically Sound Land Use in C Hina. Land Degrad. Dev. 2018, 29, 446–460. [Google Scholar] [CrossRef]
- Wang, H.; Tang, L.; Qiu, Q.; Chen, H. Assessing the Impacts of Urban Expansion on Habitat Quality by Combining the Concepts of Land Use, Landscape, and Habitat in Two Urban Agglomerations in China. Sustainability 2020, 12, 4346. [Google Scholar] [CrossRef]
- Wang, L.; Tian, F.; Wang, X.; Yang, Y.; Wei, Z. Attribution of the Land Surface Temperature Response to Land-Use Conversions from Bare Land. Glob. Planet. Chang. 2020, 193, 103268. [Google Scholar] [CrossRef]
- Wolters, M.L.; Sun, Z.; Huang, C.; Kuenzer, C. Environmental Awareness and Vulnerability in the Yellow River Delta: Results Based on a Comprehensive Household Survey. Ocean Coast. Manag. 2016, 120, 1–10. [Google Scholar] [CrossRef]
- Cui, L.; Shi, J. Urbanization and Its Environmental Effects in Shanghai, China. Urban Clim. 2012, 2, 1–15. [Google Scholar] [CrossRef]
- Nguyen, T.; Lin, T.-H.; Chan, H.-P. The Environmental Effects of Urban Development in Hanoi, Vietnam from Satellite and Meteorological Observations from 1999–2016. Sustainability 2019, 11, 1768. [Google Scholar] [CrossRef]
- Gazi, M.Y.; Rahman, M.Z.; Uddin, M.M.; Rahman, F.M.A. Spatio-Temporal Dynamic Land Cover Changes and Their Impacts on the Urban Thermal Environment in the Chittagong Metropolitan Area, Bangladesh. GeoJournal 2021, 86, 2119–2134. [Google Scholar] [CrossRef]
- Rahman, M.S.; Mohiuddin, H.; Kafy, A.-A.; Sheel, P.K.; Di, L. Classification of Cities in Bangladesh Based on Remote Sensing Derived Spatial Characteristics. J. Urban Manag. 2019, 8, 206–224. [Google Scholar] [CrossRef]
- Kafy, A.-A.; Abdullah-Al-Faisal; Rahman, M.S.; Islam, M.; Al Rakib, A.; Islam, M.A.; Khan, M.H.H.; Sikdar, M.S.; Sarker, M.H.S.; Mawa, J.; et al. Prediction of Seasonal Urban Thermal Field Variance Index Using Machine Learning Algorithms in Cumilla, Bangladesh. Sustain. Cities Soc. 2021, 64, 102542. [Google Scholar] [CrossRef]
- Kafy, A.-A.; Rahman, M.S.; Faisal, A.-A.; Hasan, M.M.; Islam, M. Modelling Future Land Use Land Cover Changes and Their Impacts on Land Surface Temperatures in Rajshahi, Bangladesh. Remote Sens. Appl. Soc. Environ. 2020, 18, 100314. [Google Scholar] [CrossRef]
- Naim, M.N.H.; Kafy, A.-A. Assessment of Urban Thermal Field Variance Index and Defining the Relationship between Land Cover and Surface Temperature in Chattogram City: A Remote Sensing and Statistical Approach. Environ. Chall. 2021, 4, 100107. [Google Scholar] [CrossRef]
- Sohel, M.S.I. Ecohydrology: A New Approach to Old Problems for Sustainable Management of Aquatic Ecosystem of Bangladesh for Ecosystem Service Provision. In Ecosystem Services and River Basin Ecohydrology; Chicharo, L., Müller, F., Fohrer, N., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 293–317. ISBN 978-94-017-9845-7. [Google Scholar]
- Majed, N.; Islam, M.A.S. Contaminant Discharge from Outfalls and Subsequent Aquatic Ecological Risks in the River Systems in Dhaka City: Extent of Waste Load Contribution in Pollution. Front. Public Health 2022, 10, 880399. [Google Scholar] [CrossRef]
- Rahman, M.; Szabó, G. Impact of Land Use and Land Cover Changes on Urban Ecosystem Service Value in Dhaka, Bangladesh. Land 2021, 10, 793. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, H. Evaluation of Ecological Environmental Quality and Factor Explanatory Power Analysis in Western Chongqing, China. Ecol. Indic. 2021, 132, 108311. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y.; Guan, H.; Shi, T.; Hu, X. Detecting Ecological Changes with a Remote Sensing Based Ecological Index (RSEI) Produced Time Series and Change Vector Analysis. Remote Sens. 2019, 11, 2345. [Google Scholar] [CrossRef]
- Willis, K.S. Remote Sensing Change Detection for Ecological Monitoring in United States Protected Areas. Biol. Conserv. 2015, 182, 233–242. [Google Scholar] [CrossRef]
- De Araujo Barbosa, C.C.; Atkinson, P.M.; Dearing, J.A. Remote Sensing of Ecosystem Services: A Systematic Review. Ecol. Indic. 2015, 52, 430–443. [Google Scholar] [CrossRef]
- Kwok, R. Ecology’s Remote-Sensing Revolution. Nature 2018, 556, 137–138. [Google Scholar] [CrossRef] [PubMed]
- Reza, M.I.H.; Abdullah, S.A. Regional Index of Ecological Integrity: A Need for Sustainable Management of Natural Resources. Ecol. Indic. 2011, 11, 220–229. [Google Scholar] [CrossRef]
- Kennedy, R.E.; Andréfouët, S.; Cohen, W.B.; Gómez, C.; Griffiths, P.; Hais, M.; Healey, S.P.; Helmer, E.H.; Hostert, P.; Lyons, M.B.; et al. Bringing an Ecological View of Change to Landsat-based Remote Sensing. Front. Ecol. Environ. 2014, 12, 339–346. [Google Scholar] [CrossRef]
- Xu, H.; Wang, M.; Shi, T.; Guan, H.; Fang, C.; Lin, Z. Prediction of Ecological Effects of Potential Population and Impervious Surface Increases Using a Remote Sensing Based Ecological Index (RSEI). Ecol. Indic. 2018, 93, 730–740. [Google Scholar] [CrossRef]
- Nichol, J.; Lee, C.M. Urban Vegetation Monitoring in Hong Kong Using High Resolution Multispectral Images. Int. J. Remote Sens. 2005, 26, 903–918. [Google Scholar] [CrossRef]
- Dewan, A.M.; Yamaguchi, Y. Using Remote Sensing and GIS to Detect and Monitor Land Use and Land Cover Change in Dhaka Metropolitan of Bangladesh during 1960–2005. Environ. Monit. Assess. 2009, 150, 237–249. [Google Scholar] [CrossRef]
- Rajasekar, U.; Weng, Q. Urban Heat Island Monitoring and Analysis Using a Non-Parametric Model: A Case Study of Indianapolis. ISPRS J. Photogramm. Remote Sens. 2009, 64, 86–96. [Google Scholar] [CrossRef]
- Joshi, K.; Kumari, M.; Mishra, V.N.; Prasad, R.; Zhran, M. Geoinformatics Based Evaluation of Heat Mitigation Strategies through Urban Green Spaces in a Rapidly Growing City of India: Implications for Urban Resilience. Theor. Appl. Climatol. 2025, 156, 188. [Google Scholar] [CrossRef]
- Kumar, D. Remote Sensing Based Vegetation Indices Analysis to Improve Water Resources Management in Urban Environment. Aquat. Procedia 2015, 4, 1374–1380. [Google Scholar] [CrossRef]
- Gulia, S.; Shiva Nagendra, S.M.; Khare, M.; Khanna, I. Urban Air Quality Management-A Review. Atmos. Pollut. Res. 2015, 6, 286–304. [Google Scholar] [CrossRef]
- Petrou, Z.I.; Manakos, I.; Stathaki, T. Remote Sensing for Biodiversity Monitoring: A Review of Methods for Biodiversity Indicator Extraction and Assessment of Progress towards International Targets. Biodivers. Conserv. 2015, 24, 2333–2363. [Google Scholar] [CrossRef]
- Behling, R.; Bochow, M.; Foerster, S.; Roessner, S.; Kaufmann, H. Automated GIS-Based Derivation of Urban Ecological Indicators Using Hyperspectral Remote Sensing and Height Information. Ecol. Indic. 2015, 48, 218–234. [Google Scholar] [CrossRef]
- Coutts, C.; Hahn, M. Green Infrastructure, Ecosystem Services, and Human Health. Int. J. Environ. Res. Public Health 2015, 12, 9768–9798. [Google Scholar] [CrossRef] [PubMed]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS; NASA: Washington, DC, USA, 1974.
- Price, J.C. Land Surface Temperature Measurements from the Split Window Channels of the NOAA 7 Advanced Very High Resolution Radiometer. J. Geophys. Res. 1984, 89, 7231–7237. [Google Scholar] [CrossRef]
- Nguyen, C.T.; Chidthaisong, A.; Kieu Diem, P.; Huo, L.-Z. A Modified Bare Soil Index to Identify Bare Land Features during Agricultural Fallow-Period in Southeast Asia Using Landsat 8. Land 2021, 10, 231. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and Photographic Infrared Linear Combinations for Monitoring Vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef]
- Bouzekri, S.; Lasbet, A.A.; Lachehab, A. A New Spectral Index for Extraction of Built-Up Area Using Landsat-8 Data. J. Indian Soc. Remote Sens. 2015, 43, 867–873. [Google Scholar] [CrossRef]
- Huete, A.R. A Soil-Adjusted Vegetation Index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [Google Scholar] [CrossRef]
- Xu, H. Modification of Normalised Difference Water Index (NDWI) to Enhance Open Water Features in Remotely Sensed Imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Xu, H. A Remote Sensing Urban Ecological Index and Its Application. Shengtai Xuebao/Acta Ecol. Sin. 2013, 33, 7853–7862. [Google Scholar]
- Wu, S.; Gao, X.; Lei, J.; Zhou, N.; Guo, Z.; Shang, B. Ecological Environment Quality Evaluation of the Sahel Region in Africa Based on Remote Sensing Ecological Index. J. Arid Land 2022, 14, 14–33. [Google Scholar] [CrossRef]
- Zhang, T.; Yang, R.; Yang, Y.; Li, L.; Chen, L. Assessing the Urban Eco-Environmental Quality by the Remote-Sensing Ecological Index: Application to Tianjin, North China. ISPRS Int. J. Geo-Inf. 2021, 10, 475. [Google Scholar] [CrossRef]
- Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Spatiotemporal Ecological Vulnerability Analysis with Statistical Correlation Based on Satellite Remote Sensing in Samara, Russia. J. Environ. Manag. 2021, 285, 112138. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Xu, H. A New Remote Sensing Index Based on the Pressure-State-Response Framework to Assess Regional Ecological Change. Environ. Sci. Pollut. Res. 2019, 26, 5381–5393. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y. Evaluation of Lake Wetland Ecotourism Resources Based on Remote Sensing Ecological Index. Arab. J. Geosci. 2021, 14, 559. [Google Scholar] [CrossRef]
- Yue, H.; Liu, Y.; Li, Y.; Lu, Y. Eco-Environmental Quality Assessment in China’s 35 Major Cities Based On Remote Sensing Ecological Index. IEEE Access 2019, 7, 51295–51311. [Google Scholar] [CrossRef]
- Dewan, A.; Corner, R. (Eds.) Dhaka Megacity: Geospatial Perspectives on Urbanisation, Environment and Health; Springer: Dordrecht, The Netherlands, 2014; ISBN 978-94-007-6734-8. [Google Scholar]
- Pu, C.; Yang, F.; Wang, X. Flood Risk Assessment of Slums in Dhaka City. Geocarto Int. 2024, 39, 2341802. [Google Scholar] [CrossRef]
- Dhaka Tribune Dhaka Ranks World’s Sixth Most Populous City. Available online: https://www.dhakatribune.com/bangladesh/261898/dhaka-ranks-world%E2%80%99s-sixth-most-populous-city (accessed on 1 January 2025).
- Hossain, S. Social Formations of the Megacity of Dhaka: A Review Essay. Cities 2013, 30, 252–254. [Google Scholar] [CrossRef]
- Benedetti, Y.; Callaghan, C.T.; Ulbrichová, I.; Galanaki, A.; Kominos, T.; Abou Zeid, F.; Ibáñez-Álamo, J.D.; Suhonen, J.; Díaz, M.; Markó, G.; et al. EVI and NDVI as Proxies for Multifaceted Avian Diversity in Urban Areas. Ecol. Appl. 2023, 33, e2808. [Google Scholar] [CrossRef]
- Guha, S.; Govil, H. An Assessment on the Relationship between Land Surface Temperature and Normalized Difference Vegetation Index. Environ. Dev. Sustain. 2021, 23, 1944–1963. [Google Scholar] [CrossRef]
- Jin, S.; Sader, S.A. Comparison of Time Series Tasseled Cap Wetness and the Normalized Difference Moisture Index in Detecting Forest Disturbances. Remote Sens. Environ. 2005, 94, 364–372. [Google Scholar] [CrossRef]
- Li, H.; Liu, F.; Zhang, S.; Zhang, C.; Zhang, C.; Ma, W.; Luo, J. Drying–Wetting Changes of Surface Soil Moisture and the Influencing Factors in Permafrost Regions of the Qinghai-Tibet Plateau, China. Remote Sens. 2022, 14, 2915. [Google Scholar] [CrossRef]
- McColl, K.A.; Alemohammad, S.H.; Akbar, R.; Konings, A.G.; Yueh, S.; Entekhabi, D. The Global Distribution and Dynamics of Surface Soil Moisture. Nat. Geosci. 2017, 10, 100–104. [Google Scholar] [CrossRef]
- Crist, E.P. A TM Tasseled Cap Equivalent Transformation for Reflectance Factor Data. Remote Sens. Environ. 1985, 17, 301–306. [Google Scholar] [CrossRef]
- Zanchetta, A.; Bitelli, G.; Karnieli, A. Monitoring Desertification by Remote Sensing Using the Tasselled Cap Transform for Long-Term Change Detection. Nat. Hazards 2016, 83, 223–237. [Google Scholar] [CrossRef]
- Halder, S.; Bose, S. Ecological Quality Assessment of Five Smart Cities in India: A Remote Sensing Index-Based Analysis. Int. J. Environ. Sci. Technol. 2024, 21, 4101–4118. [Google Scholar] [CrossRef]
- Barsi, J.; Schott, J.; Hook, S.; Raqueno, N.; Markham, B.; Radocinski, R. Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration. Remote Sens. 2014, 6, 11607–11626. [Google Scholar] [CrossRef]
- Essa, W.; Verbeiren, B.; Van Der Kwast, J.; Van De Voorde, T.; Batelaan, O. Evaluation of the DisTrad Thermal Sharpening Methodology for Urban Areas. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 163–172. [Google Scholar] [CrossRef]
- Xu, H. A New Index for Delineating Built-up Land Features in Satellite Imagery. Int. J. Remote Sens. 2008, 29, 4269–4276. [Google Scholar] [CrossRef]
- Sekertekin, A. Validation of Physical Radiative Transfer Equation-Based Land Surface Temperature Using Landsat 8 Satellite Imagery and SURFRAD in-Situ Measurements. J. Atmos. Sol.-Terr. Phys. 2019, 196, 105161. [Google Scholar] [CrossRef]
- Chakrabortty, R.; Pramanik, M.; Hasan, M.M.; Halder, B.; Pande, C.B.; Moharir, K.N.; Zhran, M. Mitigating Urban Heat Islands in the Global South: Data-Driven Approach for Effective Cooling Strategies. Earth Syst. Environ. 2025, 9, 447–474. [Google Scholar] [CrossRef]
- Kasniza Jumari, N.A.S.; Ahmed, A.N.; Huang, Y.F.; Ng, J.L.; Koo, C.H.; Chong, K.L.; Sherif, M.; Elshafie, A. Analysis of Urban Heat Islands with Landsat Satellite Images and GIS in Kuala Lumpur Metropolitan City. Heliyon 2023, 9, e18424. [Google Scholar] [CrossRef]
- Tomlinson, C.J.; Chapman, L.; Thornes, J.E.; Baker, C. Remote Sensing Land Surface Temperature for Meteorology and Climatology: A Review. Meteorol. Appl. 2011, 18, 296–306. [Google Scholar] [CrossRef]
- Rozenstein, O.; Qin, Z.; Derimian, Y.; Karnieli, A. Derivation of Land Surface Temperature for Landsat-8 TIRS Using a Split Window Algorithm. Sensors 2014, 14, 5768–5780. [Google Scholar] [CrossRef]
- Zhong, X.; Zhao, L.; Wang, J.; Zheng, H.; Yan, J.; Jin, R.; Ren, P. Empirical Models on Urban Surface Emissivity Retrieval Based on Different Spectral Response Functions: A Field Study. Build. Environ. 2021, 197, 107882. [Google Scholar] [CrossRef]
- Boori, M.S.; Choudhary, K.; Paringer, R.; Kupriyanov, A. Eco-Environmental Quality Assessment Based on Pressure-State-Response Framework by Remote Sensing and GIS. Remote Sens. Appl. Soc. Environ. 2021, 23, 100530. [Google Scholar] [CrossRef]
- Huang, S.; Li, Y.; Hu, H.; Xue, P.; Wang, J. Assessment of Optimal Seasonal Selection for RSEI Construction: A Case Study of Ecological Environment Quality Assessment in the Beijing-Tianjin-Hebei Region from 2001 to 2020. Geocarto Int. 2024, 39, 2311224. [Google Scholar] [CrossRef]
- Rsei; Xu, H. A Remote Sensing Index for Assessment of Regional Ecological Changes. Zhongguo Huanjing Kexue/China Environ. Sci. 2013, 33, 889–897. [Google Scholar]
- Fan, G.Y.; Cowley, J.M. Auto-Correlation Analysis of High Resolution Electron Micrographs of near-Amorphous Thin Films. Ultramicroscopy 1985, 17, 345–355. [Google Scholar] [CrossRef]
- Martin, D. An Assessment of Surface and Zonal Models of Population. Int. J. Geogr. Inf. Syst. 1996, 10, 973–989. [Google Scholar] [CrossRef]
- Jing, Y.; Zhang, F.; He, Y.; Kung, H.; Johnson, V.C.; Arikena, M. Assessment of Spatial and Temporal Variation of Ecological Environment Quality in Ebinur Lake Wetland National Nature Reserve, Xinjiang, China. Ecol. Indic. 2020, 110, 105874. [Google Scholar] [CrossRef]
- Anselin, L. Local Indicators of Spatial Association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Ahlgren, P.; Jarneving, B.; Rousseau, R. Requirements for a Cocitation Similarity Measure, with Special Reference to Pearson’s Correlation Coefficient. J. Am. Soc. Inf. Sci. 2003, 54, 550–560. [Google Scholar] [CrossRef]
- Liu, H.; Jiang, Y.; Misa, R.; Gao, J.; Xia, M.; Preusse, A.; Sroka, A.; Jiang, Y. Ecological Environment Changes of Mining Areas around Nansi Lake with Remote Sensing Monitoring. Environ. Sci. Pollut. Res. 2021, 28, 44152–44164. [Google Scholar] [CrossRef]
- Liu, Q.; Yu, F.; Mu, X. Evaluation of the Ecological Environment Quality of the Kuye River Source Basin Using the Remote Sensing Ecological Index. Int. J. Environ. Res. Public Health 2022, 19, 12500. [Google Scholar] [CrossRef]
- Trong Nguyen, C.; Noszczyk, T.; Iabchoon, S. Soil Textures and Urban Heat. In Remote Sensing for Geophysicists; CRC Press: New York, NY, USA, 2025; pp. 472–484. ISBN 978-1-00-348527-8. [Google Scholar]
- He, L.; Shen, J.; Zhang, Y. Ecological Vulnerability Assessment for Ecological Conservation and Environmental Management. J. Environ. Manag. 2018, 206, 1115–1125. [Google Scholar] [CrossRef]
- Wang, L.; Chen, C.; Xie, F.; Hu, Z.; Zhang, Z.; Chen, H.; He, X.; Chu, Y. Estimation of the Value of Regional Ecosystem Services of an Archipelago Using Satellite Remote Sensing Technology: A Case Study of Zhoushan Archipelago, China. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102616. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, J.; Zhou, C.; Li, Y. An Ecological Assessment Process Based on Integrated Remote Sensing Model: A Case from Kaikukang-Walagan District, Greater Khingan Range, China. Ecol. Inform. 2022, 70, 101699. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, X.; Yan, D.; Liu, Z.; Zhou, Y. Analysis of Remotely-Sensed Ecological Indexes’ Influence on Urban Thermal Environment Dynamic Using an Integrated Ecological Index: A Case Study of Xi’an, China. Int. J. Remote Sens. 2019, 40, 3421–3447. [Google Scholar] [CrossRef]
- Ansari, N.; Rukhsana; Pramanik, M.; Alkhuraiji, W.S.; Zhran, M. An Assessment of the Seasonally Dependent Biophysical Mechanism and Dynamic Land Use Change: A Research Effort from Emerging Urban Agglomeration of West Bengal. Results Eng. 2024, 24, 103291. [Google Scholar] [CrossRef]
- Sun, C.; Li, J.; Liu, Y.; Cao, L.; Zheng, J.; Yang, Z.; Ye, J.; Li, Y. Ecological Quality Assessment and Monitoring Using a Time-Series Remote Sensing-Based Ecological Index (Ts-RSEI). GIScience Remote Sens. 2022, 59, 1793–1816. [Google Scholar] [CrossRef]
- Liao, W.; Jiang, W. Evaluation of the Spatiotemporal Variations in the Eco-Environmental Quality in China Based on the Remote Sensing Ecological Index. Remote Sens. 2020, 12, 2462. [Google Scholar] [CrossRef]
- Halder, S.; Bose, S. Comparative Study on Remote Sensing-Based Indices for Urban Ecology Assessment: A Case Study of 12 Urban Centers in the Metropolitan Area of Eastern India. J. Earth Syst. Sci. 2024, 133, 100. [Google Scholar] [CrossRef]
- Jia, H.; Yan, C.; Xing, X. Evaluation of Eco-Environmental Quality in Qaidam Basin Based on the Ecological Index (MRSEI) and GEE. Remote Sens. 2021, 13, 4543. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Yang, G.; Sun, W.; Song, Y. Mapping of Ecological Environment Based on Google Earth Engine Cloud Computing Platform and Landsat Long-Term Data: A Case Study of the Zhoushan Archipelago. Remote Sens. 2023, 15, 4072. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, L.; Fu, M.; Huang, N. An Integrated System for Rapid Assessment of Ecological Quality Based on Remote Sensing Data. Environ. Sci. Pollut. Res. 2020, 27, 32779–32795. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Y.; Wu, S.; Yang, C. Analyzing Ecological Environment Change and Associated Driving Factors in China Based on NDVI Time Series Data. Ecol. Indic. 2021, 129, 107933. [Google Scholar] [CrossRef]
- Zhang, X.; Hong, L. Monitoring and Evaluating Ecological Environment Quality Change Based on RSEI Model in the Golden Quadrangle Region in the Border of China, Myanmar, Thailand and Laos. In Proceedings of the 2022 International Conference on Information System, Computing and Educational Technology (ICISCET), Montreal, QC, Canada, 23–25 May 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 195–199. [Google Scholar]
- Yang, P.; Zhang, X.; Hua, L. Analysis of Urban Ecological Quality Spatial Patterns and Influencing Factors Based on Remote Sensing Ecological Indices and Multi-Scale Geographically Weighted Regression. Sustainability 2023, 15, 7216. [Google Scholar] [CrossRef]
- Maity, S.; Das, S.; Pattanayak, J.M.; Bera, B.; Shit, P.K. Assessment of Ecological Environment Quality in Kolkata Urban Agglomeration, India. Urban Ecosyst. 2022, 25, 1137–1154. [Google Scholar] [CrossRef]
No. | Acquisition Date | Satellite | GEE Product Identifier | Cloud Cover |
---|---|---|---|---|
1 | January, 1993 | Landsat 5 TM | LANDSAT/LT05/C02/T1_TOA | <1% |
2 | January, 2003 | Landsat 5 TM | LANDSAT/LT05/C02/T1_TOA | <1% |
3 | January, 2013 | Landsat 8 OLI/TIRS | LANDSAT/LC08/C02/T1_TOA | <1% |
4 | January, 2023 | Landsat 8 OLI/TIRS | LANDSAT/LC08/C02/T1_TOA | <1% |
Data Range | Class Name |
---|---|
0–0.20 | Very Low |
0.20–0.40 | Low |
0.40–0.60 | Moderate |
0.60–0.80 | High |
0.80–1.0 | Very High |
Year | Indicators | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|---|
1993 | NDVI | 0.286 | −0.655 | 0.680 | −0.163 |
LSM | 0.562 | −0.458 | −0.687 | −0.038 | |
NDBSI | −0.567 | −0.298 | −0.224 | −0.735 | |
LST | 0.530 | 0.521 | 0.122 | −0.658 | |
Eigenvalue | 0.026 | 0.012 | 0.003 | 0.000 | |
Percent eigenvalue | 62.00% | 29.95% | 7.20% | 0.85% | |
2003 | NDVI | −0.212 | −0.957 | −0.137 | −0.143 |
LSM | 0.341 | 0.052 | −0.938 | 0.046 | |
NDBSI | 0.809 | −0.141 | 0.262 | −0.507 | |
LST | −0.429 | 0.248 | −0.184 | −0.849 | |
Eigenvalue | 0.018 | 0.008 | 0.002 | 0.000 | |
Percent eigenvalue | 62.69% | 29.76% | 6.21% | 1.35% | |
2013 | NDVI | −0.456 | −0.853 | −0.097 | −0.237 |
LSM | 0.601 | −0.241 | −0.761 | 0.021 | |
NDBSI | 0.646 | −0.316 | 0.601 | −0.348 | |
LST | −0.115 | 0.339 | −0.223 | −0.907 | |
Eigenvalue | 0.020 | 0.010 | 0.004 | 0.000 | |
Percent eigenvalue | 58.53 | 30.46 | 10.40 | 0.61 | |
2023 | NDVI | 0.488 | 0.756 | 0.266 | −0.344 |
LSM | −0.584 | 0.091 | 0.806 | −0.006 | |
NDBSI | −0.640 | 0.415 | −0.513 | −0.393 | |
LST | 0.102 | −0.498 | 0.124 | −0.852 | |
Eigenvalue | 0.025 | 0.009 | 0.004 | 0.000 | |
Percent eigenvalue | 66.06% | 23.13% | 9.82% | 0.99% |
Class | 1993 | 2003 | 2013 | 2023 | ||||
---|---|---|---|---|---|---|---|---|
Area (km2) | Percentage | Area (km2) | Percentage | Area (km2) | Percentage | Area (km2) | Percentage | |
Very low | 0.26 | 0.08 | 0.66 | 0.20 | 1.92 | 0.58 | 5.56 | 1.70 |
Low | 37.85 | 11.53 | 58.64 | 17.87 | 85.63 | 26.09 | 161.63 | 49.25 |
Moderate | 162.15 | 49.41 | 158.42 | 48.28 | 150.51 | 45.87 | 111.64 | 34.02 |
High | 113.17 | 34.49 | 102.04 | 31.10 | 86.17 | 26.26 | 46.77 | 14.25 |
Very high | 14.72 | 4.49 | 8.40 | 2.56 | 3.93 | 1.20 | 2.55 | 0.78 |
Total | 328.15 | 100 | 328.15 | 100 | 328.15 | 100 | 328.15 | 100 |
Year | LSM | LST | NDBSI | NDVI |
---|---|---|---|---|
1993 | −0.82 | −0.82 | 0.92 | −0.49 |
2003 | 0.89 | −0.75 | −0.98 | 0.31 |
2013 | 0.38 | −0.85 | −0.88 | 0.59 |
2023 | 0.31 | −0.88 | −0.90 | 0.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasan, M.M.; Ferdous, M.T.; Talha, M.; Mojumder, P.; Roy, S.K.; Zim, M.N.F.; Akter, M.M.; Nasher, N.M.R.; Hasher, F.F.B.; Boltižiar, M.; et al. Analyzing Ecological Environmental Quality Trends in Dhaka Through Remote Sensing Based Ecological Index (RSEI). Land 2025, 14, 1258. https://doi.org/10.3390/land14061258
Hasan MM, Ferdous MT, Talha M, Mojumder P, Roy SK, Zim MNF, Akter MM, Nasher NMR, Hasher FFB, Boltižiar M, et al. Analyzing Ecological Environmental Quality Trends in Dhaka Through Remote Sensing Based Ecological Index (RSEI). Land. 2025; 14(6):1258. https://doi.org/10.3390/land14061258
Chicago/Turabian StyleHasan, Md. Mahmudul, Md Tasim Ferdous, Md. Talha, Pratik Mojumder, Sujit Kumar Roy, Md. Nasim Fardous Zim, Most. Mitu Akter, N M Refat Nasher, Fahdah Falah Ben Hasher, Martin Boltižiar, and et al. 2025. "Analyzing Ecological Environmental Quality Trends in Dhaka Through Remote Sensing Based Ecological Index (RSEI)" Land 14, no. 6: 1258. https://doi.org/10.3390/land14061258
APA StyleHasan, M. M., Ferdous, M. T., Talha, M., Mojumder, P., Roy, S. K., Zim, M. N. F., Akter, M. M., Nasher, N. M. R., Hasher, F. F. B., Boltižiar, M., & Zhran, M. (2025). Analyzing Ecological Environmental Quality Trends in Dhaka Through Remote Sensing Based Ecological Index (RSEI). Land, 14(6), 1258. https://doi.org/10.3390/land14061258