Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = LEO mega constellation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1408 KiB  
Proceeding Paper
Integrity Monitoring of GNSS Constellations with Only LEO-PNT Satellites
by Carlos Catalán Catalán, Luis García Iglesias and Andrés Juez Muñoz
Eng. Proc. 2025, 88(1), 62; https://doi.org/10.3390/engproc2025088062 - 29 May 2025
Viewed by 441
Abstract
This paper explores the usage of LEO-PNT (Positioning, Navigation, and Timing) for providing navigation integrity to GNSS (Global Navigation Satellite System) constellations. LEO mega-constellations, which are positioned between GNSSs and users, offer closer-to-the user geometry, improving performance, reducing the time to alarm (TTA) [...] Read more.
This paper explores the usage of LEO-PNT (Positioning, Navigation, and Timing) for providing navigation integrity to GNSS (Global Navigation Satellite System) constellations. LEO mega-constellations, which are positioned between GNSSs and users, offer closer-to-the user geometry, improving performance, reducing the time to alarm (TTA) and enabling integrity monitoring without complex ground segments of any sort. The aim is to use future LEO mega-constellations as integrity monitors for a forthcoming European Global Navigation Satellite System (EGNSS) specifically focused on automotive users, which has minimal onboard satellite capabilities and no ground involvement. This plan builds on earlier studies, anticipating the performance of the upcoming LEO-PNT In-Orbit Demonstration. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

22 pages, 4694 KiB  
Article
Research on Time-Sensitive Service Transmission Routing and Scheduling Strategies Based on Optical Interconnect Low Earth Orbit Mega-Constellations
by Bingyao Cao, Xiwen Fan, Yiming Hong and Qianqian Zhao
Appl. Sci. 2025, 15(7), 3843; https://doi.org/10.3390/app15073843 - 1 Apr 2025
Viewed by 604
Abstract
The development of low-orbit satellite communication networks marks the beginning of a new era in global communication. However, in the context of large-scale LEO satellite communication scenarios, the traditional adjacent connection transmission method limits the advantages of low latency in optical communication. Multi-hop [...] Read more.
The development of low-orbit satellite communication networks marks the beginning of a new era in global communication. However, in the context of large-scale LEO satellite communication scenarios, the traditional adjacent connection transmission method limits the advantages of low latency in optical communication. Multi-hop transmission increases the number of hops and propagation distance, thereby affecting time-sensitive business transmissions. Therefore, based on the design of optical interconnect parallel subnetworks, this paper proposes a scheduling strategy for time-sensitive business transmissions between LEO satellites. Firstly, this strategy integrates the gate control scheduling mechanism from Time-Sensitive Networking (TSN) transmission in the interconnect parallel subnetwork scenario. Secondly, considering issues like queuing after subnetwork division, excessive burden, and algorithm complexity, mathematical problem abstraction modeling is applied to subsequent route scheduling, with reinforcement learning used to solve the problem. Through simulation experiments, it has been observed that compared to SPF (Shortest Path First) and ELB (Equal Load Balance), this approach can effectively enhance the control capability of end-to-end latency for TSN services in long-distance transmissions within Low Earth Orbit mega-constellations. The integration of reinforcement learning decision algorithms also reduces the complexity compared to traditional constraint-solving algorithms, ensuring a certain level of practicality. Overall, this solution can enhance the communication efficiency and performance of time-sensitive services between satellite constellations. By integrating time-sensitive network transmission technologies into optically interconnected subnets, further exploration and realization of low-latency and controllable latency satellite communication networks can be pursued. Full article
Show Figures

Figure 1

42 pages, 1602 KiB  
Article
Hierarchical Resource Management for Mega-LEO Satellite Constellation
by Liang Gou, Dongming Bian, Yulei Nie, Gengxin Zhang, Hongwei Zhou, Yulin Shi and Lei Zhang
Sensors 2025, 25(3), 902; https://doi.org/10.3390/s25030902 - 2 Feb 2025
Viewed by 1506
Abstract
The mega-low Earth orbit (LEO) satellite constellation is pivotal for the future of satellite Internet and 6G networks. In the mega-LEO satellite constellation system (MLSCS), which is the spatial distribution of satellites, global users, and their services, along with the utilization of global [...] Read more.
The mega-low Earth orbit (LEO) satellite constellation is pivotal for the future of satellite Internet and 6G networks. In the mega-LEO satellite constellation system (MLSCS), which is the spatial distribution of satellites, global users, and their services, along with the utilization of global spectrum resources, significantly impacts resource allocation and scheduling. This paper addresses the challenge of effectively allocating system resources based on service and resource distribution, particularly in hotspot areas where user demand is concentrated, to enhance resource utilization efficiency. We propose a novel three-layer management architecture designed to implement scheduling strategies and alleviate the processing burden on the terrestrial Network Control Center (NCC), while providing real-time scheduling capabilities to adapt to rapid changes in network topology, resource distribution, and service requirements. The three layers of the resource management architecture—NCC, space base station (SBS), and user terminal (UT)—are discussed in detail, along with the functions and responsibilities of each layer. Additionally, we explore various resource scheduling strategies, approaches, and algorithms, including spectrum cognition, interference coordination, beam scheduling, multi-satellite collaboration, and random access. Simulations demonstrate the effectiveness of the proposed approaches and algorithms, indicating significant improvements in resource management in the MLSCS. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

19 pages, 1475 KiB  
Review
Overview of Space-Based Laser Communication Missions and Payloads: Insights from the Autonomous Laser Inter-Satellite Gigabit Network (ALIGN)
by Othman I. Younus, Amna Riaz, Richard Binns, Eamon Scullion, Robert Wicks, Jethro Vernon, Chris Graham, David Bramall, Jurgen Schmoll and Cyril Bourgenot
Aerospace 2024, 11(11), 907; https://doi.org/10.3390/aerospace11110907 - 5 Nov 2024
Cited by 5 | Viewed by 5047
Abstract
This paper examines the growing adoption of laser communication (lasercom) in space missions and payloads for identifying emerging trends and key technology drivers of future optical communications satellite systems. It also presents a comprehensive overview of commercially available and custom-designed lasercom terminals, outlining [...] Read more.
This paper examines the growing adoption of laser communication (lasercom) in space missions and payloads for identifying emerging trends and key technology drivers of future optical communications satellite systems. It also presents a comprehensive overview of commercially available and custom-designed lasercom terminals, outlining their characteristics and specifications to meet the evolving demands of global satellite networks. The analysis explores the technical considerations and challenges associated with integrating lasercom terminals into LEO constellations and the Inter-satellite communications service provision in LEO due to their power, size, and weight constraints. By analyzing advancements in CubeSat lasercom technology designed to cater for the emergence of future mega constellations of interacting small satellites, the paper underscores its promising role in establishing high-performance satellite communication networks for future space exploration and data transmission. In addition, a brief overview of our ALIGN planned mission is provided, which highlights the main key operational features in terms of PAT and link budget analysis. Full article
(This article belongs to the Special Issue Space Telescopes & Payloads)
Show Figures

Figure 1

25 pages, 352 KiB  
Article
Assessing the Principle of Equitable Access versus Non-Appropriation in the Era of Mega-Constellations
by Kuan Yang and Sandra Amongin
Aerospace 2024, 11(10), 842; https://doi.org/10.3390/aerospace11100842 - 12 Oct 2024
Viewed by 1632
Abstract
In the 21st century, mega-constellations and interconnected satellite constellations deployed at various orbital altitudes, such as LEO, MEO, and GEO, with low Earth orbits (LEOs) being the most commonly used, have emerged as a trend, aiming to enhance the productivity and reduce the [...] Read more.
In the 21st century, mega-constellations and interconnected satellite constellations deployed at various orbital altitudes, such as LEO, MEO, and GEO, with low Earth orbits (LEOs) being the most commonly used, have emerged as a trend, aiming to enhance the productivity and reduce the costs in space service delivery. The UNOOSA has noted the uncertainty in the exact number of satellites but conducted simulations based on a substantial sample, projecting a significant increase from the 2075 satellites recorded in orbit in 2018. This surge in the launch of mega-constellations poses profound challenges to existing international space laws, originally formulated with limited consideration for private space actors, who are increasingly engaging in space activities, particularly with the cost-effective utilization of mega-constellations. This study critically analyzes the compatibility of mega-constellations with the current international space laws by examining the applicability of mega-constellations concerning equitable access and the non-appropriation principle, addressing their potential occupation of substantial orbital spaces during activities, and analyzing whether the acquisition of orbital slot licenses violates these two principles. Following an in-depth analysis, this study proposes recommendations to amend the existing laws, aiming to resolve ambiguities and address emerging challenges. Recognizing the time-consuming process of amending international space laws, this study suggests practical recommendations for supplementary rules of the road, prompting reflection on the potential obsolescence of the current international space laws in the face of evolving space activities. Full article
24 pages, 6848 KiB  
Article
Ridged Apertures for LEO Direct Radiating Arrays in Ka-Band
by Carlos Vazquez-Sogorb, Roger Montoya-Roca, Giuseppe Addamo, Oscar Antonio Peverini and Giuseppe Virone
Appl. Sci. 2024, 14(17), 7825; https://doi.org/10.3390/app14177825 - 3 Sep 2024
Cited by 2 | Viewed by 1846
Abstract
This paper presents an extensive performance analysis of open-ended waveguide elements for direct radiating arrays with a high scan angle (±50° /60°). The evaluated designs are based on square and hexagonal apertures loaded with ridges. Both square and triangular lattices are considered in [...] Read more.
This paper presents an extensive performance analysis of open-ended waveguide elements for direct radiating arrays with a high scan angle (±50° /60°). The evaluated designs are based on square and hexagonal apertures loaded with ridges. Both square and triangular lattices are considered in the framework of Ka-band downlink design requirements for future LEO mega-constellations. The parameter space defined by the monomodal condition has been explored to find an optimum value for each structure. The analyses carried out with both infinite and finite full-wave models in terms of active reflection coefficient, scan loss and cross-polar discrimination are in good agreement. Full article
Show Figures

Figure 1

24 pages, 9286 KiB  
Article
Doppler Positioning with LEO Mega-Constellation: Equation Properties and Improved Algorithm
by Zichen Xu, Zongnan Li, Xiaohui Liu, Zhimin Ji, Qianqian Wu, Hao Liu and Chao Wen
Remote Sens. 2024, 16(16), 2958; https://doi.org/10.3390/rs16162958 - 12 Aug 2024
Cited by 3 | Viewed by 2009
Abstract
Doppler positioning, as an early form of positioning, has regained significant research interest in the context of Low Earth Orbit (LEO) satellites.Given the LEO mega-constellation scenario, the objective function of Doppler positioning manifests significant nonlinearity, leading to ill-conditioning challenges for prevalent algorithms like [...] Read more.
Doppler positioning, as an early form of positioning, has regained significant research interest in the context of Low Earth Orbit (LEO) satellites.Given the LEO mega-constellation scenario, the objective function of Doppler positioning manifests significant nonlinearity, leading to ill-conditioning challenges for prevalent algorithms like iterative least squares (LS) estimation, especially in cases where inappropriate initial values are selected. In this study, we investigate the causes of ill-posed problems from two perspectives. Firstly, we analyze the linearization errors of the Doppler observation equations in relation to satellite orbital altitude and initial value errors, revealing instances where traditional algorithms may fail to converge. Secondly, from an optimization theory perspective, we demonstrate the occurrence of convergence to locally non-unique solutions for Doppler positioning. Subsequently, to address these ill-conditioning issues, we introduce Tikhonov regularization terms in the objective function to constrain algorithm divergence, with a fitted model for the regularization coefficient. Finally, we conduct comprehensive simulation experiments in both dynamic and static scenarios to validate the performance of the proposed algorithm. On the one hand, when the initial values are set to 0, our algorithm achieves high-precision positioning, whereas the iterative LS fails to converge. On the other hand, in certain simulation scenarios, the iterative LS converges to locally non-unique solutions, resulting in positioning errors exceeding 50 km in the north and east directions, several hundred kilometers in the vertical direction, and velocity errors surpassing 120 m/s. In contrast, our algorithm demonstrates typical errors of a position error of 6.8462 m, velocity error of 0.0137 m/s, and clock drift error of 8.3746 × 106 s/s. This work provides an effective solution to the sensitivity issue of initial points in Doppler positioning and can serve as a reference for the algorithm design of Doppler positioning receivers with LEO mega-constellations. Full article
(This article belongs to the Special Issue GNSS Positioning and Navigation in Remote Sensing Applications)
Show Figures

Figure 1

20 pages, 4181 KiB  
Article
Caching Policy in Low Earth Orbit Satellite Mega-Constellation Information-Centric Networking for Internet of Things
by Hongqiu Luo, Tingting Yan and Shengbo Hu
Sensors 2024, 24(11), 3412; https://doi.org/10.3390/s24113412 - 25 May 2024
Cited by 1 | Viewed by 1400
Abstract
Information-Centric Networking (ICN) is the emerging next-generation internet paradigm. The Low Earth Orbit (LEO) satellite mega-constellation based on ICN can achieve seamless global coverage and provide excellent support for Internet of Things (IoT) services. Additionally, in-network caching, typically characteristic of ICN, plays a [...] Read more.
Information-Centric Networking (ICN) is the emerging next-generation internet paradigm. The Low Earth Orbit (LEO) satellite mega-constellation based on ICN can achieve seamless global coverage and provide excellent support for Internet of Things (IoT) services. Additionally, in-network caching, typically characteristic of ICN, plays a paramount role in network performance. Therefore, the in-network caching policy is one of the hotspot problems. Especially, compared to caching traditional internet content, in-networking caching IoT content is more challenging, since the IoT content lifetime is small and transient. In this paper, firstly, the framework of the LEO satellite mega-constellation Information-Centric Networking for IoT (LEO-SMC-ICN-IoT) is proposed. Then, introducing the concept of “viscosity”, the proposed Caching Algorithm based on the Random Forest (CARF) policy of satellite nodes combines both content popularity prediction and satellite nodes location prediction, for achieving good cache matching between the satellite nodes and content. And using the matching rule, the Random Forest (RF) algorithm is adopted to predict the matching relationship among satellite nodes and content for guiding the deployment of caches. Especially, the content is cached in advance at the future satellite to maintain communication with the current ground segment at the time of satellite switchover. Additionally, the policy considers both the IoT content lifetime and the freshness. Finally, a simulation platform with LEO satellite mega-constellation based on ICN is developed in Network Simulator 3 (NS-3). The simulation results show that the proposed caching policy compared with the Leave Copy Everywhere (LCE), the opportunistic (OPP), the Leave Copy down (LCD), and the probabilistic algorithm which caches each content with probability 0.5 (prob 0.5) yield a significant performance improvement, such as the average number of hops, i.e., delay, cache hit rate, and throughput. Full article
(This article belongs to the Special Issue Communication, Sensing and Localization in 6G Systems)
Show Figures

Figure 1

18 pages, 904 KiB  
Article
Interference Situational Aware Beam Pointing Optimization for Dense LEO Satellite Communication System
by Mengmin He, Gaofeng Cui, Weidong Wang, Xinzhou Cheng and Lexi Xu
Electronics 2024, 13(6), 1096; https://doi.org/10.3390/electronics13061096 - 16 Mar 2024
Cited by 5 | Viewed by 2237
Abstract
Recently, the low earth orbit (LEO) mega-constellation faces serious time-varying interferences due to spectrum sharing, dense deployment, and high mobility. Therefore, it is important to study the interference avoidance techniques for the dense LEO satellite system. In this paper, the interference situational aware [...] Read more.
Recently, the low earth orbit (LEO) mega-constellation faces serious time-varying interferences due to spectrum sharing, dense deployment, and high mobility. Therefore, it is important to study the interference avoidance techniques for the dense LEO satellite system. In this paper, the interference situational aware beam pointing optimization technique is proposed. Firstly, the angle of departure (AoD) and angle of arrival (AoA) of the interfering links are obtained to represent the time-varying interference. Then, the interference avoidance problem for dense LEO satellite systems is modeled as a non-convex optimization problem, and a particle swarm optimization (PSO) based method is proposed to obtain the optimal beam pointing of the user terminal (UT). Simulations show that the relative error of the mean signal-to-interference plus noise ratio (SINR) obtained by the proposed method is 0.51%, so the co-channel interference can be effectively mitigated for the dense LEO satellite communication system. Full article
(This article belongs to the Special Issue Mobile Networking: Latest Advances and Prospects)
Show Figures

Figure 1

27 pages, 9711 KiB  
Article
A Hybrid Forecasting Model for Self-Similar Traffic in LEO Mega-Constellation Networks
by Chi Han, Wei Xiong and Ronghuan Yu
Aerospace 2024, 11(3), 191; https://doi.org/10.3390/aerospace11030191 - 27 Feb 2024
Cited by 4 | Viewed by 2196
Abstract
Mega-constellation network traffic forecasting provides key information for routing and resource allocation, which is of great significance to the performance of satellite networks. However, due to the self-similarity and long-range dependence (LRD) of mega-constellation network traffic, traditional linear/non-linear forecasting models cannot achieve sufficient [...] Read more.
Mega-constellation network traffic forecasting provides key information for routing and resource allocation, which is of great significance to the performance of satellite networks. However, due to the self-similarity and long-range dependence (LRD) of mega-constellation network traffic, traditional linear/non-linear forecasting models cannot achieve sufficient forecasting accuracy. In order to resolve this problem, a mega-constellation network traffic forecasting model based on EMD (empirical mode decomposition)-ARIMA (autoregressive integrated moving average) and IGWO (improved grey wolf optimizer) optimized BPNN (back-propagation neural network) is proposed in this paper, which makes comprehensive utilization of linear model ARIMA, non-linear model BPNN and optimization algorithm IGWO. With the enhancement of the global optimization capability of a BPNN, the proposed hybrid model can fully realize the potential of mining linear and non-linear laws of mega-constellation network traffic, hence improving the forecasting accuracy. This paper utilizes an ON/OFF model to generate historical self-similar traffic to forecast. RMSE (root mean square error), MAE (mean absolute error), R-square and MAPE (mean absolute percentage error) are adopted as evaluation indexes for the forecasting effect. Comprehensive experimental results show that the proposed method outperforms traditional constellation network traffic forecasting schemes, with several improvements in forecasting accuracy and efficiency. Full article
Show Figures

Figure 1

23 pages, 12283 KiB  
Article
A CEI-Based Method for Precise Tracking and Measurement of LEO Satellites in Future Mega-Constellation Missions
by Entao Zhang, Tao Wu, Minchao Hu, Wenge Yang, Hong Ma, Yiwen Jiao, Xueshu Shi and Zefu Gao
Electronics 2023, 12(16), 3385; https://doi.org/10.3390/electronics12163385 - 8 Aug 2023
Cited by 1 | Viewed by 1820
Abstract
With the development of low-orbit mega-constellations, low-orbit navigation augmentation systems, and other emerging LEO projects, the tracking accuracy requirement for low-orbit satellites is constantly increasing. However, existing methods have obvious shortcomings, and a new tracking and measurement method for LEO satellites is thus [...] Read more.
With the development of low-orbit mega-constellations, low-orbit navigation augmentation systems, and other emerging LEO projects, the tracking accuracy requirement for low-orbit satellites is constantly increasing. However, existing methods have obvious shortcomings, and a new tracking and measurement method for LEO satellites is thus urgently needed. Given this, in this paper, a Connected Element Interferometry (CEI)-based “near-field” measurement model for low-orbit satellites is proposed. On this basis, the goniometric error formula of the model is derived, and the factors included in each error source are briefly discussed, followed by the simplification of the error formula. Furthermore, for the feasibility analysis of the proposed method, the common view time of CEI array on LEO satellites is analyzed in different regions and different baseline lengths. Finally, this paper simulates the effects of satellite–station distance, baseline length, and goniometric angle on the error coefficients in the goniometric error formula, and provides the theoretical goniometric accuracy of this model for different baseline lengths and goniometric angles. Under a baseline length of 240 km, the accuracy can reach 10 nrad. The research results of this paper could play the role of theoretical a priori in accuracy prediction in future low-orbit satellite tracking measurements. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

13 pages, 1028 KiB  
Article
The Optimal Deployment Strategy of Mega-Constellation Based on Markov Decision Process
by Xuefeng Wang, Shijie Zhang and Hongzhu Zhang
Symmetry 2023, 15(5), 1024; https://doi.org/10.3390/sym15051024 - 5 May 2023
Cited by 2 | Viewed by 2314
Abstract
LEO satellite mega-constellation projects have been proposed by many countries or commercial organizations in recent years. With more than 2000 satellites launched by SpaceX to configure the Starlink system, the orbital resources are more constrained given the existence of spacecrafts and countless orbital [...] Read more.
LEO satellite mega-constellation projects have been proposed by many countries or commercial organizations in recent years. With more than 2000 satellites launched by SpaceX to configure the Starlink system, the orbital resources are more constrained given the existence of spacecrafts and countless orbital debris. Due to this, the operating environment is full of uncertainty and information symmetry is absent for designers and stakeholders during the process of project deployment. The flux model of space debris on orbit has been built for assessing the LEO operation environment. Based on the orbital debris flux model, the collision probability can be calculated, which is an important variable of the state space. Given the condition that tge number of satellites decreases due to collision between satellites and debris, the Markov decision model has been built for optimal deployment strategy and decision-making. In order to assure that the mega-constellation system could provide services when satellites have failed, additional satellites need to be launched. The optimal deployment is the decision to launch a moderate number of satellites to maximize the benefit and minimize the cost. Assuming that at least 30 satellites need to be operated, 4 deployment scenarios are considered and the optimal deployment strategies can be obtained. Full article
Show Figures

Figure 1

15 pages, 3029 KiB  
Article
Design and Evaluation of Dynamic Topology for Mega Constellation Networks
by Qinyu Zhu, Xinmin Wang, Haitao Yang and Yanhua Cao
Electronics 2023, 12(8), 1784; https://doi.org/10.3390/electronics12081784 - 10 Apr 2023
Cited by 6 | Viewed by 2753
Abstract
Due to numerous Low Earth Orbit (LEO) satellites, urgent analysis of many temporary inter-satellite links (ISLs) is necessary for mega constellation networks. Therefore, introducing a dynamic link in topology design is crucial for increasing constellation redundancy and improving routing options. This study presents [...] Read more.
Due to numerous Low Earth Orbit (LEO) satellites, urgent analysis of many temporary inter-satellite links (ISLs) is necessary for mega constellation networks. Therefore, introducing a dynamic link in topology design is crucial for increasing constellation redundancy and improving routing options. This study presents one class of static topology of satellites (STLS) and two types of dynamic topology of satellites (DTLS). Firstly, a call model based on global population density distribution is determined using world population density by provincial administrative divisions. Then, using a common simulation platform, the Dijkstra algorithm obtains random paths between 10,000 pairs of urban ground stations, adopting a time slice division strategy. Finally, 3 indexes are obtained within 66-time slices: average call distance, number of hops, and total time delay. Results show that DTLS1 reduces these indexes by 3.58%, 3.72%, and 3.57%, respectively, compared with DTLS2 under the same conditions, indicating that DTLS1 has the best network performance, transmitting traffic quickly in any direction through the reverse track, thereby verifying the related hypothesis. Full article
(This article belongs to the Section Networks)
Show Figures

Figure 1

11 pages, 1069 KiB  
Article
Rethinking LEO Mega-Constellation Routing to Provide Fast Internet Access Services
by Zijian Yang, Feng Tian, Jifeng Jin and Huijie Liu
Sensors 2023, 23(6), 3207; https://doi.org/10.3390/s23063207 - 17 Mar 2023
Cited by 1 | Viewed by 3335
Abstract
In the realm of providing space-based internet access services, utilizing large-scale low Earth orbit (LEO) satellite networks have emerged as a promising solution for bridging the digital divide and connecting previously unconnected regions. The deployment of LEO satellites can augment terrestrial networks, with [...] Read more.
In the realm of providing space-based internet access services, utilizing large-scale low Earth orbit (LEO) satellite networks have emerged as a promising solution for bridging the digital divide and connecting previously unconnected regions. The deployment of LEO satellites can augment terrestrial networks, with increased efficiency and reduced costs. However, as the size of LEO constellations continues to grow, the routing algorithm design of such networks faces numerous challenges. In this study, we present a novel routing algorithm, designated as Internet Fast Access Routing (IFAR), aimed at facilitating faster internet access for users. The algorithm consists of two main components. Firstly, we develop a formal model that calculates the minimum number of hops between any two satellites in the Walker-Delta constellation, along with the corresponding forwarding direction from source to destination. Then, a linear programming is formulated, to match each satellite to the visible satellite on the ground. Upon receipt of user data, each satellite then forwards the data only to the set of visible satellites that correspond to its own satellite. To validate the efficacy of IFAR, we conduct extensive simulation work, and the experimental results showcase the potential of IFAR to enhance the routing capabilities of LEO satellite networks and improve the overall quality of space-based internet access services. Full article
(This article belongs to the Special Issue 6G Space-Air-Ground Communication Networks and Key Technologies)
Show Figures

Figure 1

12 pages, 10690 KiB  
Article
Cross-Domain Fusion Constellation Design of Communication, Navigation and Remote Sensing
by Junxiang Qin, Xuan Li, Xiaotian Ma, Xiye Guo and Jun Yang
Appl. Sci. 2023, 13(5), 3113; https://doi.org/10.3390/app13053113 - 28 Feb 2023
Cited by 2 | Viewed by 2164
Abstract
Low earth orbit (LEO) mega-constellations have once again triggered a wave of space-based system construction. On the one hand, LEO communication, LEO navigation, LEO remote sensing constellations and so on are proposed. On the other hand, with the continuous development of software-defined satellite [...] Read more.
Low earth orbit (LEO) mega-constellations have once again triggered a wave of space-based system construction. On the one hand, LEO communication, LEO navigation, LEO remote sensing constellations and so on are proposed. On the other hand, with the continuous development of software-defined satellite and intelligent satellite technology, space-based systems are developing in the direction of multi-function, integration and cross-domain integration. The whole space-based system is no longer the traditional working mode of a single functional constellation, but a genral cross-domain fusion constellation (CDFC) system for complex tasks. Like the terrestrial global Internet, the space-based system will serve as a global infrastructure for integrating communication, navigation and remote sensing, that is, the intelligent space-based system, to provide services for the global demand. The traditional method of designing constellation for a certain type of function is no longer applicable to this type of constellation design. To solve this problem, this paper proposes a design and optimization method of cross-domain fusion constellation of communication, navigation and remote sensing based on reverse design. The paper optimizes the CDFC through resource coverage. Through experiments, we prove that the number of satellites in the CDFC can be reduced by 30.60% compared with the independent and combined constellations in each domain, and the coverage and service performance of the constellation can be improved. The cost can be reduced by 18.31% compared with the combined constellation. When the same number of satellites is used, the resource coverage of the cross-domain fusion constellation is increased by at least eight times. Full article
Show Figures

Figure 1

Back to TopTop