Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = Lagrangian multiphase model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2731 KB  
Article
Coupled CFD-DEM Numerical Simulation of Hydrothermal Liquefaction (HTL) of Sludge Flocs to Biocrude Oil in a Continuous Stirred Tank Reactor (CSTR) in a Scale-Up Study
by Artur Wodołażski
Energies 2025, 18(17), 4557; https://doi.org/10.3390/en18174557 - 28 Aug 2025
Viewed by 763
Abstract
A multiphase model of hydrothermal liquefaction (HTL) using the computational fluid dynamics coupling discrete element method (CFD-DEM) is used to simulate biocrude oil production from sludge flocs in a continuous stirred tank reactor (CSTR). Additionally, the influence of the agitator speed and the [...] Read more.
A multiphase model of hydrothermal liquefaction (HTL) using the computational fluid dynamics coupling discrete element method (CFD-DEM) is used to simulate biocrude oil production from sludge flocs in a continuous stirred tank reactor (CSTR). Additionally, the influence of the agitator speed and the slurry flow rate on dynamic biocrude oil production is investigated through full transient CFD analysis in a scaled-up CSTR study. The kinetics of the HTL mechanism as a function of temperature, pressure, and residence time distribution were employed in the model through a user-defined function (UDF). The multiphysics simulation of the HTL process in a stirred tank reactor using the Lagrangian–Eulerian (LE) approach, along with a standard k-ε turbulence model, integrated HTL kinetics. The simulation accounts for particle–fluid interactions by coupling CFD-derived hydrodynamic fields with discrete particle motion, enabling prediction of individual particle trajectories based on drag, buoyancy, and interphase momentum exchange. The three-phase flow using a compressible non-ideal gas model and multiphase interaction as design requirements increased process efficiency in high-pressure and high-temperature model conditions. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Figure 1

16 pages, 3729 KB  
Article
Throttling Effect and Erosion Research of Ultra-High-Pressure Grease Nozzles
by Shaobo Feng, Zhixiong Xu, Hongtao Liu, Bao Zhang, Fumin Gao, Hongtao Jing and Pan Yang
Processes 2025, 13(8), 2555; https://doi.org/10.3390/pr13082555 - 13 Aug 2025
Viewed by 424
Abstract
To accommodate the extreme thermodynamic effects and erosion damage in throttling equipment for ultra-high-pressure natural gas wells (175 MPa), a coupled multiphase flow erosion numerical model for nozzles was established. This model incorporates a real gas compressibility factor correction and is based on [...] Read more.
To accommodate the extreme thermodynamic effects and erosion damage in throttling equipment for ultra-high-pressure natural gas wells (175 MPa), a coupled multiphase flow erosion numerical model for nozzles was established. This model incorporates a real gas compressibility factor correction and is based on the renormalized k-ε RNG (Renormalization Group k-epsilon model, a turbulence model that simulates the effects of vortices and rotation in the mean flow by modifying turbulent viscosity) turbulence model and the Discrete Phase Model (DPM, a multiphase flow model based on the Eulerian–Lagrangian framework). The study revealed that the nozzle flow characteristics follow an equal-percentage nonlinear regulation pattern. Choked flow occurs at the throttling orifice throat due to supersonic velocity (Ma ≈ 3.5), resulting in a mass flow rate governed solely by the upstream total pressure. The Joule–Thomson effect induces a drastic temperature drop of 273 K. The outlet temperature drops below the critical temperature for methane hydrate phase transition, thereby presenting a substantial risk of hydrate formation and ice blockage in the downstream outlet segment. Erosion analysis indicates that particles accumulate in the 180° backside region of the cage sleeve under the influence of secondary flow. At a 30% opening, micro-jet impact causes the maximum erosion rate to surge to 3.47 kg/(m2·s), while a minimum erosion rate is observed at a 50% opening. Across all opening levels, the maximum erosion rate consistently concentrates on the oblique section of the plunger front. Results demonstrate that removing the front chamfer of the plunger effectively improves the internal erosion profile. These findings provide a theoretical basis for the reliability design and risk prevention of surface equipment in deep ultra-high-pressure gas wells. Full article
(This article belongs to the Special Issue Multiphase Flow Process and Separation Technology)
Show Figures

Figure 1

15 pages, 2982 KB  
Article
CFD-Based Lagrangian Multiphase Analysis of Particulate Matter Transport in an Operating Room Environment
by Ahmet Çoşgun and Onur Gündüztepe
Processes 2025, 13(8), 2507; https://doi.org/10.3390/pr13082507 - 8 Aug 2025
Viewed by 668
Abstract
Maintaining air quality in operating rooms is critical for infection control and patient safety. Particulate matter, originating from surgical instruments, personnel, and external sources, is influenced by airflow patterns and ventilation efficiency. This study employs Computational Fluid Dynamics (CFD) simulations using Simcenter STAR-CCM+ [...] Read more.
Maintaining air quality in operating rooms is critical for infection control and patient safety. Particulate matter, originating from surgical instruments, personnel, and external sources, is influenced by airflow patterns and ventilation efficiency. This study employs Computational Fluid Dynamics (CFD) simulations using Simcenter STAR-CCM+ 2410 to analyze airflow and particulate behavior in a surgical-grade operating room. A steady-state solver with the kε turbulence model was used to replicate airflow, while the Lagrangian multiphase method simulated particle trajectories (0.5 µm, 1 µm, and 5 µm). The simulation results demonstrated close agreement with the experimental data, with average errors of 17.3%, 17.7%, and 39.7% for 0.5 µm, 1 µm, and 5 µm particles, respectively. These error margins are considered acceptable given the device’s 10% measurement sensitivity and the observed experimental asymmetry—attributable to equipment placement—which resulted in variations of 17.2%, 18.0%, and 26.5% at corresponding symmetric points. Collectively, these findings support the validity of the simulation model in accurately predicting particulate transport and deposition within the operating room environment. Findings confirm that optimizing airflow can achieve ISO Class 7 cleanroom standards and highlight the potential for future studies incorporating dynamic elements, such as personnel movement and equipment placement, to further improve contamination control in critical environments. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

23 pages, 17020 KB  
Article
An Unresolved SPH-DEM Coupling Framework for Bubble–Particle Interactions in Dense Multiphase Systems
by Ying Tian, Guanhua An, Xiangwei Dong, Rui Chen, Zhen Guo, Xuhe Zheng and Qiang Zhang
Processes 2025, 13(5), 1291; https://doi.org/10.3390/pr13051291 - 23 Apr 2025
Cited by 1 | Viewed by 1027
Abstract
This study presents a novel unresolved SPH-DEM coupling framework to investigate the complex interactions between rising gas bubbles and sinking solid particles in multiphase systems. Traditional numerical methods often struggle with large deformations, multiphase interfaces, and computational efficiency when simulating dense particle-laden flows. [...] Read more.
This study presents a novel unresolved SPH-DEM coupling framework to investigate the complex interactions between rising gas bubbles and sinking solid particles in multiphase systems. Traditional numerical methods often struggle with large deformations, multiphase interfaces, and computational efficiency when simulating dense particle-laden flows. To address these challenges, the proposed model leverages SPH’s Lagrangian nature to resolve fluid motion and bubble dynamics, while the DEM captures particle–particle and particle–bubble interactions. An unresolved coupling strategy is introduced to bridge the scales between fluid and particle phases, enabling efficient simulations of large-scale systems with discrete bubbles/particles. The model is validated against benchmark cases, including single bubbles rising and single particle’s sedimentation. Simulation studies reveal the effects of particle/bubble number and initial distance on phase interaction patterns and clustering behaviors. Results further illustrate the model’s capability to capture complex phenomena such as particle entrainment by bubble wakes and hindered settling in dense suspensions. The framework offers a robust and efficient tool for optimizing industrial processes like mineral flotation, where bubble–particle dynamics play a critical role. Full article
Show Figures

Figure 1

28 pages, 8761 KB  
Article
Computational Fluid Dynamics Modelling of a Laboratory Spray Dry Scrubber for SO2 Removal in Flue Gas Desulphurisation—Effect of Drying Models
by Letsabisa Lerotholi, Raymond C. Everson, Burgert B. Hattingh, Lawrence Koech, Ignus Le Roux, Hein W. J. P. Neomagus and Hilary L. Rutto
Processes 2024, 12(9), 1862; https://doi.org/10.3390/pr12091862 - 31 Aug 2024
Cited by 1 | Viewed by 1778
Abstract
Spray dry scrubbing is widely used for SO2 abatement, but high removal efficiencies are required for economical operation. Whereas SO2 removal dependence on the drying rate has been investigated, available modelling work has not addressed the impact of selected drying models [...] Read more.
Spray dry scrubbing is widely used for SO2 abatement, but high removal efficiencies are required for economical operation. Whereas SO2 removal dependence on the drying rate has been investigated, available modelling work has not addressed the impact of selected drying models on the removal efficiency; instead, a single drying model is often assumed. In the present work, computational fluid dynamics is used to numerically model the SO2 removal in a laboratory-scale spray dry scrubber. The Euler–Lagrangian framework is used to simulate the multiphase interaction and two drying models are used: the widely used classical D2-law model and the mechanistic model. In addressing shortcomings from previous works, this study also provides a comprehensive model development and robust model validation with quantifiable metrics for goodness-of-fit, including R2. Also presented are key parameters associated with SO2-removal efficiency, including the exit product moisture content and droplet dynamics. The mechanistic model gave a better representation of the SO2-removal efficiency. The latter was found to be dependent on the inlet temperature, the calcium-to-sulphur and liquid-to-gas (L/G) ratios, with a high L/G ratio having the most significant impact on the removal efficiency, although resulting in a higher product outlet moisture content. Full article
(This article belongs to the Section Separation Processes)
Show Figures

Graphical abstract

26 pages, 7166 KB  
Article
Biomass Moving Bed Combustion Analysis via Two-Way Coupling of Solid–Fluid Interactions Using Discrete Element Method and Computational Fluid Dynamics Method
by Izabela Wardach-Świȩcicka and Dariusz Kardaś
Energies 2024, 17(14), 3571; https://doi.org/10.3390/en17143571 - 20 Jul 2024
Cited by 2 | Viewed by 1500
Abstract
Nowadays, almost all countries in the world are intensifying their search for locally available energy sources to become independent of external supplies. The production of alternative fuels from biomass and waste by thermal treatment or direct use in the combustion process is still [...] Read more.
Nowadays, almost all countries in the world are intensifying their search for locally available energy sources to become independent of external supplies. The production of alternative fuels from biomass and waste by thermal treatment or direct use in the combustion process is still the simplest method for fast and cheap heat production. However, the different characteristics of these fuels can cause problems in the operation of the plants, resulting in increased air pollution. Therefore, the analysis of the thermal treatment of solid fuels is still an important issue from a practical point of view. This work aimed to study biomass combustion in a small-scale reactor using the in-house Extended DEM (XDEM) method based on mixed Lagrangian–Eulerian approaches. This was provided by a novel, independently developed coupling computational interface. This interface allows for a seamless integration between CFD and DEM, improving computational efficiency and accuracy. In addition, significant advances have been made in the underlying physical models. Within the DEM framework, each particle undergoes the thermochemical processes, allowing for the prediction of its shape and structural changes during heating. Together, these changes contribute to a more robust and reliable simulation tool capable of providing detailed insights into complex multi-phase flows and granular material behavior. Numerical results were obtained for a non-typical geometry to check the influence of the walls on the distribution of the parameters in the reactor. The results show that XDEM is a very good tool for predicting the phenomena during the thermal treatment of solid fuels. In particular, it provides information about all the moving particles undergoing chemical reactions, which is very difficult to obtain from measurements. Full article
Show Figures

Figure 1

23 pages, 12924 KB  
Article
Optimization Design of a Recovery System for an Automatic Spray Robot and the Simulation of VOC Recovery
by Shuo Huang, Weiqi Liu, Xiaodi Wu and Kai Wang
J. Mar. Sci. Eng. 2024, 12(4), 552; https://doi.org/10.3390/jmse12040552 - 26 Mar 2024
Viewed by 1704
Abstract
A recovery system for an automatic spraying robot to conduct the spraying operation outdoors for ships is designed in this paper, which addresses the pollution problem of volatile organic compounds (VOCs) by employing the vacuum recovery method. The recovery system consists of the [...] Read more.
A recovery system for an automatic spraying robot to conduct the spraying operation outdoors for ships is designed in this paper, which addresses the pollution problem of volatile organic compounds (VOCs) by employing the vacuum recovery method. The recovery system consists of the recovery hood, nozzle, and vacuum tubes. The recovery hood is the critical part of the recovery system and is designed with internal and external cavities, as well as four vacuum tubes for recycling VOCs. Based on the computational fluid dynamics (CFD) method, simulation in the time domain of the gas–liquid interaction, droplet evaporation, and wall impingement is conducted. To identify the better recovery performance, three vacuum recovery-hood schemes are designed, and their performance is compared. The numerical results show that the distance between the vacuum tubes and the intake gap has a significant impact on the VOCs’ recovery effect. One of the main reasons for the escape of VOCs is that the swirling airflows in the baffle plane act as vortices which may capture VOCs, causing the accumulation of VOCs beyond the capacity of the external cavity. Dividing the external cavity into four chambers with deflectors (with each chamber equipped with one vacuum tube only) can significantly reduce the leakage rate of the recovery system. The recovery system provides a theoretical solution for implementing the prevention and control of VOCs in shipyards as soon as possible. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

19 pages, 2897 KB  
Article
Comparative Study of Droplet Diameter Distribution: Insights from Experimental Imaging and Computational Fluid Dynamics Simulations
by Kasimhussen Vhora, Gábor Janiga, Heike Lorenz, Andreas Seidel-Morgenstern, Maria F. Gutierrez and Peter Schulze
Appl. Sci. 2024, 14(5), 1824; https://doi.org/10.3390/app14051824 - 23 Feb 2024
Cited by 7 | Viewed by 3615
Abstract
The interfacial area between two phases plays a crucial role in the mass transfer rate of gas–liquid processes such as absorption. In this context, the droplet size distribution within the flow field of a droplet-based absorber significantly affects the surface area, thereby influencing [...] Read more.
The interfacial area between two phases plays a crucial role in the mass transfer rate of gas–liquid processes such as absorption. In this context, the droplet size distribution within the flow field of a droplet-based absorber significantly affects the surface area, thereby influencing the absorption efficiency. This study focuses on developing a computational fluid dynamics (CFD) model to predict the size and distribution of water droplets free-falling in a transparent square tube. This model serves as a digital twin of our experimental setup, enabling a comparative analysis of experimental and computational results. For the accurate measurement of droplet size and distribution, specialized experimental equipment was developed, and a high-speed camera along with Fiji software was used for the capturing and processing of droplet images. At the point of injection and at two different heights, the sizes and distributions of falling droplets were measured using this setup. The interaction between the liquid water droplets and the gas phase within the square tube was modeled using the Eulerian–Lagrangian (E-L) framework in the STAR-CCM+ software. The E-L multiphase CFD model yielded approximations with errors ranging from 11 to 27% for various average mean diameters, including d10, d20, d30, and d32, of the liquid droplets at two distinct heights (200 mm and 400 mm) for both nozzle plates. This comprehensive approach provides valuable insights into the dynamics of droplet-based absorption processes. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Graphical abstract

9 pages, 224 KB  
Proceeding Paper
Recent Advances in Modeling of Particle Dispersion
by Areanne Buan, Jayriz Amparan, Marianne Natividad, Rhealyn Ordes, Meryll Gene Sierra and Edgar Clyde R. Lopez
Eng. Proc. 2023, 56(1), 332; https://doi.org/10.3390/ASEC2023-16262 - 15 Nov 2023
Cited by 2 | Viewed by 2218
Abstract
Recent advancements in particle dispersion modeling have significantly enhanced our understanding and capabilities in predicting and analyzing the behavior of particulate matter in various environments. However, this field still confronts several research gaps and challenges that span across scientific inquiry and technological applications. [...] Read more.
Recent advancements in particle dispersion modeling have significantly enhanced our understanding and capabilities in predicting and analyzing the behavior of particulate matter in various environments. However, this field still confronts several research gaps and challenges that span across scientific inquiry and technological applications. This paper reviews the current state of particle dispersion modeling, focusing on various models such as Lagrangian, Eulerian, Gaussian, and Box models, each with unique strengths and limitations. It highlights the importance of accurately simulating multi-phase interactions, addressing computational intensity for practical applications, and considering environmental and public health implications. Furthermore, the integration of emerging technologies like machine learning (ML) and artificial intelligence (AI) presents promising avenues for future advancements. These technologies could potentially enhance model accuracy, reduce computational demands, and enable handling complex, multi-variable scenarios. The paper also emphasizes the need for real-time monitoring and predictive capabilities in particle dispersion models, which are crucial for environmental monitoring, industrial safety, and public health preparedness. Full article
(This article belongs to the Proceedings of The 4th International Electronic Conference on Applied Sciences)
25 pages, 7695 KB  
Article
On the Ability of Positron Emission Particle Tracking (PEPT) to Track Turbulent Flow Paths with Monte Carlo Simulations in GATE
by Rayhaan Perin, Katie Cole, Michael R. van Heerden, Andy Buffler, Yi-Yu Lin, Jiahao Zhang, Pablo R. Brito-Parada, Jonathan Shock and Stephen W. Peterson
Appl. Sci. 2023, 13(11), 6690; https://doi.org/10.3390/app13116690 - 31 May 2023
Cited by 3 | Viewed by 2768
Abstract
Positron emission particle tracking (PEPT) has offered important insights into the internal dynamics of multiphase flows. High precision and frequency measurements of the location of the tracer particle are required to resolve individual eddies at the millimetre scale or smaller. To explore the [...] Read more.
Positron emission particle tracking (PEPT) has offered important insights into the internal dynamics of multiphase flows. High precision and frequency measurements of the location of the tracer particle are required to resolve individual eddies at the millimetre scale or smaller. To explore the potential of PEPT to perform these measurements, a model was developed of the Siemens ECAT “EXACT3D” HR++ positron emission tomography (PET) scanner at the PEPT Cape Town facility in South Africa with the software Geant4 Application for Tomographic Emission (GATE) and was used to generate Lagrangian tracks from simulations of moving tracer particles. The model was validated with measurements from both experiment and simulation and was extended to two virtual scenarios inspired by turbulent flows. The location data from the simulation accurately captured linear portions of an oscillating path up to high speeds of 25 m s1; however, tracking tended to undercut the turning points due to the high tracer acceleration. For a particle moving on a spiral path of decreasing radius, the location data tracked the path above a radius of 2.0 mm with an uncertainty equivalent to the radius of the tracer particle, 300 μm. Improvements to the measurement are required to track sub-millimetre flow structures, such as the application of PET scanners with higher spatial resolution and upgrades to the sampling processes used in location algorithms. Full article
(This article belongs to the Special Issue Advances in the Measurement and Application of Particle Tracking)
Show Figures

Figure 1

17 pages, 12429 KB  
Article
Study on Internal Flow Characteristics and Abrasive Wear of Pelton Turbine in Sand Laden Water
by Yu Huang, Fangxiong Deng, Huiming Deng, Qiwei Qing, Mengjun Qin, Jitao Liu, Zhishun Yu, Jiayang Pang and Xiaobing Liu
Processes 2023, 11(5), 1570; https://doi.org/10.3390/pr11051570 - 21 May 2023
Cited by 15 | Viewed by 2556
Abstract
When a Pelton turbine operates in sand laden water, the abrasive wear of its overflow components by high-speed jets is serious. Based on the VOF (volume of fluid) multiphase flow model, the SST (shear stress transfer) k-ω turbulence model, the particle [...] Read more.
When a Pelton turbine operates in sand laden water, the abrasive wear of its overflow components by high-speed jets is serious. Based on the VOF (volume of fluid) multiphase flow model, the SST (shear stress transfer) k-ω turbulence model, the particle motion Lagrangian model, the generic wear model, and the SIMPLEC (Semi-Implicit Method for Pressure Linked Equations Consistent) algorithm, the liquid–air–solid three-phase flow in the key overflow components of a Pelton turbine were simulated, the abrasive wear was predicted, and the internal sand-water flow characteristics and the abrasive wear of the overflow components were analyzed. The results show that the trailing edge at the root of the runner bucket, the leading face of the bucket near the root, the notch, and the splitter are severely worn. The abrasive wear of the splitter and the notch is more severe than that of the leading face of the bucket. The wear rate from the splitter to the trailing edge increases first and then decreases. The wear pattern of the needle tip is mainly “dotted”, while that of the nozzle opening is “flaky”, and the abrasive wear of the nozzle opening is more severe than that of the needle. The predicted results are consistent with the actual conditions at the site of the power station. This study provides a technical method for the prediction of abrasive wear of the Pelton turbine and a technical basis for the operation and maintenance of the power station. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 60408 KB  
Article
Secondary Motion of Non-Spherical Particles in Gas Solid Flows
by Cihan Ates, Joel Arweiler, Habeb Hadad, Rainer Koch and Hans-Jörg Bauer
Processes 2023, 11(5), 1369; https://doi.org/10.3390/pr11051369 - 30 Apr 2023
Cited by 3 | Viewed by 2306
Abstract
Objective of this study is to investigate the effect of secondary motion of particles in multiphase gas-solid flows parametrically and test the relative impacts of particle shape and orientation information on particle distribution. For that purpose, predictive accuracies of simplified drag coefficient models [...] Read more.
Objective of this study is to investigate the effect of secondary motion of particles in multiphase gas-solid flows parametrically and test the relative impacts of particle shape and orientation information on particle distribution. For that purpose, predictive accuracies of simplified drag coefficient models are assessed for the conditions relevant to a wood recovery plant operating at dilute flow regime. After demonstrating the strong impact of the shape and orientation information on the force balance for single particles, we compared the steady state Eulerian-Lagrangian simulation results for particle volume fractions, residence times and particle diameter distributions within the chamber for different (i) superficial gas velocities (5 m/s, 7.5 m/s), (ii) orientation tendencies and (iii) particle shapes. Transient simulations are performed until the system reaches steady state conditions by monitoring the mass flow rates of the particulate phases leaving the chamber. The secondary motion of non-spherical particles is represented by stochastic sampling from the available experimental data. Analysis of the force balance on single particles revealed log-scale variations if the orientation of the particles with respect to flow fluctuates. Variations in the single particle force balances are found to be still visible in the CFD analysis, where the secondary motion of particles drastically changed the particle distribution in the chamber. The native non-spherical model which only accounts for the shape correction was found to over-predict the entrainment, leading to a significantly different particle volume fraction and diameter distributions. Spherical particle assumption also caused significant errors in the particle distribution, which increases as aspect ratio of the cylindrical particle diverges from one. Results show that particle orientation statistics are extremely important to capture the particle mixing and segregation patterns at dilute regime, which cannot be captured with such simplifying assumptions. Full article
(This article belongs to the Special Issue Computational and Experimental Study of Granulation in Fluidized Beds)
Show Figures

Figure 1

41 pages, 9201 KB  
Review
Research Progress of SPH Simulations for Complex Multiphase Flows in Ocean Engineering
by Xiang-Shan Guan, Peng-Nan Sun, Hong-Guan Lyu, Nian-Nian Liu, Yu-Xiang Peng, Xiao-Ting Huang and Yang Xu
Energies 2022, 15(23), 9000; https://doi.org/10.3390/en15239000 - 28 Nov 2022
Cited by 19 | Viewed by 4608
Abstract
Complex multiphase flow problems in ocean engineering have long been challenging topics. Problems such as large deformations at interfaces, multi-media interfaces, and multiple physical processes are difficult to simulate. Mesh-based algorithms could have limitations in dealing with multiphase interface capture and large interface [...] Read more.
Complex multiphase flow problems in ocean engineering have long been challenging topics. Problems such as large deformations at interfaces, multi-media interfaces, and multiple physical processes are difficult to simulate. Mesh-based algorithms could have limitations in dealing with multiphase interface capture and large interface deformations. On the contrary, the Smoothed Particle Hydrodynamics (SPH) method, as a Lagrangian meshless particle method, has some merit and flexibility in capturing multiphase interfaces and dealing with large boundary deformations. In recent years, with the improvement of SPH theory and numerical models, the SPH method has made significant advances and breakthroughs in terms of theoretical completeness and computational stability, which starts to be widely used in ocean engineering problems, including multiphase flows under atmospheric pressure, high-pressure multiphase flows, phase-change multiphase flows, granular multiphase flows and so on. In this paper, we review the progress of SPH theory and models in multiphase flow simulations, discussing the problems and challenges faced by the method, prospecting to future research works, and aiming to provide a reference for subsequent research. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

18 pages, 6767 KB  
Article
Numerical and Experimental Spray Analysis of Castor and Jatropha Biodiesel under Non-Evaporating Conditions
by Muteeb ul Haq, Ali Turab Jafry, Muhammad Salman Abbasi, Muhammad Jawad, Saad Ahmad, Taqi Ahmad Cheema and Naseem Abbas
Energies 2022, 15(20), 7808; https://doi.org/10.3390/en15207808 - 21 Oct 2022
Cited by 13 | Viewed by 2432
Abstract
Fuel spray characteristics influence combustion, which in turn has a direct impact on engine performance and emissions. Recently, there has been an increasing interest in novel castor oil biodiesel. However, few investigations have been performed that combine both numerical and experimental biodiesel spray [...] Read more.
Fuel spray characteristics influence combustion, which in turn has a direct impact on engine performance and emissions. Recently, there has been an increasing interest in novel castor oil biodiesel. However, few investigations have been performed that combine both numerical and experimental biodiesel spray analyses. Hence, in this paper, we aim to explore the spray behavior of castor and jatropha biodiesel by employing numerical and experimental methods under non-evaporating, varying injection, and ambient conditions. The experimental study was carried out in a control volume vessel (CVV) at high injection and ambient pressures. The fuel atomization was modelled in ANSYS Fluent using a Lagrangian/Eulerian multiphase formulation. The results revealed that the Kelvin–Helmholtz and Rayleigh–Taylor (KHRT) model coupled with the Taylor Analogy Breakup (TAB) model provide a better estimation of the penetration length (PL) and spray cone angle (SCA) compared to the KH and TAB models. On average, Jatropha biodiesel (JB-20) and castor biodiesel (CB-20) showed a 10% to 22% longer PL, 8% to 10.6% narrower spray cone angles, and 3% to 6% less spray area, respectively, compared to diesel. The numerical predictions showed that JB-20 and CB-20 had an around 24.7–48.3% larger Sauter mean diameter (SMD) and a 38.6–73.3% average mean diameter (AMD). Full article
Show Figures

Figure 1

15 pages, 4600 KB  
Article
Vulnerability Analysis of Structural Systems under Extreme Flood Events
by Fabrizio Greco and Paolo Lonetti
J. Mar. Sci. Eng. 2022, 10(8), 1121; https://doi.org/10.3390/jmse10081121 - 15 Aug 2022
Cited by 10 | Viewed by 2262
Abstract
Vulnerability analyses of coastal or inland bridges in terms of flood actions and structural and fluid flow characteristics are carried out. In particular, a numerical model based on a two-phase fluid flow is implemented for the multiphase fluid system, whereas a three-dimensional formulation [...] Read more.
Vulnerability analyses of coastal or inland bridges in terms of flood actions and structural and fluid flow characteristics are carried out. In particular, a numerical model based on a two-phase fluid flow is implemented for the multiphase fluid system, whereas a three-dimensional formulation based on shell/volume finite elements is adopted for the structure. The governing equations can simulate the interaction between fluids and the structures, by using the Arbitrary Lagrangian–Eulerian (ALE) strategy. The results of the hydrodynamic forces, bridge displacements and dynamic amplification factors (DAFs) show that the existing formulas, available in the literature or in structural design codes, do not accurately predict the maximum design effects. For the investigated cases, the DAFs may vary from 1 to 4.5. The worst scenarios are observed for the upload vertical direction. Finally, the performance of the protection fairing system is investigated. The results show that such devices are able to efficiently reduce the effects of the wave load in terms of the applied hydraulic forces on the structure and bridge deformability, in particular, with 40% more accuracy than the unprotected configuration. Full article
Show Figures

Figure 1

Back to TopTop