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Abstract: Mega‑constellation network traffic forecasting provides key information for routing and
resource allocation, which is of great significance to the performance of satellite networks. However,
due to the self‑similarity and long‑range dependence (LRD) of mega‑constellation network traffic,
traditional linear/non‑linear forecasting models cannot achieve sufficient forecasting accuracy. In
order to resolve this problem, a mega‑constellation network traffic forecasting model based on EMD
(empirical mode decomposition)‑ARIMA (autoregressive integrated moving average) and IGWO
(improved greywolf optimizer) optimized BPNN (back‑propagation neural network) is proposed in
this paper, whichmakes comprehensive utilization of linearmodel ARIMA, non‑linearmodel BPNN
and optimization algorithm IGWO. With the enhancement of the global optimization capability of
a BPNN, the proposed hybrid model can fully realize the potential of mining linear and non‑linear
laws of mega‑constellation network traffic, hence improving the forecasting accuracy. This paper
utilizes an ON/OFF model to generate historical self‑similar traffic to forecast. RMSE (root mean
square error), MAE (mean absolute error), R‑square and MAPE (mean absolute percentage error)
are adopted as evaluation indexes for the forecasting effect. Comprehensive experimental results
show that the proposed method outperforms traditional constellation network traffic forecasting
schemes, with several improvements in forecasting accuracy and efficiency.

Keywords: satellite network traffic forecast; empirical mode decomposition; autoregressive
integrated moving average; BP neural network; adaptive order optimization operator

1. Introduction
LEOmega‑constellation networks demonstrate excellent communication capabilities,

including wide geographic coverage, low delay, large bandwidth and uninterrupted ser‑
vice provision, highlighting their significant role in space–air–ground integrated networks
(SAGINs) [1]. In recent years, with the construction of LEO mega‑constellations such as
Starlink, OneWeb and Kuiper [2], the explosive growth of Internet‑connected devices and
traffic demand have increased drastically. However, on‑board computing and storage re‑
sources are limited by power consumption and the size of satellites. Thus, LEO mega‑
constellations face challenges in capacity and quality of service (QoS) [3]. Due to continu‑
ous inter‑satellite links (ISLs) switching between adjacent satellites, the network topology
changes drastically over time. Meanwhile, satellite network traffic shows temporal and
spatial heterogeneity, i.e., traffic demands may vary greatly in different geographical loca‑
tions or in different time slots [4]. In the case of expanding user scale and traffic demand,
the above challenges result in increased congestion in LEO mega‑constellations.

Through traffic forecasting, the change in network traffic can be analyzed in advance.
The control of network traffic can be changed from reactive response to proactive percep‑
tion. On the one hand, by forecasting the traffic demand for the next time slot, traffic trans‑
mission paths can be planned in advance to proactively avoid congestion. On the other
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hand, for bandwidth‑sensitive services, always reserving peak bandwidth will inevitably
reduce resource utilization. On the basis of traffic forecasting, bandwidth allocation can
be dynamically adjusted according to service demand to achieve the efficient utilization of
bandwidth resources.

The priority of satellite network traffic forecasting is to build network traffic models
that represent the network properties accurately. Traffic demand at different geographic
locations is usually cyclical [5]. Meanwhile, the self‑similarity of traffic is prevalent in ter‑
restrial networks [6]. In a satellite network, the traffic is aggregated through terrestrial
gateways, which will not change the basic properties, i.e., long‑range dependence (LRD)
on a large scale and self‑similarity on a small scale [7], as shown in Figure 1. The actual
traffic demand can be divided into long‑range baseline and short‑range fluctuations; base‑
line traffic has LRD properties, whereas fluctuations are short‑range dependent. There‑
fore, forecasting models with high precision and low complexity that can demonstrate
self‑similarity are essential for network traffic forecasting. Traditional network traffic fore‑
casting models, i.e., Poisson models and Markov models, can only deal with short‑range
dependence (SRD) traffic. Meanwhile, due to the limited on‑board computing resources of
satellite networks, the computational complexity of a satellite network’s traffic forecasting
model needs to be reduced [8]. So, the traffic prediction models of terrestrial networks are
not suitable for satellite networks with LRD properties.
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tion algorithm (GWO) is a group intelligence algorithm derived from the social hierarchy 
and hunting mechanisms of grey wolves [12]. It has been proved that GWO has a more 
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In order to establish a high‑precision and low‑complexity traffic forecasting model, it
is necessary to first decompose network traffic to extract the long‑range correlation traffic
and short‑range fluctuation traffic. Moreover, the computational complexity of the fore‑
castingmodels for LRD traffic in terrestrial networks is considerable. Due to the limited on‑
board computing and storage resources of LEO satellites, it is necessary to reduce the com‑
putational complexity. Therefore, the forecasting models of terrestrial networks cannot be
adopted to constellation networks directly. It is necessary to establish a high‑precision and
low‑complexity forecasting model for mega‑constellation network traffic.

To address the above issues, constellation network traffic is decomposed into multi‑
order intrinsic mode functions (IMFs) with empirical mode decomposition (EMD). Given
the high accuracy of short‑term forecasts, the differential integrated moving average au‑
toregressive model (ARIMA) is utilized to forecast IMFs [9]. A back‑propagation neural
network (BPNN), as a traditional neural networkmodel, has better non‑linear fitting ability
and performswell in terrestrial network traffic forecasting [10]. BPNNs are utilized to fore‑
cast the residual from the ARIMA. However, numerous hyperparameters in BPNNs result
in several problems, i.e., slow convergence and local optima [11]. The grey wolf optimiza‑
tion algorithm (GWO) is a group intelligence algorithm derived from the social hierarchy
and hunting mechanisms of grey wolves [12]. It has been proved that GWO has a more
reasonable global optimum search mechanism, which makes it more suitable for parame‑
ter optimization problems. Therefore, GWO is utilized to optimize the hyperparameters
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of the BPNN and prevent the BPNN from local optimality. Thus, the self‑similar satellite
network traffic hybrid forecasting model based on EMD‑ARIMA‑BPNN is proposed.

In the proposed EMD‑ARIMA‑BPNN model, constellation network traffic is first de‑
composed into multi‑order IMFs with EMD. Secondly, IMFs are reconstructed to obtain
network traffic residuals, which are utilized as the input for a BPNN optimized by GWO.
The LRD properties in residuals can be adequately captured by the GWO‑BPNN. Finally,
the reconstructed IMFs and forecasted residuals are combined as satellite network traffic
forecasting results. The main contributions of this paper are described as follows:
• Firstly, the LRD properties of satellite network traffic can result in deteriorated fore‑

casting accuracy and increased computational complexity. Empirical mode decompo‑
sition (EMD) is utilized to decompose LRD traffic into multi‑order IMFs with single
frequencies and SRD to reduce forecasting complexity;

• Secondly, to address the problems of the uneven initial population distribution and
slow convergence rate of the standard GWO, an opposition‑based learning strategy
(OBL) and cosine‑based non‑linear convergence factor are utilized to improve the
GWO, i.e., IGWO. The forecasting accuracy of the BPNN is improved by utilizing
IGWO to optimize the hyperparameters;

• Finally, we design the total flow of the LEOmega‑constellation traffic forecasting pro‑
cess based on OMNET++. The effectiveness of the proposed satellite network traffic
forecasting model is verified through comparative experiments.
The rest of the paper is organized as follows: Section 2 introduces the current re‑

search status of satellite network traffic forecasting. Section 3 constructs the satellite net‑
work traffic generationmodel andproposes the EMD‑based network trafficdecomposition.
Section 4 proposes the ARIMA‑based IMFs forecasting model and BPNN‑based residual
forecasting model. The LEO mega‑constellation network traffic hybrid forecasting model
is constructed. Section 5 summarizes this paper and proposes future work.

2. Materials and Methods
Traditional network traffic models are generally derived from Poisson processes, in‑

cluding the Poisson and Markov models [13], which can only describe SRD properties.
For satellite network traffic with LRD properties, it is difficult for traditional models to
accurately characterize the network. Since the discovery of the self‑similarity properties
of network traffic in 1994 [14], various self‑similarity‑based traffic forecasting models have
been proposed. One class of models describe the observed traffic by constructing physical
models, including ON/OFF models with heavy‑tailed distribution [15], M/G/∞ queuing
models [7], etc. Another category is statistics‑based models, which attempt to simulate
network traffic through data fitting. Statistics‑based models mainly include linear models
and non‑linear models. Linear models, i.e., the autoregressive model (AR), moving aver‑
age model (MA), autoregressive moving average model (ARMA) and autoregressive inte‑
grated moving average model (ARIMA) [8], need to set a variety of parameters based on
experience. Linear models are only suitable for short‑term forecasting and find it difficult
to deal with the self‑similarity and LRD properties of satellite network traffic.

Due to the limitations of linear models, non‑linear models such as the fractional au‑
toregressive integrationmoving averagemodel (FARIMA), wavelet model and greymodel
are utilized to forecast network traffic. Zhu et al. [16] proposed theMarkov‑modulated de‑
terministic model to simulate satellite network traffic, which converts the acquisition, stor‑
age and transmission of network traffic into anMMDP/D/1/K queuedmodel. Yan et al. [17]
proposed a satellite network traffic forecasting model based on ARMA, which represents
current traffic through the weighted summation of multiple historical traffic data. Consid‑
ering the limited onboard computing and storage capacity, ARMA(2, 1) is adopted to re‑
duce the computational complexity. Chen et al. [18] established a traffic forecasting model
with two variables: the geographic longitude of ascending nodes and the time frompassing
ascending nodes. A prediction method based on a surrogate model is adopted to solve the
traffic prediction problemwith a time‑independent ground traffic distribution. According
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to the above analysis, statistics‑based forecasting methods have limitations in describing
the self‑similarity, SRD and LRD laws of satellite network traffic [16].

In view of the limitations of statistics‑based models, neural network models are ap‑
plied to forecast network traffic. Compared with statistics‑based models, neural network
models outperform them in terms of non‑linear mapping capabilities [19]. Zhou et al. [20]
proposed a forecasting method, SSA‑AWELM, by combing singular spectrum analysis
(SSA) and an AdaBoost weighted extreme learning machine (AWELM). In the proposed
method, SSA decomposes raw traffic into three parts: trend, periodicity and residual. The
AWELM is designed to predict each part separately. Fan et al. [10] combined a recurrent
neural network (RNN) and a gated recurrent unit (GRU). The experiment results demon‑
strated that the proposed RNN‑GRU model had advantages in forecasting accuracy. Vin‑
choff et al. [21] combined a graph convolutional neural network (GCN) and a generative
adversarial network (GAN). InGCN‑GAN, aGCN is utilized to extract the complex proper‑
ties of network traffic, whereas a GAN is utilized to model the data structures. Li et al. [22]
proposed a forecasting model (LA‑ResNet) that utilizes attention mechanism to solve spa‑
tiotemporal modeling and predict wireless network traffic. However, the computation
complexity of LA‑ResNet is too considerable to be applied in LEO mega‑constellations.

According to the above analysis, increasing the number of hyperparameters will
greatly increase the complexity of neural networks. In order to reduce the computation
complexity and improve forecasting accuracy, Cai et al. [23] improved long short‑term
memory (LSTM) using a genetic algorithm (GA), in which the GA is utilized to optimize
the LSTM hyperparameters. Sudhakaran et al. [24] proposed a deep learning approach
for cellular traffic forecasting with deep neural networks (DNNs) to model cellular traffic.
Traffic volume data are treated as tensors, similar to images, which are then fed to a convo‑
lutional neural network. Li et al. [25] proposed the GRU neural network traffic prediction
algorithm based on transfer learning. The proposed method combines transfer learning
to solve the problem of insufficient online traffic data. The particle filter online training
algorithm is adopted to reduce the computation complexity. The above network traffic
forecasting methods are comprehensively compared in terms of computation complexity
and forecasting accuracy, as shown in Table 1.

Table 1. Comparison of network traffic forecasting methods.

Forecasting
Method Scheme Computation

Complexity
Forecasting
Accuracy Characteristics

Statistics‑based
schemes

ARIMA [1] (2019) Low Normal A variety of parameters need to be set
based on experience.

Markov model [16] (2018) Normal Normal Network traffic is converted into an
MMDP/D/1/K queued model.

ARMA [17] (2015) Low Low Parameters to be set; ARMA(2,1) to
reduce computation complexity.

Surrogate model [18]
(2019) Normal Normal Traffic prediction time‑independent

ground traffic distribution.

Neural network
schemes

SSA‑AWELM [20] (2020) High High Decompose raw traffic into three parts
and predict separately.

RNN‑GRU [10] (2019) High High Combines RNN and GRU to forecast
network traffic.

GCN‑GAN [21] (2020) High Normal GCN extracts complex properties; GAN
models data structures.

LA‑ResNet [22] (2020) High High Attention mechanism.

GA‑LSTM [23] (2023) Normal Normal Optimize the hyperparameters of LSTM
via GA.

DNN [24] (2020) High Normal Treat traffic volume data as a tensor.

GRU [25] (2021) Normal High Reduce computation complexity via a
particle filter online training algorithm.
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To address the above issues, this paper decomposes satellite network traffic with self‑
similarity into multi‑order IMFs with short‑range correlation using EMD. The ARIMA, im‑
proved using an adaptive fixed‑order search operator, is utilized to forecast IMFs with low
computation complexity. IGWO is utilized to optimize the hyperparameters of a BPNN,
which forecasts the residuals of the EMD‑ARIMA. With the enhancement of the global op‑
timization capability of the BPNN, the proposed EMD‑ARIMA‑BPNN hybrid model can
fully realize the potential of mining the linear and non‑linear laws of satellite network traf‑
fic, hence improving the forecasting accuracy.

3. Self‑Similarity Analysis of Satellite Network Traffic
3.1. LEO Mega‑Constellation Networks

The topology of LEO mega‑constellation networks can be demonstrated by
G = (V, E), where V denotes the satellite nodes and E denotes the inter‑satellite links
(ISLs) between satellites. The inter‑satellite links include intra‑plane ISLs and inter‑plane
ISLs. The former are utilized to connect front and rear satellites in the same orbit, whereas
the latter are utilized to connect adjacent satellites in two adjacent orbits [26]. A LEOmega‑
constellation network integrated with a terrestrial network is shown in Figure 2, including
satellites, ground stations, ground terminals, feeder links and ISLs. The onerous commu‑
nication between ground gateways may lead to congestion of the shortest path during
the communication peak [27]. In this case, the giant mesh topology of the LEO mega‑
constellation network provides multiple candidate paths. Through reasonable load man‑
agement based on traffic forecasting, high transmission as well as low latency can be taken
into account at the same time.
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3.2. Traffic Model of a LEO Mega‑Constellation Network
In LEO mega‑constellation networks, the traffic of sink nodes comes from satellites

and ground terminals. Thus, multiple services of multiple nodes converge at the sink
nodes of the LEO mega‑constellation network. Since traffic transmitted through satellite
networks can be described by packet sizes and packet intervals, the source of satellite net‑
works can be regarded as an ON/OFF source that satisfies the Pareto distribution [28].

In this work, the ON/OFF model is utilized to represent the sources of satellite net‑
works alternating between the sending states and non‑sending states. The ON state cor‑
responds to the data sending duration, during which sending nodes generate data at a
constant rate independently. The OFF state corresponds to pause duration. It can be con‑
sidered that the ON and OFF duration are independent and identically distributed. Ac‑
cording to the above analysis, a LEO mega‑constellation network can be regarded as the
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joint action of the superposition of numerous ON/OFF sources, as shown in Figure 3. Net‑
work traffic is transmitted through the satellite network and finally converges at ground
stations, i.e., the receivers in Figure 3.
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Given a source node S1, if the ON duration of S1 satisfies E(Ŝ1) = 1/µ, the OFF dura‑
tion of S1 satisfies E(S1) = 1/ν and the average speed of the source node is µν/(µ + ν). It
has beendemonstrated that the traffic generated by the superposition of a series ofON/OFF
sources has the property of self‑similarity, where the time intervals of the ON and OFF
states obey a heavy‑tailed distribution [7]. Considering that the Pareto distribution is the
most common heavy‑tailed distribution, the probability density function and distribution
function of Pareto are, respectively,

f (x; a, b) =

{
0, x ≤ b
a
b (

b
x )

a+1
, x > b

(1)

F(x; a, b) = 1− (
b
x
)

a
(2)

where a denotes the shape parameter, which indicates the degree of the heavy tail of the
Pareto distribution and b denotes the minimum cut‑off parameter, which indicates the
lower bound of x. Since the ON and OFF durations both obey a heavy‑tailed distribution,
the superimposition of numerous ON/OFF sources will finally result in the self‑similarity
of the satellite network traffic.

3.3. EMD‑Based Satellite Network Traffic Decomposition
Self‑similarity results in the long‑range dependence (LRD) property of LEO mega‑

constellation network traffic, i.e., the autocorrelation function of network traffic decreases
as a hyperbolic function with increasing time intervals. Although the existing neural‑
network‑based traffic forecasting models are capable of indicating the LRD property, the
computation complexity of these models is too considerable to be utilized in LEO mega‑
constellation networks, where on‑board computation and storage resources are extremely
limited. Comparedwith neural networkmodels, statistics‑basedmodels outperform them
in terms computation complexity, whereas these models can only indicate linear laws of
network traffic. The computational complexity can be reduced if the LRD traffic can be
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converted into linear components, from which the ARIMA can be adopted to mine the
linear laws of the network traffic.

Commonly employed decomposition methods include wavelet [29] and empirical
mode decomposition (EMD) [30]. The wavelet’s basis is of vital importance to the per‑
formance of the wavelet, which limits its application. In contrast, EMD can effectively
decompose non‑linear and non‑stationary data into multi‑order IMFs, which can better
reflect the inherent characteristics of network traffic [31]. Therefore, EMD is utilized to
decompose satellite network traffic in this paper. EMD can decompose LRD traffic into
multiple single frequency components and residuals, i.e.,

y(t) = ∑
i

IMFi + r(t) (3)

where y(t) denotes network traffic, IMFi denotes the i‑th components obtained by decom‑
position and r(t) denotes the residual. Thus, satellite network traffic with LRD properties
is converted into several single frequency components, i.e., IMFs, that can be effectively
processed by linear models. Meanwhile, the computational complexity is extremely re‑
duced.

The essence of EMD is to determine the basic oscillation pattern of valid signals [32].
Commonly, the IMFs obtained via EMD satisfy the following conditions.
• The number of signal polarization points ψ and the number of zero points ζ satisfy

|ψ− ζ| ≤ 1.
• The mean value of the envelope defined by the local maximum and local minimum

of the signal is zero.
The first condition specifies that the signal forms of IMFs are consistent with the tra‑

ditional narrow‑band smooth Gaussian process, which can be characterized as

y(t) = a(t)ejϕ(t) (4)

where a(t) and ϕ(t) are the envelope and phase of the signal, respectively. The second
condition ensures the symmetry of IMFs. The specific steps of EMD are shown in Table 2.

Table 2. EMD processing flow.

Shifting IMF1 IMF2 IMFi IMFn
x[n]|L r1[n]|L = x[n]− c1[n] … rn−1[n]|L = rn−2[n]− cn−1[n]

P = CS
(

x[n]|minimal

)
|L

P = CS
(

r1[n]|minimal

)
|L

P = CS
(

rn−1[n]|minimal

)
|L

Q = CS
(

x[n]|maximal

)
|L

Q = CS
(

r1[n]|maxmal

)
|L

Q = CS
(

rn−1[n]|maxmal

)
|L

m11[n] = (P + Q)/2 m21[n] = (P + Q)/2 mn1[n] = (P + Q)/2

1

h11[n] = x[n]−m11[n] hn1[n] = r1[n]−mn1[n] … hn1[n] = rn−1[n]−mn1[n]
i f sqr(x[n]−h11[n])

sqr(x[n]) > 0.3 i f sqr(r1[n]−h21[n])
sqr(r1[n])

> 0.3 i f sqr(rn−1[n]−hn1[n])
sqr(rn−1[n])

> 0.3
then

P = CS
(

h11[n]|minimal

)
|L

Q = CS
(

h11[n]|maximal

)
|L

then
P = CS

(
h21[n]|minimal

)
|L

Q = CS
(

h21[n]|maximal

)
|L

then
P = CS

(
hn1[n]|minimal

)
|L

Q = CS
(

hn1[n]|maximal

)
|L

m12[n] = (P + Q)/2 m22[n] = (P + Q)/2 mn2[n] = (P + Q)/2

2 h12[n] = h11[n]−m12[n] h22[n] = h21[n]−m22[n] … hn2[n] = hn1[n]−mn2[n]

… … … … …

k
h1k[n] = h1(k−1)[n]−m1k[n] h2k[n] = h2(k−1)[n]−m2k[n] … hnk[n] = hn(k−1)[n]−mnk[n]

else c1[n] = h1k[n] else c2[n] = h2k[n] else rn[n] = hnk[n]

Step 1: Given a signal x(t) to be analyzed, all polar points are fitted with two cubic spline
curves to obtain the polar envelope of x(t).
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Step 2: Let the average value of the envelope be m(t), the remaining signal h(t) can be
indicated by h(t) = x(t)−m(t). h(t) will be taken as IMF1 if it satisfies the above two con‑
ditions. Otherwise, h(t) will be taken to replace x(t) and the above steps will be repeated.
Step 3: After k iterations, the difference between the obtained signal and the mean value
of the envelope is h1,k(t). The difference obtained in the k − 1 iteration is indicated as
h1,k−1(t). h1,k(t) will be taken as the first IMF when√√√√ T

∑
t=0

[h1,k−1(t)− h1,k(t)]
2

h1,k−1(t)
2 < ξ (5)

where ξ denotes the threshold value. After k iterations, the root mean square error (RMSE)
between h1,k(t) and h1,k−1(t) is less than ξ. Then, h1,k(t) will be taken as the first IMF that
satisfies the condition.
Step 4: Take l(t) = x(t)− h1,k(t) as x(t) and repeat the above steps. When the remaining
residual is monotonical and the amplitude is less than ξ, several IMFs, Ci(t) and a final
residual r(t) are obtained, i.e.,

x(t) =
n

∑
i=1

Ci(t) + r(t) (6)

Lemma 1. Given the LEO mega‑constellation network traffic D(t) with LRD properties. The
IMFs of  D(t) decomposed using EMD have the property of short‑range dependence.

The proof of Lemma 1 is detailed in Appendix A.
Commonly, the IMFs decomposed via EMD mainly include three categories: noise‑

dominated, noise mixed with valid information and valid‑information‑dominated IMFs.
The Pearson correlation coefficient, Shannon information entropy andHurst index are usu‑
ally utilized to classify IMFs. However, after identification, noise‑dominated IMFs tend to
be discarded, resulting in the loss of valid information. To concretely illustrate this issue,
the valid information contained in IMFi(i = 1, 2, · · ·, n) is shown in Figure 4.
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Let the valid information ratio of IMFi be as a(i):

a(i) =
Γ(IMFi)

Γ(D(t))
(7)
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where Γ(IMFi) denotes the valid information of IMFi and Γ(D(t)) denotes the valid in‑
formation of the raw satellite network traffic D(t). With an increase in order, the valid
information ratio increases as well. The valid information ratios of all IMFs satisfy

n

∑
i=1

a(i) = 1 (8)

It can be seen that low‑order IMFs still contain a small amount of valid information.
Thus, discarding low‑order IMFs will result in the loss of valid information. Meanwhile,
since high‑order IMFs contain noise, adopting high‑order IMFs directly may inevitably
introduce noise. Hence, in contrast to the existing works, the IMFs will not be classified in
the EMD proposed in this paper. Instead, all IMFs will be adopted in the ARIMA to obtain
residuals and multiple single frequency components.

4. Network Traffic Forecasting Based on ARIMA‑BPNN
4.1. ARIMA‑Based IMF Forecasting
4.1.1. ARIMA

To address the problem of the LRD laws of satellite network traffic, EMD is utilized
to decompose traffic into multiple IMFs and residuals. The autoregressive integratedmov‑
ing average model (ARIMA) is a forecasting method proposed by Box and Jenkins in
the 1970s [9] that has advantages in short‑term forecasting [8]. Thus, the EMD‑ARIMA
combined model is constructed, where ARIMA is utilized to forecast the IMFs obtained
via EMD.

Take IMFs as input, ARIMA(p, d, q) is utilized to forecast the IMFs in turn. The
ARIMA(p, d, q) model is given by

∇dX(t) =
p

∑
i=1

ϕi∇dX(t− i)−
q

∑
j=1

θjε(t− j) + ε(t) (9)

s.t.


ϕp ̸= 0, θq ̸= 0
E(ε(t)) = 0, Var(ε(t)) = σ2

ε

E(ε(t)ε(s)) = 0, s ̸= t
E(∇dX(s)ε(s)) = 0, ∀s < t

(10)

where∇dX(t) denotes the value of the original traffic at time slot t after the differencing of
order d, p denotes the highest autoregressive order of the differenced series data, q denotes
the highest moving‑average order of the differenced series data, ϕi denotes the i‑th order
autoregressive term coefficient, θj denotes the j‑th order moving‑average term coefficient,
E(ε(t)) denotes the mean of a random series ε(t) andVar(ε(t)) denotes the variance of ε(t),
i.e., σ2

ε .
The IMFs of satellite network traffic are converted to a smooth series by the means of

difference operation. According to the smooth data decomposition theorem, the network
traffic data can be decomposed into deterministic smooth data and a stochastic white noise,
which can be indicated equivalently by ARIMA(p, d, q).

4.1.2. Order Determination and Parameter Estimation for the ARIMA
Multi‑order IMFs are adopted as the input of the ARIMA in this paper. In traditional

ARIMA(p, d, q), the autocorrelation coefficient (ACF) and partial autocorrelation coeffi‑
cient (PACF) are commonly utilized to determine the autoregressive order p and moving‑
average order q. However, considering satellite network traffic has the properties of self‑
similarity and LRD, there is commonly a slight fluctuation near zero, making theoretical
truncation difficult to obtain for ACF or PACF. To address this problem, this paper takes
the Akaike information criterion (AIC) as the objective function and twice the standard
deviation, i.e., 2σACF and 2σPACF, as the threshold. An adaptive fixed‑order optimization
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search operator (AFOS) is designed to reduce the interpretation error. The pseudo code of
ARIMA(p, d, q) is shown in Algorithm 1.

Algorithm 1: Order Determination and Parameter Estimation for ARIMA

1 Input: IMFi, order of IMF: n
2 Output: ARIMA(p, d, q), ζi(t), IMF′i(t)
3 for i = 1; i < n; i ++ do
4 IMFi,d(t)← IMFi(t), d← 0
5       ADF test for IMFi,d(t)
6 ACFi,d(s), 2σACF, PACFi,d(s), 2σPACF, s ∈ {1, 2, 3, 4, 5}
7 s1 ← sp,max , s2 ← sq,max
8       if s2 = 5 then
9 qmax ← 0
10       else
11 qmax = sq,max − 1
12       end
13       if s1 = 5 then
14 pmax ← 0
15       else
16 pmax = sp,max − 1
17       end
18 ARIMA(pi, di, qi), pi ∈ {1, 2, · · ·, pmax}, qi ∈ {1, 2, · · ·, qmax}
19 ϕi, i ∈ {1, 2, · · ·, p}; θj, j ∈ {1, 2, · · ·, q}; σ2

ε,p,d,q

20 AICp,d,q ← T · ln
(

σ2
ε,p,d,q

)
+ 2(p + q + 1)

21 ARIMA(p, d, q)← ARIMA(pi, di, qi)|min{AIC}
22 IMF′i(t)← d− order differential reduction of IMF′i,d(t)
23 ζi(t)← IMF′i(t)− IMF′i(t)
24 end

The modeling steps of ARIMA(p, d, q) are as follows:
Step 1: Set the order of IMF as I and i = 1. Set the total number of IMFs as I.
Step 2: Set the difference order d = 0. IMFi,d(t) = IMFi(t). Take IMFi,d(t) as the input
sequence for modeling.
Step 3: Perform the ADF test for IMFi,d(t) to determine whether the input sequence is a
stationary sequence. If yes, perform step 5, otherwise, perform step 4.
Step 4: Perform the difference operation on IMFi,d(t). d = d + 1. Assign the result of the
difference operation to IMFi,d(t). Perform step 5.
Step 5: Perform the white noise test based on LB statistics to determine whether the input
noise is white noise. If yes, perform step 17, otherwise, perform step 6.
Step 6: Calculate the autocorrelation coefficient ACFi,d(s), corresponding standard devia‑
tion 2σACF, partial autocorrelation coefficient PACFi,d(s) and corresponding standard de‑
viation 2σPACF. s ∈ {1, 2, 3, 4, 5}.
Step 7: s turns from 1 to 5. Judge whether ACFi,d(s) ≥ 2σACF and PACFi,d(s) ≥ 2σPACF
hold.
Step 8: Judge whether sq,max = 5 holds. If yes, qmax = 0, otherwise, qmax = sq,max − 1.
Step 9: Judge whether sp,max = 5 holds. If yes, pmax = 0, otherwise, pmax = sp,max − 1.
Step 10: Permutation and combination (p, q) to construct ARIMA(p, d, q) models.
Step 11: Calculate parameters inARIMA(p, d, q) bymaximum likelihood estimation (MLE).
Step 12: Calculate the AICp,d,q of different ARIMA(p, d, q) using the AIC criterion:

AICp,d,q = T ln
(

σ2
ε,p,d,q

)
+ 2(p + q + 1) (11)

Step 13: Take the ARIMA(p, d, q) with the minimum AICp,d,q as the optimal model.
Step 14: Calculate the fitting sequence IMFFit

i,d (t) of IMFi,d(t) by the optimal model.
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Step 15: Perform the d‑order differential reduction of IMFi,d(t) and assign the result of
reduction to IMFFit

i (t).
Step 16: Calculate the fitted residual sequence ξi(t) = IMFFit

i (t)− IMFi(t).
Step 17: Judge whether i < I. If yes, i = i + 1 and perform step 2, otherwise, end the
modeling step.

Specifically, the modeling steps of AFOS (Step 5–Step 13) are shown in Figure 5.
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According to Lemma 1, the IMFs obtained via EMD have an SRD property. Thus, the
fixed‑order optimization search operator can identify the truncation property of the ACFs.
Meanwhile, the p and q of ARIMA(p, d, q) can also be limitedwithin the third order, which
reduces the computational complexity.

4.2. IGWO‑Based BPNN Parameter Optimization
In the proposed ARIMA‑BPNN hybrid model, numerous hyperparameters of BPNN

may result in unstable results for residual forecasting. The grey wolf optimization (GWO)
algorithm has been proven to have a reasonable global optimum search mechanism for
parameter optimization problems [12]. Therefore, GWO is utilized to optimize the hyper‑
parameters of the BPNN in this paper. However, standard GWO has the disadvantages of
an uneven initial population distribution and slow converge rate. To address these issues,
GWO is improved by adjusted the population initialization strategy and convergence fac‑
tor to accelerate the convergence. Finally, the improved GWO (i.e., IGWO) is utilized to
optimize the hyperparameters of the BPNN.
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4.2.1. Standard GWO Algorithm
GWO is a group intelligence optimization algorithm derived from simulating the so‑

cial hierarchy and hunting mechanisms of grey wolves [12]. In GWO, wolves are divided
top‑down into four groups based on fitness values: (α, β, δ, ω). The former three groups
(α, β, δ) denote the leader class (optimal solution). Candidate solutions are positioned
around (α, β, δ) for updating. The position update of (α, β, δ, ω) consists of three stages.

• Encirclement phase. Based on the hunting encirclement mechanism of grey wolves,
the encirclement phase is defined as

Q =
∣∣EXp(t)− X(t)

∣∣ (12)

X(t + 1) = Xp(t)− LQ (13)

where Equation (11) defines the distance between the greywolves and the prey. Equa‑
tion (12) defines the position updating of grey wolves. t denotes the number of iter‑
ations. X(t) denotes the position of the grey wolves, Xp(t) denotes the position of the
prey andQ denotes the distance between the grey wolves. LE is the coefficient vector
that is defined as follows

L = 2ar1 − a (14)

E = 2r2 (15)

a = 2− 2t/Tmax (16)

where the convergence factor a decreases linearlywith the number of iterationswithin
[2, 0], Tmax is the maximum number of iterations and the variables r1, r2 are randomly
distributed within [0, 1].

• Hunting phase. During the hunting phase, α, β, δ lead the search process and gradu‑
ally approach the prey. The tracking process can be described as follows{

Qα = |E1 · Xα − X|, Qβ =
∣∣E2 · Xβ − X

∣∣
Qδ = |E3 · Xδ − X| (17)

where Qα, Qβ, Qδ denote the distance between α, β, δ and ω, Xα, Xβ, Xδ denote the
current positions of α, β, δ, X is the current position of ω and E1, E2, E3 are random
vectors. {

X1 = Xα − L1Qα, X2 = Xβ − L2Qβ

X3 = Xδ − L3Qδ
(18)

X(t + 1) =
X1 + X2 + X3

3
(19)

where Equation (17) defines the direction of the approximation of ω to α, β, δ and the
corresponding step size. Equation (18) defines the final position of ω.

• Attacking phase. As (α, β, δ, ω) approach the prey, the convergence factor a decreases
linearly and |L| varies within [−a, a]. When |L| < 1, the algorithm converges and the
prey position is obtained.

4.2.2. Improvement of the GWO Algorithm
• OBL‑Based Population Initialization

In the standard GWO algorithm, (α, β, δ, ω) are initialized randomly, which tends
to result in the uneven distribution of the initial population and affects the convergence
performance. In order to enable individuals in the initial population to make the best pos‑
sible use of the solution space information, we introduce the opposition‑based learning
(OBL) strategy for population initialization. The essence of OBL is to evaluate the optimal
solution obtained from the current search while considering the opposite of the optimal
solutions, as shown in Figure 6.
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X̃t
ij =

{
Cj + (Cj − Xt

ij) · r3, Xt
ij < Cj

Cj − (Cj − Xt
ij) · r3, Xt

ij ≥ Cj
(20)

Cj =
X j + X j

2
(21)

where X̃t
ij denotes the reverse point of the i‑th individual in the j‑th dimension in the t‑th

iteration, X jX j denote the upper and lower boundaries of the j‑th dimension, respectively,
and r3 is randomly distributed within [0, 1].

• Cosine non‑linear convergence factor

As a swarm intelligent optimization algorithm, it is difficult for GWO to strike a rea‑
sonable balance between a local search and a global search, i.e., it is easy for the standard
GWO to converge prematurely. The convergence factors a ∈ [0, 2] in Equation (13) to
Equation (15) linearly decrease, making it difficult to reasonably describe the actual non‑
linear convergence process of GWO. In this paper, a cosine non‑linear convergence factor
is introduced to describe the convergence process, i.e.,

a = 2 cos

(
π

2

(
t

Tmax

)2
)

(22)

where t represents the current iterations and Tmax is the maximum number of iterations.
The IGWO algorithm is obtained by improving the GWO with the above two strategies.

4.2.3. IGWO‑Based BPNN Parameter Optimization
In IGWO‑BPNN, the hyperparameters of the BPNN are optimized as the position of

the grey wolves. By updating the position, the hyperparameters of the BPNN are dynam‑
ically optimized, thus obtaining the global optimal solution. The parameter optimization
process of the BPNN based on IGWO is shown in Figure 7.
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The steps to optimize the hyperparameters of the BPNN through IGWOare as follows:
Step 1: Initializing parameters of IGWO and BPNN. The initial position of the grey wolves
is determined according to Equations (17) and (18). The population size is set to M. The
maximum number of iterations is Tmax. The upper and lower boundaries of the j‑th di‑
mension are set to X jX j, respectively. The connection weight of each layer of the neural
network is ω. The error threshold is ε, and the number of neurons in the hidden layer is n.
Step 2: Data preprocessing. In order to eliminate the influence of the residual dimension,
the residuals are normalized to [−1, 1] according to Equation (22) and divided into a train‑
ing dataset and a testing dataset.

xi =
2(x′ i − xmin)

xmax − xmin
− 1 (23)

where xi denotes the normalized data, x′i is the i‑th raw data and xmax and xmin represent
the maximum and minimum of the corresponding data, respectively.
Step 3: The termination condition (i.e., the current solution is the minimum) is determined
as follows: If a value remains constant in continuous iterations, it is considered to be the
minimum value. The selected sample performs Step 4–Step 7 below until the termination
condition is met and then exits.
Step 4: The position of each individual contains the hyperparameters of the BPNN, which
are trained on the training dataset according to Equation (16) to Equation (18) to construct‑
ing the corresponding BPNN model.
Step 5: The performance of the BPNN was evaluated with the testing dataset and mean
square error (MSE) was utilized to calculate the fitness f iti.
Step 6: The grey wolf population was graded according to f iti. The best adapted individ‑
ual was retained, and the remaining individuals were updated according to Equation (16)
to Equation (18).
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Step 7: If the number of iterations reaches Tmax, the hyperparameter optimization will end
and the loop will jump out. The output of the individual position (εi, ni)with the best f iti
is selected as the optimal hyperparameters of the BPNN to construct the prediction model.

4.3. Design of the EMD‑ARIMA‑BPNN Hybrid Traffic Forecasting Model
Through the above analysis, the satellite network traffic described by the heavy‑tailed

ON/OFF superposition model has both linear and non‑linear characteristics. ARIMA has
higher accuracy in linear data forecasting, whereas the BPNN has better performance in
forecasting non‑linear data. In this paper, after decomposing satellite network traffic using
EMD, the ARIMAwas utilized to extract the linear laws of traffic. Meanwhile, the residual
of ARIMA will be utilized as an input for a BPNN to extract the non‑linear laws. The
overall flow chart of the EMD‑ARIMA‑BPNN is demonstrated in Figure 8. The concrete
steps of the EMD‑ARIMA‑BPNN hybrid model for satellite network traffic forecasting are
as follows.

Aerospace 2024, 11, x FOR PEER REVIEW 16 of 27 
 

 

Step 6: The grey wolf population was graded according to ifit . The best adapted indi-
vidual was retained, and the remaining individuals were updated according to Equation 
(16) to Equation (18). 
Step 7: If the number of iterations reaches maxT , the hyperparameter optimization will end 
and the loop will jump out. The output of the individual position ( ),i inε  with the best ifit  
is selected as the optimal hyperparameters of the BPNN to construct the prediction model. 

4.3. Design of the EMD-ARIMA-BPNN Hybrid Traffic Forecasting Model 
Through the above analysis, the satellite network traffic described by the heavy-tailed 

ON/OFF superposition model has both linear and non-linear characteristics. ARIMA has 
higher accuracy in linear data forecasting, whereas the BPNN has better performance in 
forecasting non-linear data. In this paper, after decomposing satellite network traffic using 
EMD, the ARIMA was utilized to extract the linear laws of traffic. Meanwhile, the residual 
of ARIMA will be utilized as an input for a BPNN to extract the non-linear laws. The 
overall flow chart of the EMD-ARIMA-BPNN is demonstrated in Figure 8. The concrete 
steps of the EMD-ARIMA-BPNN hybrid model for satellite network traffic forecasting are 
as follows. 

Begin

Satellite network traffic: D(t)

ARIMA
(p1, d1, q1)

IMFs forecasted by 
ARIMA: L’(t) 

Calculate IMFs with EMD

IMF1 IMF2 IMFn

Residual: R(t)
R(t) = D(t) − L’(t)

...

Satellite network traffic 
generated by ON/OFF Model

ARIMA
(p2, d2, q2)

ARIMA
(pn, dn, qn)

Initialization of IGWO 
and BPNN

BPNN weights 
optimized by IGWO

Residual forecasted by 
IGWO-BPNN: R’(t)

...

Forecasted satellite network traffic: D’(t)
D’(t) = L’(t) + R’(t)

End

EMD-ARIMA for 
long-range baseline

IGWO-BPNN for short-
range fluctuations

 
Figure 8. EMD-ARIMA-BPNN hybrid model for satellite network traffic forecasting. 

Step 1: Satellite network traffic generation based on the ON/OFF model. Network traffic 
is aggregated to the satellite network through gateway stations to generate satellite net-
work traffic data ( )D t . 

Step 2: Decompose ( )D t  into multiple IMFs with short-range dependence using EMD. 
Batch modelling of multi-order IMFs is implemented according to Algorithm 1 to con-
struct ARIMA(pi, di, qi) ( 1, 2, , )i n= ⋅ ⋅ ⋅ . The final linear sequence ( )L t′  of the satellite net-
work traffic sequence is obtained. 

Figure 8. EMD‑ARIMA‑BPNN hybrid model for satellite network traffic forecasting.

Step 1: Satellite network traffic generation based on the ON/OFFmodel. Network traffic is
aggregated to the satellite network through gateway stations to generate satellite network
traffic data D(t).
Step 2: Decompose D(t) into multiple IMFs with short‑range dependence using EMD.
Batchmodelling ofmulti‑order IMFs is implemented according toAlgorithm 1 to construct
ARIMA(pi, di, qi)(i = 1, 2, · · ·, n). The final linear sequence L′(t) of the satellite network
traffic sequence is obtained.
Step 3: Eliminating the linear sequence L′(t) from the raw satellite network traffic D(t) to
obtain the residual sequence R(t):

R(t) = D(t)− L′(t) (24)
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Step 4: The IGWO algorithm is utilized to optimize the hyperparameters of the BPNN, i.e.,
(εi, ni). The residual R(t) is forecasted; R′(t) demonstrates the forecasting result.
Step 5: Combining the linear sequence L′(t) of the satellite network traffic obtained from
ARIMA(pi, di, qi) and the forecasted residual R′(t), the forecasted satellite network traffic
D′(t) is obtained:

D′(t) = L′(t) + R′(t) (25)

5. Simulation Performance and Analysis
5.1. Dataset Description

We construct a LEO mega‑constellation with 1584 satellites deployed in 72 orbits on
the NS 3.31 simulation platform to evaluate the effectiveness of the proposed method. The
simulation platform is deployed on Ubuntu 20.04. Each satellite has four ISLs, including
two inter‑plane ISLs and two intra‑plane ISLs. All ISLs are optical links, which mitigate
the influence of interference. The up/downlink rates and bandwidths of the ISLs are both
5 Mbps [33]. The simulation time is 100 s per run. The other parameters of the constellation
and network are shown in Table 3.

Table 3. Parameter settings of the LEO mega‑constellation network.

Parameter Value

Orbital parameters

Number of orbits 72
Satellites per orbit 22
Orbital altitude (km) 550

Inclination (◦) 53.8

Network parameters

Buffer queue size 100
Minimum elevation of

gateway (◦) 30

Uplink/downlink rate (Mbps) 5
Inter‑satellite link rate (Mbps) 5

Packet size (byte) 512

According to the satellite network traffic forecasting model in Figure 8, the source
satellites alternate between the sending/non‑sending states according to theON/OFFmodel
to generate network traffic. After that, the traffic generated by terrestrial sources will be
overlaid to the mega‑constellation network through ground stations, obtaining the net‑
work traffic of corresponding satellites. The distribution of satellites and ISLs in the simu‑
lated constellation is shown in Figure 9.
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We set eight flows (source and destination pairs) distributed between 40◦S and 60◦N
(most of the global population is distributed within this latitude). The specific sources and
destinations of the constellation network traffic are demonstrated in Table 4. The network
topology changes over time with the movement of satellites. During the experimental
cycle, sampling is performed every minute; T = 1450 traffic data for the whole cycle are
selected as the dataset.

Table 4. Source and destination of flows.

Flow Number Source Destination

1 Tokyo Delhi
2 Shanghai São Paulo
3 Mumbai Mexico City
4 Beijing Osaka
5 Cairo New York
6 Dhaka Karachi
7 Buenos Aires Kolkata
8 Istanbul London

5.2. Self‑Similarity Analysis and EMD‑Based Decomposition
This section analyses the self‑similarity of the satellite network traffic anddecomposes

the traffic into short‑range dependent trafficusing EMD. In thiswork, self‑similarity ismea‑
sured using the Hurst index (H), which is a general index to detect whether a stochastic
process is self‑similar [34]. H ∈ (0, 0.5] indicates that network traffic is short‑range depen‑
dent, whereas H ∈ (0.5, 1) indicates that network traffic has self‑similarity and long‑range
dependence. A larger H‑index indicates a higher self‑similarity degree, burstiness and
dependency. Estimation methods for the Hurst index mainly include residual variance,
periodogram, R/S graph and wavelet analysis, among which R/S graph has better robust‑
ness for analyzing the edge distribution of random processes. Meanwhile, R/S graph has
better adaptability to different distributions. Therefore, R/S graph was adopted to esti‑
mate the Hurst index of the satellite network traffic. For the raw traffic demonstrated in
Figure 10, H = 0.9414, indicating the strong self‑similarity and long‑range dependence of
the raw satellite network traffic.

The raw traffic is decomposed according to Equation (6) and the steps demonstrated
in Table 2. The resulting 10 IMFs (IMF1~IMF10) are shown in Figure 10. It can be found that
when the raw traffic is decomposed into 10 IMFs, themagnitude of the residuals is very low
and negligible. As the order of IMFs increases, the residuals tend to decrease. Therefore,
10 IMFs are sufficient to meet the forecasting accuracy requirements while reducing the
computational complexity of the EMD decomposition.

The envelopes of the autocorrelation function of the raw traffic and IMFs are shown
in Figure 11. The grey region is the envelope of the autocorrelation function of the raw
traffic, whereas the blue region denotes the superposition of the envelopes of the IMFs
autocorrelation functions. It can be seen that the decay of the raw traffic autocorrelation
function is similar to a hyperbolic function, with a slow decay rate. After EMD decompo‑
sition, the decay rate of the autocorrelation function of the IMFs is significantly faster than
that of raw traffic, which indicates that EMD achieves a reduction in self‑similarity, mak‑
ing the decomposed components exhibit short‑range dependence instead of long‑range
dependence. Thus, it is proved theoretically and experimentally that the satellite network
traffic after EMD no longer has self‑similarity. On this basis, IMFs can be forecasted using
ARIMA to obtain a higher short‑term forecasting accuracy with lower complexity.
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5.3. Satellite Network Traffic Forecasting
After obtaining the IMFs and residuals of the satellite network traffic through EMD,

ARIMA is utilized to forecast IMFs. The residuals are forecasted using the IGWO‑BPNN
model.

5.3.1. ARIMA‑Based Forecasting for IMFs
This section follows the ARIMAmodelling steps to construct ARIMA(p, d, q) for each

order of IMF. The optimal parameters of ARIMA(p, d, q) for IMFs are determined via an
adaptive fixed‑order optimization search operator, as shown in Table 5.
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Table 5. Optimal models corresponding to each order of IMFs.

Parameters IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10
p 1 2 2 2 2 2 2 2 2 2
d 0 0 0 0 1 1 0 1 1 0
q 1 0 0 0 0 0 0 0 0 0

AIC −12.9 −15.4 −18.5 −22.4 −32.3 −37.4 −33.9 −47.6 −54.4 −67.2
ϕ1 −0.82 1.72 1.95 1.99 2.00 2.00 2.00 2.00 2.00 2.00
ϕ2 0 −0.88 −0.99 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00 −1.00
θ1 −1.00 0 0 0 0 0 0 0 0 0
σ2

ε 2.4 × 10−6 2.1 × 10−7 9.0 × 10−9 1.8 × 10−10 9.7 × 10−15 5.8 × 10−17 1.8 × 10−15 2.1 × 10−21 2.3 × 10−24 2.4 × 10−25
σIMF 1.6 × 10−3 2.4 × 10−3 3.1 × 10−3 3.0 × 10−3 2.0 × 10−3 1.9 × 10−3 1.7 × 10−3 2.4 × 10−3 2.4 × 10−3 2.7 × 10−3
σIMF′ 1.2 × 10−5 5.3 × 10−4 2.7 × 10−3 2.8 × 10−3 1.7 × 10−3 1.9 × 10−3 1.7 × 10−3 2.4 × 10−3 2.4 × 10−3 1.9 × 10−3
MAPE 1.2 × 10 2.4 × 10 5.3 × 10 2.5 × 101 1.3 × 10 1.5 × 10−1 5.1 × 10−2 3.9 × 10−3 1.3 × 10−4 2.5 × 10−4
RMSE 1.6 × 10−3 2.5 × 10−3 3.4 × 10−3 2.3 × 10−3 5.2 × 10−4 9.8 × 10−5 1.3 × 10−5 2.5 × 10−6 9.2 × 10−8 6.8 × 10−8

In Table 5, ϕ1, ϕ2, θ1 and σ2
ε,p,d,q are the parameters of the EMD and σIMF and σIMF′ are

the standard deviations of the IMFs and fitted IMFs, respectively. The Akaike information
criterion (AIC) is calculated as

AIC = T · ln
(

σ2
ε,p,d,q

)
+ 2(p + q + 1) (26)

where T denotes the length of the satellite network traffic. The mean absolute percentage
error (MAPE) of the i‑th IMF is calculated as

MAPEi =
1
T

T

∑
t=1

∣∣∣∣ ξi(t)
IMFi(t)

∣∣∣∣ (27)

The root mean square error (RMSE) of the i‑th IMF is calculated as

RMSEi =

√√√√ 1
T

T

∑
t=1

ξi(t)
2 (28)

where T denotes the length of the satellite network traffic and ξi(t) denotes the t‑th value
of the fitted residual of IMFi.

The fitted IMFs, i.e., IMF′i (t), are reconstructed to describe the linear feature of the
satellite network traffic:

L′(t) =
n

∑
i=1

IMF′i (t) (29)

5.3.2. IGWO‑BPNN‑Based Forecasting for Residuals
The IGWO‑BPNN proposed in Section 4.2 is utilized to forecast residuals. The param‑

eters of the IGWO and BPNN are shown in Table 6. Among the parameters of the BPNN,
the number of neurons in the hidden layer directly affects themapping ability of the BPNN
to deal with complex problems. The empirical formula for defining the number of neurons
is defined as

n =
√

u + v + b, b ∈ [1, 10] (30)

where u is the number of neurons in the input layer, v is the number of neurons in the
output layer and b is the bias parameter.

The residual of the satellite network traffic is obtained by removing the linear se‑
quence L′(t) from the original sequence D(t). In order to verify the forecasting perfor‑
mance of the IGWO‑BPNN, the forecasting results R′(t) for the IGWO‑BPNN are com‑
pared with the results obtained from the BPNN, GWO‑BPNN and grey‑BPNN [35]. To
ensure reasonable results, the parameters of the BPNN and GWO in the comparison algo‑
rithms are set to be the same as for the IGWO‑BPNN.
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Table 6. Initial parameters of IGWO‑BPNN.

Parameter Value

Number of search agents of IGWO 30
Maximum iterations of IGWO 500

Number of neurons in input layer 7
Number of neurons in output layer 1
Number of neurons in hidden layer 9

Learning efficiency 0.1
Error limitation 1 × 10−3

Maximum iterations of BPNN 1000

The rootmean square error (RMSE), mean absolute error (MAE), determination coeffi‑
cient (R2) and mean absolute percentage error (MAPE) are taken as the evaluation indexes
of the forecasting results. The experimental results are shown in Figure 12 (Table 7 for spe‑
cific values). Among them, the MAPE and RMSE are defined in Equations (26) and (27);
MAE and R2 are defined as

MAE =
1
T

T

∑
t=1

∣∣R(t)− R′(t)
∣∣ (31)

R2 = 1−

T
∑

t=1
(R(t)− R′(t))2

T
∑

t=1

(
R(t)− R(t)

)2
(32)

where T denotes the length of the traffic data, R(t) denotes the residual, R′(t) denotes the
forecasted residual and R(t) denotes the mean value of forecasted residual.
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Table 7. Analysis of the forecasting performance of residual R(t).

Forecasting Schemes
Indexes

RMSE MAE R2 MAPE

BPNN 0.037732 0.039750 0.87158 11.87%
GWO‑BPNN [12] 0.035736 0.023742 0.85732 7.09%
Grey‑BPNN [35] 0.019308 0.024802 0.92869 7.41%
IGWO‑BPNN 0.000935 0.006358 0.99735 1.90%
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As shown in Table 7, the IGWO‑BPNN, GWO‑BPNN and grey‑BPNN represent a
BPNN optimized using IGWO, GWO [12] and the grey model [35], respectively. Com‑
pared to the BPNN, IGWO‑BPNN reduced the RMSE and MAE values by 97.4% and 84%,
respectively, and improved R2 by 14.43%. It is indicated that combining IGWOwith BPNN
is effective in forecasting the residuals of satellite network traffic.

5.3.3. Traffic Forecasting Based on the ARIMA‑BPNN Hybrid Model
On the basis of obtaining the forecasted residual R′(t), the forecasting result D′(t) is

obtained by integrating the linear sequence L′(t) of traffic obtained from ARIMA(pi, di, qi)
according to Equation (24). The comparative analysis of the forecasted residuals proved
the effectiveness of the IGWO algorithm to improve the BPNN. To verify the effectiveness
of the proposed hybrid model on satellite network traffic forecasting, the forecasting re‑
sults are compared with those from traditional forecasting methods, i.e., ARIMA, LSTM
andARIMA‑BPNN.ARIMA‑BPNN is a network traffic forecastingmodel proposed in [13].
The forecasting results of the above fourmethods are shown in Figure 13; the accuracymet‑
rics and operation time are shown in Figure 14 (see Table 8 for specific values). The inputs
of the EMD‑ARIMA‑BPNN, ARIMA, ARIMA‑BPNN and LSTM are the testing dataset of
the satellite network traffic.
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Table 8. Analysis of the forecasting performance for satellite network traffic.

Forecasting Schemes
Indexes

RMSE MAE R2 MAPE Time (s)

LSTM 0.0054126 0.0294802 0.97899 8.22% 4.159
ARIMA 0.0044703 0.0397500 0.99475 11.06% 3.187

ARIMA‑BPNN 0.0025979 0.0237420 0.98643 6.61% 4.420
EMD‑ARIMA‑BPNN 0.0010770 0.0063580 0.98643 1.77% 2.366

Combining Figure 13 andTable 8, it can be seen that the proposedhybridmodel (EMD‑
ARIMA‑BPNN) outperforms ARIMA and LSTM significantly on satellite network traffic
with LRD characteristics. At the same time, EMD‑ARIMA‑BPNN also has advantages over
ARIMA‑BPNN in terms of error metrics and operation time. The forecasted traffic using
EMD‑ARIMA‑BPNN is close to the actual value, which indicates the improved the fore‑
casting accuracy for satellite network traffic.

5.3.4. Variable Step Forecasting
The above comparison experiments validate the forecasting performance of the pro‑

posed hybrid model for satellite network traffic. In order to verify whether the forecasting
accuracy fluctuates significantly with the change in step size, the forecasting accuracy of
the hybrid model is reanalyzed when varying step size [36]. The raw step size selected in
this paper is measured in minutes. Therefore, N‑step forecasting means that the satellite
network traffic can be forecasted after N minutes. In particular, N = 1 indicates the fore‑
casting target for the comparison experiments in the previous section. The variation in
forecasting accuracy with different step sizes is shown in Figure 15.

The MAPE of EMD‑ARIMA‑BPNN tends to increase slowly as the forecasting step
size increases. Therefore, EMD‑ARIMA‑BPNNcan better describe the stage‑by‑stage trend
of satellite network traffic, which provides an advantage for strategies such as the load‑
balanced routing of LEO mega constellations.
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6. Conclusions
Satellite network traffic is characterized by self‑similarity, long‑range dependence

and non‑linearity, which makes it difficult to describe the traffic characteristics well with
traditional single or hybrid models, resulting in low forecasting accuracy. This paper pro‑
poses an improved method for forecasting satellite network traffic by combining a BPNN
with EMD‑ARIMA. Different from traditional forecasting methods, we quantitatively ana‑
lyze the self‑similarity of satellite network traffic. Through theoretical analysis and exper‑
iments, the multi‑order IMFs obtained from satellite network traffic via EMD have been
proved to have short‑range dependence. Thus, self‑similar satellite network traffic is de‑
composed into multiple‑order IMFs with short‑range dependence using EMD. IMFs are
forecasted by ARIMA and improved via an adaptive fixed‑order search operator to re‑
duce the computational complexity. At the same time, IGWO is adopted to optimize the
hyperparameters of the BPNN. The residuals of EMD‑ARIMA are forecasted using the
optimized BPNN to finally obtain the forecasted satellite network traffic. Comparison ex‑
periments with traditional traffic forecasting models and hybrid models prove that the
proposed EMD‑ARIMA‑BPNNmodel outperforms the traditional satellite network traffic
forecasting methods, with several improvements in forecasting accuracy and efficiency.

In our future work, we will further apply the network traffic forecasting results to
the routing of LEO mega‑constellation networks. By sensing the change in traffic load,
high‑load ISLs can be avoided in advance, thus enhancing the load balancing ability of the
mega‑constellation network.
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Appendix A

Proof of Lemma 1. Let the Fourier transform of Ci(t) in Equation (5) be Ci(ω) and the au‑
tocorrelation function be Rc(τ). According to the Fourier transform of the autocorrelation
function and the power spectral density SX(ω), we can obtain

Rc(τ) =
1

2π

∫
SX(ω)ejωτdω (A1)

The signal power spectral density SX(ω) is

SX(ω) = lim
T→∞

1
T
|Ci(ω)|2 (A2)

where T is the length of the signal in the time domain and, according to IMF Definition
1, the IMF is similar to a smooth narrowband Gaussian process, so, Ci(t) is a bandlimited
signal. Substituting Equation (A2) into Equation (A1), we obtain

Rc(τ) =
1

2π

∫
lim

x→∞

1
T
|Ci(ω)|2ejωτdω =

1
2πT

∫
|Ci(ω)|2ejωτdω (A3)

Since Rc(τ) is a real function, Equation (A3) can be simplified as

Rc(τ) =
1

2πT

∫
|Ci(ω)|

2
cos(ωτ)dω (A4)

Let themaximum andminimum values of |Ci(ω)|2 in the frequency band Ω beM and
m, respectively, then

m
2πT

∫
Ω

cos(ωτ)dω ≤ Rc(τ) ≤
M

2πT

∫
Ω

cos(ωτ)dω (A5)

i.e.,

Rc(τ) ∼
∫

Ω
cos(ωτ)dω =

1
τ

sin(ωτ)|Ω (A6)

Therefore, Rc(τ) is integrable. Thus, it is proven that the individual IMF components
obtained from self‑similar network traffic after EMD decomposition have SRD character‑
istics. □
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