Overview of Space-Based Laser Communication Missions and Payloads: Insights from the Autonomous Laser Inter-Satellite Gigabit Network (ALIGN)
Abstract
:1. Introduction
Platform | Project/Experiment | Maximum Link Span (km) | Maximum Data Rates |
---|---|---|---|
LEO to Ground Station | LUCE [13], OPALS, Tesat LCT links [12] | 5000 | 1.8 Gbps |
LEO to GEO Satellite | SILEX [14], EDRS [15] | 45,000 | 50 Mbps to 1.8 Gbps |
LEO to Aircraft | OCSD [9] | 200 | 100 Mbps |
Aircraft to Ground Station | [21] | 50–79 | 1.25 Gbps |
Balloon to LEO Satellite | STROPEX [23], CAPANINA [24] | 200 | 2.5 Gbps |
GEO to Ground Station | LCE aboard ETS-VI [8,9] | - | 1 Mbps |
HAP to Ground | Stratobus [2,29] | 20 km above earth surface | - |
Ground to Deep Space | LLCD, LCRD [7,18,19] | 380,000–400,000 | 620 Mbps to 20 Gbps |
Deep Sea | JAMSTEC [26] | 0.9 | 1 Gbps |
Inter-satellite Link | OICETS, SILEX [16], LCRD [17] | 45,000 | 50 Mbps |
2. Previous Space-Based Laser Communication Missions
3. CubeSats and Inter-Satellite Links (ISLs)
3.1. Lasercom Terminals Payload Capacity
3.2. LEO Exploration
3.3. Future Constellations
3.4. Future OISL Payloads
3.5. Autonomous Laser Inter-Satellite Gigabit Network (ALIGN) and the FOCUS (Free-Space Optical Communications Unit for Satellites) Solution for LEO-to-LEO Platforms
3.5.1. Key Operational Features of ALIGN
3.5.2. Link Budget
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FSO | Free-Space Optical |
GEO | Geostationary orbit |
GOPEX | Galileo Optical Experiment |
HAP | High Altitude Platform |
IMDD | Intensity Modulation with Direct Detection |
JAXA | Japan Aerospace Exploration Agency |
LCE | Laser Communication Equipment |
LEO | Low Earth Orbit |
LUCE | Laser Utilizing Communication Equipment |
MEO | Medium Earth Orbit |
NASA | National Aeronautics and Space Administration |
NFIRE | U.S. Missile Defense Agency satellite |
OCSD | Optical Communications and Sensor Demonstration |
OGS | Optical Ground Station |
OICETS | Optical Inter-orbit Communication Engineering Test Satellite |
OOK | On-Off Keying |
OPALS | Optical Payload for Lasercomm Science |
OIA | optical interface assembly |
PAT | Pointing Acquisition and Tracking |
PCB | Printed Circuit Board |
PSD | Position-sensitive detector |
SDA | Space Development Agency |
SILEX | Semiconductor-laser Intersatellite Link Experiment |
SoC | System-on-chip |
SOTA | Small Optical Transponder |
SSM | Slow Steering Mirror |
STROPEX | Stratospheric Optical Payload Experiment |
SWaP | Size, Weight, and Power |
References
- DataReportal, We Are Social, M. Worldwide Internet User Penetration from 2014 to July 2024. Available online: https://www.statista.com/statistics/325706/global-internet-user-penetration/ (accessed on 3 October 2024).
- Son, I.K.; Mao, S. A survey of free space optical networks. Digit. Commun. Netw. 2017, 3, 67–77. [Google Scholar] [CrossRef]
- Rose, T.S.; Rowen, D.W.; LaLumondiere, S.D.; Werner, N.I.; Linares, R.; Faler, A.C.; Wicker, J.M.; Coffman, C.M.; Maul, G.A.; Chien, D.H.; et al. Optical communications downlink from a low-earth orbiting 1.5U CubeSat. Opt. Express 2019, 27, 24382–24392. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Chen, H.H.; Guo, Q. LEO/VLEO Satellite Communications in 6G and Beyond Networks—Technologies, Applications and Challenges. IEEE Netw. 2024, 38, 273–285. [Google Scholar] [CrossRef]
- Straits, R. Space-Based Laser Communication Market Growth, Trends and Forecast to 2031. 2024. Available online: https://www.linkedin.com/pulse/space-based-laser-communication-market-size-trends-h8y7f (accessed on 25 March 2024).
- Khalighi, M.A.; Uysal, M. Survey on Free Space Optical Communication: A Communication Theory Perspective. IEEE Commun. Surv. Tutor. 2014, 16, 2231–2258. [Google Scholar] [CrossRef]
- Boroson, D.M.; Robinson, B.S.; Murphy, D.V.; Burianek, D.A.; Khatri, F.; Kovalik, J.M.; Sodnik, Z.; Cornwell, D.M. Overview and results of the Lunar Laser Communication Demonstration. In Proceedings of the SPIE 8971, Free-Space Laser Communication and Atmospheric Propagation XXVI, 89710S, San Francisco, CA, USA, 2–3 February 2014. [Google Scholar] [CrossRef]
- Munemasa, Y.; Saito, Y.; Carrasco-Casado, A.; Trinh, P.V.; Takenaka, H.; Kubo-oka, T.; Shiratama, K.; Toyoshima, M. Feasibility study of a scalable laser communication terminal in NICT for next-generation space networks. In International Conference on Space Optics—ICSO 2018; SPIE: Bellingham, WA, USA, 2019; p. 111805W. [Google Scholar] [CrossRef]
- Toyoshima, M.; Carrasco-Casado, A. NICT’s optical communication projects and ground station development. In Proceedings of the KISS Workshop: Optical Communication on SmallSats, Online, 11–14 July 2016. [Google Scholar]
- Lyras, N.K.; Efrem, C.N.; Kourogiorgas, C.I.; Panagopoulos, A.D.; Arapoglou, P.D. Optimizing the Ground Network of Optical MEO Satellite Communication Systems. IEEE Syst. J. 2020, 14, 3968–3976. [Google Scholar] [CrossRef]
- Luini, L.; Riva, C.; Capelletti, F.; Comisso, A.; Rocha, A.; Mota, S.; Brás, M.; Biscarini, M.; Barbieri, S.; Consalvi, F.; et al. Ka-Band Rain Attenuation Derived from a MEO Satellite Constellation. In Proceedings of the 2024 18th European Conference on Antennas and Propagation (EuCAP), Glasgow, UK, 17–22 March 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 1–5. [Google Scholar]
- Products|TESAT. Available online: https://www.tesat.de/products (accessed on 26 September 2023).
- Carrasco-Casado, A.; Shiratama, K.; Trinh, P.V.; Kolev, D.; Munemasa, Y.; Fuse, T.; Tsuji, H.; Toyoshima, M. Development of a miniaturized laser-communication terminal for small satellites. Acta Astronaut. 2022, 197, 1–5. [Google Scholar] [CrossRef]
- Sodnik, Z.; Furch, B.; Lutz, H. Optical Intersatellite Communication. IEEE J. Sel. Top. Quantum Electron. 2010, 16, 1051–1057. [Google Scholar] [CrossRef]
- ESA—Kernel (20). Available online: https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Shining_light_on_the_future_of_space_communications (accessed on 26 September 2023).
- Jono, T.; Takayama, Y.; Ohinata, K.; Kura, N.; Koyama, Y.; Arai, K.; Shiratama, K.; Sodnik, Z.; Bird, A.; Demelenne, B. Demonstrations of ARTEMIS-OICETS inter-satellite laser communications. In Proceedings of the 24th AIAA International Communications Satellite Systems Conference, San Diego, CA, USA, 11–14 June 2006; p. 5461. [Google Scholar]
- Mohon, L. Laser Communications Relay Demonstration (LCRD). 2023. Available online: http://www.nasa.gov/mission_pages/tdm/lcrd/index.html (accessed on 26 September 2023).
- Edwards, B. Overview of the laser communications relay demonstration project, 2012. SpaceOps 2012, 2012, 1261897. [Google Scholar]
- Benna, M.; Mahaffy, P.; Halekas, J.; Elphic, R.; Delory, G. Variability of helium, neon, and argon in the lunar exosphere as observed by the LADEE NMS instrument. Geophys. Res. Lett. 2015, 42, 3723–3729. [Google Scholar] [CrossRef]
- Cazaubiel, V.; Planche, G.; Chorvalli, V.; Hors, L.L.; Roy, B.; Giraud, E.; Vaillon, L.; Carré, F.; Decourbey, E. LOLA: A 40000 km optical link between an aircraft and a geostationary satellite. In Proceedings of the Sixth International Conference on Space Optics, Proceedings of ESA/CNES ICSO 2006, Noordwijk, The Netherlands, 27–30 June 2006. [Google Scholar]
- Moll, F.; Horwath, J.; Shrestha, A.; Brechtelsbauer, M.; Fuchs, C.; Navajas, L.A.M.; Souto, A.M.L.; Gonzalez, D.D. Demonstration of high-rate laser communications from a fast airborne platform. IEEE J. Sel. Areas Commun. 2015, 33, 1985–1995. [Google Scholar]
- Horwath, J.; Fuchs, C. Aircraft to ground unidirectional laser-communications terminal for high-resolution sensors. In Free-Space Laser Communication Technologies XXI; SPIE: Bellingham, WA, USA, 2009; Volume 719909. [Google Scholar] [CrossRef]
- Horwath, J.; Knapek, M.; Epple, B.; Brechtelsbauer, M.; Wilkerson, B. Broadband backhaul communication for stratospheric platforms: The stratospheric optical payload experiment (STROPEX). In Free-Space Laser Communications VI; SPIE: Pune, India, 2006; pp. 436–447. [Google Scholar]
- Grace, D.; Oodo, M.; Mitchell, P. An overview of the capanina project and its proposed radio regulatory strategy for aerial platforms. CAPANINA Consortium. 2005. Available online: https://capanina.com/ (accessed on 25 March 2024).
- Karapantazis, S.; Pavlidou, F. Broadband communications via high-altitude platforms: A survey. IEEE Commun. Surv. Tutor. 2005, 7, 2–31. [Google Scholar] [CrossRef]
- Ishibashi, S.; Susuki, K.I. 1Gbps x 100m Underwater Optical Wireless Communication Using Laser Module in Deep Sea. In OCEANS 2022, Hampton Roads; IEEE: Piscataway, NJ, USA, 2022; pp. 1–7. [Google Scholar]
- Liu, S.; Gao, Z.; Wu, Y.; Kwan Ng, D.W.; Gao, X.; Wong, K.K.; Chatzinotas, S.; Ottersten, B. LEO Satellite Constellations for 5G and Beyond: How Will They Reshape Vertical Domains? IEEE Commun. Mag. 2021, 59, 30–36. [Google Scholar] [CrossRef]
- Toyoshima, M. Recent trends in space laser communications for small satellites and constellations. J. Light. Technol. 2021, 39, 693–699. [Google Scholar] [CrossRef]
- Giggenbach, D.; Epple, B.; Horwath, J.; Moll, F. Optical Satellite Downlinks to Optical Ground Stations and High-Altitude Platforms. In Advances in Mobile and Wireless Communications: Views of the 16th IST Mobile and Wireless Communication Summit; István, F., Bitó, J., Bakki, P., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 331–349. [Google Scholar] [CrossRef]
- Wilson, K.E.; Lesh, J.R.; Yan, T.Y. GOPEX: A laser uplink to the Galileo spacecraft on its way to Jupiter. In Free-Space Laser Communication Technologies V; SPIE: Bellingham, WA, USA, 1993; pp. 138–146. [Google Scholar] [CrossRef]
- Perlot, N.; Knapek, M.; Giggenbach, D.; Horwath, J.; Brechtelsbauer, M.; Takayama, Y.; Jono, T. Results of the optical downlink experiment KIODO from OICETS satellite to optical ground station Oberpfaffenhofen (OGS-OP). Proc. SPIE 2007, 6457, 1. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Mokuno, M.; Jono, T.; Yamawaki, T.; Arai, K.; Toyoshima, M.; Kunimori, H.; Sodnik, Z.; Bird, A.; Demelenne, B. Optical inter-orbit communications engineering test satellite (OICETS). Acta Astronaut. 2007, 61, 163–175. [Google Scholar] [CrossRef]
- Vaillon, L.; Planche, G.; Chorvalli, V.; Hors, L.L. Optical communications between an aircraft and a geo relay satellite: Design and flight results of the LOLA demonstrator. In International Conference on Space Optics—ICSO 2008; SPIE: Bellingham, WA, USA, 2017; Volume 1056619. [Google Scholar] [CrossRef]
- Backes, N. TESAT Celebrates 10 Years of Laser Communications in Space. Available online: https://www.tesat.de/news/press/623-pi1286-tesat-celebrates-10-years-of-laser-communications-in-space (accessed on 25 March 2024).
- Lange, R.; Smutny, B. BPSK laser communication terminals to be verified in space. In Proceedings of the IEEE MILCOM 2004. Military Communications Conference, Monterey, CA, USA, 31 October–3 November 2004; Volume 1, pp. 441–444. [Google Scholar] [CrossRef]
- Pimentel, P.M.; Rödiger, B.; Schmidt, C.; Fuchs, C.; Rochow, C.; Hiemstra, T.; Zager, A.; Wertz, P.; Knopp, M.; Lehmann, M.; et al. Cube laser communication terminal (CubeLCT) state of the art. Acta Astronaut. 2023, 211, 326–332. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, G. Influence of HY-2 Satellite Platform Vibration on Laser Communication Equipment: Analysis and On-Orbit Experiment. In 3rd International Symposium of Space Optical Instruments and Applications; Urbach, H.P., Zhang, G., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2017; pp. 95–111. [Google Scholar]
- Mertikas, S.P.; Zhou, X.; Qiao, F.; Daskalakis, A.; Lin, M.; Peng, H.; Tziavos, I.N.; Vergos, G.; Tripolitsiotis, A.; Frantzis, X. First preliminary results for the absolute calibration of the Chinese HY-2 altimetric mission using the CRS1 calibration facilities in West Crete, Greece. Adv. Space Res. 2016, 57, 78–95. [Google Scholar] [CrossRef]
- Grigoryev, V.; Kovalev, V.; Shargorodskiy, V.; Sumerin, V. High-bit-rate laser space communication technology and results of on-board experiment. In Proceedings of the International Conference on Space Optics, Tenerife, Spain, 6–10 October 2014. [Google Scholar]
- Singh, U.; Horan, S.; Antill, C.; Petros, M.; Joplin, M.; Spellmeyer, N.; Wright, M.; Zucker, E.; Yu, A.; Numata, K. Independent reliability assessment of the NASA GSFC laser transmitter for the LISA program. In Proceedings of the International Conference on Space Optics—ICSO 2022, Dubrovnik, Croatia, 3–7 October 2022; SPIE: Bellingham, WA, USA; pp. 1409–1415. [Google Scholar]
- Schwander, T.; Lange, R.; Kämpfner, H.; Smutny, B. LCTSX: First on-orbit verification of a coherent optical link. Proc. SPIE 2004, 554, 419–421. [Google Scholar]
- Tröndle, D.; Pimentel, P.M.; Rochow, C.; Zech, H.; Muehlnikel, G.; Heine, F.; Meyer, R.; Philipp-May, S.; Lutzer, M.; Benzi, E. Alphasat-Sentinel-1A optical inter-satellite links: Run-up for the European data relay satellite system. In Proceedings of the Free-Space Laser Communication and Atmospheric Propagation XXVIII, San Francisco, CA, USA, 15–16 February 2016; SPIE: Bellingham, WA, USA; p. 973902. [Google Scholar]
- Takenaka, H.; Carrasco-Casado, A.; Fujiwara, M.; Kitamura, M.; Sasaki, M.; Toyoshima, M. Satellite-to-ground quantum-limited communication using a 50-kg-class microsatellite. Nat. Photonics 2017, 11, 502–508. [Google Scholar] [CrossRef]
- Carrasco-Casado, A.; Kunimori, H.; Takenaka, H.; Kubo-Oka, T.; Akioka, M.; Fuse, T.; Koyama, Y.; Kolev, D.; Munemasa, Y.; Toyoshima, M. LEO-to-ground polarization measurements aiming for space QKD using Small Optical TrAnsponder (SOTA). Opt. Express 2016, 24, 12254–12266. [Google Scholar] [CrossRef]
- Abrahamson, M.J.; Oaida, B.V.; Sindiy, O.; Biswas, A. Achieving operational two-way laser acquisition for OPALS payload on the International Space Station. In Free-Space Laser Communication and Atmospheric Propagation XXVII; SPIE: Bellingham, WA, USA, 2015; Volume 935408. [Google Scholar] [CrossRef]
- Rose, T.S.; Rowen, D.W.; LaLumondiere, S.; Werner, N.I.; Linares, R.; Faler, A.; Wicker, J.; Coffman, C.M.; Maul, G.A.; Chien, D.H.; et al. Optical communications downlink from a 1.5U Cubesat: OCSD program. In Proceedings of the International Conference on Space Optics—ICSO 2018, Chania, Greece, 9–12 October 2018; SPIE: Bellingham, WA, USA, 2019; pp. 201–212. [Google Scholar] [CrossRef]
- Schmidt, C.; Brechtelsbauer, M.; Rein, F.; Fuchs, C. OSIRIS Payload for DLR’s BiROS Satellite. In Proceedings of the International Conference on Space Optical Systems and Applications 2014, Kobe, Japan, 7–9 May 2014. [Google Scholar]
- Yin, J.; Li, Y.H.; Liao, S.K.; Yang, M.; Cao, Y.; Zhang, L.; Ren, J.-G.; Cai, W.-Q.; Liu, W.-Y.; Li, S.-L.; et al. Entanglement-based secure quantum cryptography over 1120 kilometres. Nature 2020, 582, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Mróz, P.; Otarola, A.; Prince, T.A.; Dekany, R.; Duev, D.A.; Graham, M.J.; Groom, S.L.; Masci, F.J.; Medford, M.S. Impact of the SpaceX Starlink Satellites on the Zwicky Transient Facility Survey Observations. Astrophys. J. Lett. 2022, 924, L30. [Google Scholar] [CrossRef]
- Strotkamp, M.; Munk, A.; Jungbluth, B.; Hoffmann, H.D.; Höffner, J. Diode-pumped Alexandrite laser instrument for next generation satellite-based Earth observation. In Proceedings of the International Conference on Space Optics—ICSO 2018, Chania, Greece, 9–12 October 2018; SPIE: Bellingham, WA, USA; pp. 160–173. [Google Scholar] [CrossRef]
- Komatsu, H.; Ohta, S.; Yamazoe, H.; Kubo, Y.; Nakao, T.; Ito, T.; Koda, D.; Sawada, H.; Ikeda, T.; Munemasa, Y.; et al. The pointing performance of the optical communication terminal, SOLISS in the experimentation of bidirectional laser communication with an optical ground station. In Proceedings of the Free-Space Laser Communications XXXIII, SPIE, Online, 6–11 March 2021; pp. 69–82. [Google Scholar] [CrossRef]
- Calzolaio, D.; Curreli, F.; Duncan, J.; Moorhouse, A.; Perez, G.; Voegt, S. EDRS-C—The second node of the European Data Relay System is in orbit. Acta Astronaut. 2020, 177, 537–544. [Google Scholar] [CrossRef]
- Zeif, R.; Kubicka, M.; Hörmer, A.J.; Henkel, M. OPS-SAT mission: An ESA Nanosatellite Mission. In Proceedings of the Lessons We Have Learned: 71st International Astronautical Congress, Online, 12–14 October 2020. [Google Scholar]
- Tadono, T.; Mizukami, Y.; Watarai, H.; Takaku, J.; Ohgushi, F.; Kai, H. Calibration and Validation of the Advanced Land Observing Satellite-3 “ALOS-3”. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2020, XLIII-B1-2020, 135–140. [Google Scholar] [CrossRef]
- Motohka, T.; Kankaku, Y.; Miura, S.; Suzuki, S. Alos-4 L-Band SAR Mission and Observation. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 5271–5273. [Google Scholar] [CrossRef]
- Edwards, B.; Randazzo, T.; Babu, N.; Murphy, K.; Albright, S.; Cummings, N.; Ocasio-Perez, J.; Potter, W.; Roder, R.; Zehner, S.A.; et al. Challenges, Lessons Learned, and Methodologies from the LCRD Optical Communication System AI&T. In Proceedings of the 2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Online, 29–31 March 2022; pp. 22–31. [Google Scholar] [CrossRef]
- Rieländer, D.; Mira, A.D.; Alaluf, D.; Daddato, R.; Mejri, S.; Piris, J.; Alves, J.; Antsos, D.; Biswas, A.; Karafolas, N.; et al. ESA ground infrastructure for the NASA/JPL PSYCHE Deep-Space Optical Communication demonstration. In Proceedings of the International Conference on Space Optics—ICSO 2022, Dubrovnik, Croatia, 3–7 October 2022; SPIE: Bellingham, WA, USA; pp. 159–169. [Google Scholar] [CrossRef]
- Awano, J.; Ogata, T.; Yajima, M. Development of wireless communication demonstration unit on intra-satellite. In Proceedings of the 39th International Communications Satellite Systems Conference (ICSSC 2022), Stresa, Italy, 18–21 October 2022; pp. 33–37. [Google Scholar] [CrossRef]
- Chaudhry, A.U.; Lamontagne, G.; Yanikomeroglu, H. Laser Intersatellite Link Range in Free-Space Optical Satellite Networks: Impact on Latency. IEEE Aerosp. Electron. Syst. Mag. 2023, 38, 4–13. [Google Scholar] [CrossRef]
- Toorian, A.; Diaz, K.; Lee, S. The CubeSat Approach to Space Access. In Proceedings of the 2008 IEEE Aerospace Conference, Big Sky, Montana, 1–8 March 2008; pp. 1–14. [Google Scholar] [CrossRef]
- Kolev, D.; Takenaka, H.; Munemasa, Y.; Akioka, M.; Iwakiri, N.; Koyama, Y.; Kunimori, H.; Toyoshima, M.; Artaud, G.; Issler, J.L.; et al. Overview of international experiment campaign with small optical transponder (SOTA). In Proceedings of the 2015 IEEE International Conference on Space Optical Systems and Applications (ICSOS), New Orleans, LA, USA, 26–28 October 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Carrasco-Casado, A.; Takenaka, H.; Kolev, D.; Munemasa, Y.; Kunimori, H.; Suzuki, K.; Fuse, T.; Kubo-Oka, T.; Akioka, M.; Koyama, Y. LEO-to-ground optical communications using SOTA (Small Optical TrAnsponder)–Payload verification results and experiments on space quantum communications. Acta Astronaut. 2017, 139, 377–384. [Google Scholar] [CrossRef]
- Iwamoto, K.; Komatsu, H.; Ohta, S.; Kubo, Y.; Nakao, T.; Yamazoe, H.; Kamata, T.; Munemasa, Y.; Kunimori, H.; Toyoshima, M.; et al. Experimental results on in-orbit technology demonstration of SOLISS. In Free-Space Laser Communications XXXIII; Hemmati, H., Boroson, D.M., Eds.; International Society for Optics and Photonics; SPIE: Bellingham, WA, USA, 2021; Volume 11678, p. 116780D. [Google Scholar] [CrossRef]
- Carrasco-Casado, A.; Do, P.X.; Kolev, D.; Hosonuma, T.; Shiratama, K.; Kunimori, H.; Trinh, P.V.; Abe, Y.; Nakasuka, S.; Toyoshima, M. Intersatellite-Link Demonstration Mission between CubeSOTA (LEO CubeSat) and ETS9-HICALI (GEO Satellite). In Proceedings of the 2019 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Portland, OR, USA, 14–16 October 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Dresscher, M.; Korevaar, C.W.; van der Valk, N.C.J.; de Lange, T.J.; Saathof, R.; Doelman, N.; Crowcombe, W.E.; Duque, C.M.; de Man, H.; Human, J.D.; et al. Key Challenges and Results in the Design of Cubesat Laser Terminals, Optical Heads and Coarse Pointing Assemblies. In Proceedings of the 2019 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Portland, OR, USA, 14–16 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Schieler, C.M.; Riesing, K.M.; Bilyeu, B.C.; Robinson, B.S.; Wang, J.P.; Roberts, W.T.; Piazzolla, S. TBIRD 200-Gbps CubeSat Downlink: System Architecture and Mission Plan. In Proceedings of the 2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Kyoto City, Japan, 28–31 March 2022; pp. 181–185. [Google Scholar] [CrossRef]
- Tomio, H.; Grenfell, P.; Kammerer, W.; Serra, P.; Čierny, O.; Lindsay, C.; Garcia, M.; Cahoy, K.; Clark, M.; Coogan, D.; et al. Development and Testing of the Laser Transmitter and Pointing, Acquisition, and Tracking System for the CubeSat Laser Infrared CrosslinK (CLICK) B/C Mission. In Proceedings of the 2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Kyoto City, Japan, 28–31 March 2022; pp. 224–231. [Google Scholar] [CrossRef]
- Fuchs, C.; Schmidt, C. Update on DLR’s OSIRIS program. In International Conference on Space Optics—ICSO 2018; Sodnik, Z., Karafolas, N., Cugny, B., Eds.; International Society for Optics and Photonics; SPIE: Bellingham, WA, USA, 2019; Volume 11180, p. 111800I. [Google Scholar] [CrossRef]
- Schmidt, C.; Rödiger, B.; Rosano, J.; Papadopoulos, C.; Hahn, M.T.; Moll, F.; Fuchs, C. DLR’s Optical Communication Terminals for CubeSats. In Proceedings of the 2022 IEEE International Conference on Space Optical Systems and Applications (ICSOS), Kyoto City, Japan, 28–31 March 2022; pp. 175–180. [Google Scholar] [CrossRef]
- Alfriend, K.T.; Vadali, S.R.; Gurfil, P.; How, J.P.; Breger, L.S. Chapter 1—Introduction. In Spacecraft Formation Flying; Alfriend, K.T., Vadali, S.R., Gurfil, P., How, J.P., Breger, L.S., Eds.; Butterworth-Heinemann: Oxford, UK, 2010; pp. 1–11. [Google Scholar] [CrossRef]
- Xu, X.; Wang, C.; Jin, Z. Perturbed ISL Analysis in LEO Satellite Constellation. In Proceedings of the 2020 IEEE 3rd International Conference on Electronics and Communication Engineering (ICECE), Xi’An, China, 14–16 December 2020; pp. 12–17. [Google Scholar] [CrossRef]
- Yang, H.; Guo, B.; Xue, X.; Deng, X.; Zhao, Y.; Cui, X.; Pang, C.; Ren, H.; Huang, S. Interruption Tolerance Strategy for LEO Constellation With Optical Inter-Satellite Link. IEEE Trans. Netw. Serv. Manag. 2023, 20, 4815–4830. [Google Scholar] [CrossRef]
- Kozhaya, S.; Kassas, Z.M. A First Look at the OneWeb LEO Constellation: Beacons, Beams, and Positioning. IEEE Trans. Aerosp. Electron. Syst. 2024, 60, 7528–7534. [Google Scholar] [CrossRef]
- Rosano Nonay, J.; Rüddenklau, R.; Sinn, A.; Rödiger, B.; Schmidt, C.; Schitter, G. Horizontal Link Demonstration Over 143 km With CubeISL: The World’s Smallest Commercial Optical Communication Payload for Inter-Satellite Links. In Proceedings of the Small Satellite Conference 2024, Logan, Utah, 3–8 August 2024. [Google Scholar]
Ref. | Year | Mission | Link Type | Wavelength | Modulation | Data Rate |
---|---|---|---|---|---|---|
[9] | 1994 | ETS-VI (NICT, Japan) | GEO-GND | 0.8/0.5 μm | IMDD | 1 Mbps |
1995 | GOLD (NASA JPL, USA) | GEO-GND | 0.8/0.5 μm | IMDD | 1 Mbps | |
2000 | STRV-2 (BMDO, USA)-fail | LEO-GND | 0.8 | IMDD | 1.2 Gbps | |
2001 | GOLITE (NRO, USA) | GEO-GND | - | - | - | |
[14] | 2001 | SILEX (ESA) | GEO-LEO, GEO-GND, GEO-Air | 0.8 μm | IMDD | 50 Mbps |
[13] | 2005 | OICETS (JAXA/NICT) | GEO-LEO, LEO-GND | 0.8 μm | IMDD | 50 Mbps |
[36] | 2003 | NFIRE (MDA, USA) | LEO-LEO | 1.06 μm | BPSK | 5.6 Gbps |
[34,41] | 2008 | TerraSAR-X (DLR) | LEO-LEO, LEO-GND | 1.06 μm | BPSK | 5.6 Gbps |
[37,38] | 2011 | HY-2 (China) | LEO-GND | 1.5 μm | IMDD | 504 Mbps |
[39] | 2011 | BTLS (Russia) | LEO-GND | 1.55/0.85 μm | IMDD | 125 Mbps |
[40] | 2013 | LLCD (NASA GSFC) | Lunar-GND | 1.5 μm | PPM | 622 Mbps |
[42] | 2013 | EDRS/Copernics (ESA) | GEO-LEO, GEO-GND | 1.06 μm | BPSK | 1.8 Gbps |
[43,44] | 2014 | SOCRATES/SOTA (NICT) | LEO-GND | 0.98/1.5 μm | IMDD | 10 Mbps |
[45] | 2014 | OPALS (NASA JPL) | LEO-GND | 1.5 μm | IMDD | 30–50 Mbps |
[46] | 2015 | OCSD-A (Aero. Corp., USA)-fail | LEO-GND | 1.5 μm | IMDD | 5–50 Mbps |
[47] | 2016 | OSIRISv1-2 (DLR) | LEO-GND | 1.5 μm | IMDD | 20–100 Mbps |
2016 | CAS SIOM (China) | LEO-GND | 1.5 μm | DPSK | 5.12 Gbps | |
[48] | 2017 | Micius (China) | LEO-GND | 0.85/0.532/0.671 μm | - | - |
2018 | OCSD-B/ AeroCube-7B (Aero. Corp.) | LEO-GND | 1.064 μm | IMDD | 50/100 Mbps | |
[49] | 2019 | Starlink/Space-X (USA) | - | - | - | 1 Gbps |
[50] | 2019 | RISESAT/VSOTA (NICT) | LEO-GND | 0.98/1.5 μm | IMDD | ~1 kbps |
[51] | 2019 | SOLISS (Sony) | LEO-GND | 1.5 μm | IMDD | 100 Mbps |
[52] | 2019 | EDRS-C (ESA) | GEO-LEO | 1.06 μm | BPSK | ~1.8 Gbps |
[53] | 2019 | OPS-SAT (TU Graz) | LEO-GND | - | PPM | 2 kbps (uplink) |
[13] | 2020 | JDRS (JAXA) | GEO-GND | 1.5 μm | DPSK | 1.8 Gbps |
[54] | 2020 | ALOS-3 (JAXA) | GEO-LEO | 1.5 μm | DPSK | 1.8 Gbps |
[47] | 2020 | OSIRIS v3, v4 (DLR) | LEO-GND | 1.5 μm | IMDD | 10 Gbps |
[55] | 2021 | ALOS-4 (JAXA) | GEO-LEO | 1.5 μm | DPSK | 1.8 Gbps |
[56] | 2021 | LCRD (NASA GSFC, USA) | GEO-LEO, GEO-GND | 1.5 μm | DPSK/PPM | 2.8 Gbps/622 Mbps |
[57] | 2021 | DSOC (NASA JPL, USA) | Deep space-GND | - | PPM | 264 Mbps |
[58] | 2022 | ETS-9/HICALI (NICT) | - | 1.5 μm | DPSK | 10 Gbps |
2022 | LEMNOS (NASA GSFC) | Lunar-GND | - | PPM | 311 Mbps |
Corporation | Name | Data Rate (D:Down; U:Up) | Link Type | Volume (cm3) | Power Consumption (W) | Mass (kg) | Release (Year) |
---|---|---|---|---|---|---|---|
TESAT 12 | TOSIRIS | D: 1.25–10 Gbps, U: 1 Mbps | LEO-GND | 20.0 × 20.0 × 15.0 | 40 | 8 | 2019 |
SmartLCT | 1.8 Gbps | GEO-GEO, GEO-LEO | <35.0 × 35.0 × 20.0 | 150 | 30 | 2020 | |
CubeLCT | D: 100 Mbps, U: 1 Mbps | LEO-GND | 9.0 × 9.5 × 3.5 | 10 | 0.397 | 2021 | |
SCOT80 | 10 Gbps | LEO-LEO | 2U | 60–86 | 15 | 2023 | |
ConLCT | 10 Gbps | GEO-LEO | OU:50.0 × 18.0 × 26.0, EU:26.0 × 11.0 × 17.5 | 80 | 15 | 2021 | |
LCT-135 | 1.8 Gbps | GEO-LEO | 60.0 × 60.0 × 70.0 | 150 | 53 | - | |
Mynaric | CONDOR Mk2 | 0.1–1.25 Gbps | GEO-LEO | OU:57.3 × 27.1 × 23.0, EU:34.0 × 25.9 × 16.3 | - | - | 2014 |
CONDOR Mk3 | 0.1–2.5 Gbps | GEO-LEO | OU:35.1 × 21.1 × 17.0, EU:16.1 × 33.6× 25.5 | - | - | 2017 | |
Thales | OPTEL-μ | 2 Gbps | LEO-GND | 8 U | 43 | 8 | 2015 |
Alenia Space | |||||||
MOSTCOM | SOT-90 | 10 Gbps | GEO-LEO | 45.0 × 30.0 × 38.0 | 60 | 16 | 2020 |
SOT-150 | 1.25 Gbps | GEO-GND | 60.0 × 40.0 × 48.0 | 100 | 50 | 2020 | |
NICT [61] | SOTA [62] | 1 Mbps–10 Mbps | LEO-GND | 11.7 × 17.7 × 27.8 | 40 | 5.9 | 2014 |
SOLISS [63] | 80 Mbps | LEO-GND | All:29.5 × 35.6 × 43.6, OU:9.0 × 10.0 × 18.0 | 36 | 1.2 | 2019 | |
VSOTA | 1 kbps–1 Mbps | LEO-GND | - | 4.33 | <1 | 2018 | |
HICALI | 10 Gbps | GEO-GND | - | 340 | 6 | 2021 | |
CubeSOTA [64] | 10 Gbps | GEO-LEO | 3 U | - | <14 | 2024 | |
Hyperion Tech. | CubeCat | D:100 M/300 M/1 G-bps, U:200 kbps | LEO-GND | 1 U | 15 | 1.33 | 2022 |
& TNO [65] | |||||||
Aerospace | AeroCube-7a | - | LEO-GEO | - | - | - | 2015 |
Corporation [46] | AeroCube-7b/7c | 100 Mbps | - | 1.5 U | - | 3 | 2018 |
Astrogate Labs | ASTRO-LINK | 1 Gbps | GEO-GND, LEO-GND | 1 U | - | 3 | 2022 |
HENSOLDT | Lasercom | U: 1.8 Gbps | Air-GEO | - | - | 20–100 | 2015 |
CACI | CrossBeam-ST0 | 1.25 Gbps | LEO-LEO | - | 50 | 10 | 2021 |
CrossBeam-ST1 | 2.5 Gbps | LEO-LEO | - | 75 | 10 | 2021 | |
SONY [63] | SOLISS | 80 Mbps | - | - | - | 1.2 | 2019 |
Corporation | Name | Data Rate (D:Down; U:Up) | Link Type | Volume (cm3) | Power Consumption (W) | Mass (kg) | Release (Year) |
---|---|---|---|---|---|---|---|
NEC/JAXA | LUCAS | 1.8 Gbps | LEO-GEO, LEO-LEO | - | - | - | 2020 |
NASA, MIT, | CLICK-A | 10 Mbps | LEO-LEO | 1.2 U | - | 1.2 | 2018 |
Uni. of Florida | TBIRD [66] | D:200 Gbps, U:5 kbps | LEO-GND | 1.8 U | - | 2.25 | 2022 |
[67] | |||||||
DLR | OSIRISv1 | 200 Mbps | LEO-GND | - | 26 | 1.3 | 2017 |
Uni. of | OSIRISv2 [68] | 1 Gbps | LEO-GND | - | 37 | 1.65 | 2016 |
Stuttgart | OSIRISv3 | 10 Gbps | LEO-GND | - | 150 | 9 | 2021 |
OSIRIS 4 | 100 Mbps | LEO-GND | 0.3 U | 10 | 0.39 | 2021 | |
PIXL-1 [69] | |||||||
ESA (ARTES) | OCT | - | LEO-LEO | - | - | - | 2023 |
Spire |
Company | Origin | Constellation Type | Objective | Achievements |
---|---|---|---|---|
Amazon (Kuiper Systems) | USA | LEO | Provides broadband internet services with low latency | Plans to launch 3236 LEO satellites as part of the Kuiper Systems project. Intends to employ laser communication technology for enhanced connectivity. |
Facebook (Athena) | USA | E-Band (71–86 GHz) | Conducts a satellite communication experiment focused on high-speed data. | Filed an application for E-band frequency usage with the Federal Communications Commission (FCC) and aims to deliver data 10 times faster than Space-X’s Starlink internet satellites using laser communications. |
Laser Light Communications | USA | MEO | Create sa 12-MEO satellite constellation with high capacity and data rates. | Collaborated with Australian telescommunications company Optus to prepare satellites and ground stations. Aims to establish a global network connecting terrestrial fiber systems with satellite systems. |
ILLUMA-T | USA | LEO | Laser Communication Terminals for use in the ISS and Orion manned space vehicle utilizing the LCRD data relay with a data rate of 1.2 Gbps | - |
BridgeCom (formerly BridgeSat) | USA | LEO | Create a 10-Gbps LEO constellation with laser communication services. | Plans to distribute 50 optical ground stations with software-defined modems worldwide to provide laser communication services, including support for small satellites and unmanned aerial vehicles. Also invested in governmental and 5G network communication needs. |
Kaskilo (KLEO Connect GmbH) | Germany | LEO | Build a 288-satellite LEO constellation primarily for IoT services under Germany’s Industry 4.0. | Will utilize laser communication for inter-satellite links to support IoT connectivity. |
Huawei (Massive VLEO) | China | LEO | Construct a 10,000-satellite LEO constellation (Massive VLEO) for beyond-5G. | Plans to use low satellite altitudes of 300 km for ultra-reliable, low-latency communications, covering massive machine-type communications. Broadband communication will be achieved using terahertz and laser communications. |
Transcelestial Technologies | China | Various | Provide space laser communication. | Planning to offer space laser communication services using CubeSats and micro-satellites. |
Golbriak Space | Estonia | Various | Provide space laser communication. | Intending to provide space laser communication services with CubeSats and micro-satellites. |
Starlink/Space-X [49] | USA | LEO | - | - |
Analytical Space Fast Pixel Network | USA | LEO | Six CubeSats, a constellation of 36 satellites across three orbital planes | Hybrid RF-laser to relay data for satellite operators and customers based on the technologies capability for data increases through RF. |
CONDOR Mk3 Optical Communication Terminal | Germany | - | Optical Communication Terminal is capable of high-performance, high-bandwidth, and secure and reliable satellite communications. | It supports link distances greater than 10,000 km with a flexible data rate coverage of up to 100 Gbps, fast acquisition time, configurable Laser Ethernet Terminals (LETs), and seamless link configuration and interoperability across various optical communication terminals. It has a highly modularized design, and an option for Dual or Quad configuration for reduced power consumption and reduced mass. |
Telesat’s Lightspeed | USA | LEO | +300 satellites |
Corporation | Payload Name | Max. Data Rate (Gbps) | Link Type | Volume (cm3) | Power Consumption (W) | Mass (kg) | Release (O:Operational, D:Development) |
---|---|---|---|---|---|---|---|
TESAT | LCT 135 | 1.8 | GEO | 252,000 | ~150 | ~53 | O |
Mynaric | CONDOR Mk3 | 2.5 | LEO | 32,422.5 | - | - | O |
TESAT | SCOT-80 | 10 | LEO | 54,109 | 60–86 | ~12.5 | O |
OneWeb [73] | Gen 2 Terminal | 20 | LEO | 3750 | 70 | 25 | D |
UKSA, Northumbria Uni. | FOCUS | >1 | LEO | 3 U | 40 | 3.6 | D |
NASA, MIT, Uni. of Florida | CLICK B/C | >0.02 | LEO | 1.3 U | - | - | D |
TESAT [12] | SCOT20 | 2.5, 0.1 | LEO | 1135 (1U) | <35 | <1.6 | D |
Parameter | HAPS → OGS | LEO → GEO | LEO → OGS | Drone → OGS | LEO → LEO |
---|---|---|---|---|---|
Referenced in [13] | ALIGN | ||||
Tx Power (W) | 3 | 2 | 2 | 0.1 | 0.75 |
Transm. aperture (cm) | 9 | 9 | 9 | 3 | 1.5 |
Pointing accuracy (μrad) | 5 | 5 | 5 | 5 | 5 |
Beam divergence (μrad) | 200 | 30 | 30 | 500 | 150 |
Distance (km) | 100 | 37,000 | 1200 | 10 | 900 |
Footprint (m) | 20 | 1110 | 36 | 5 | 112.5 |
Atmospheric attenuation (dB) | 6 | - | 6 | 6 | - |
Pointing loss (dB) | 1 | 2.2 | 2.2 | 1 | <1 |
Tx loss (dB) | 3 | 3 | 3 | 3 | 1.690 |
Rx aperture (cm) | 9 | 15 | 30 | 9 | 9.57 |
Rx loss (dB) | 10 | 6 | 12 | 10 | 1.690 |
Rx power (dBm) | −32 | −55.6 | −31.8 | −34.9 | −35.895 |
Bit rate (Gbps) | 10 | 0.1 | 10 | 10 | 1.25 |
Required power (dBm) | −38.9 | −58.9 | −38.9 | −38.9 | −35.895 |
Margin (dB) | 6.8 | 3.3 | 7.1 | 4 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Younus, O.I.; Riaz, A.; Binns, R.; Scullion, E.; Wicks, R.; Vernon, J.; Graham, C.; Bramall, D.; Schmoll, J.; Bourgenot, C. Overview of Space-Based Laser Communication Missions and Payloads: Insights from the Autonomous Laser Inter-Satellite Gigabit Network (ALIGN). Aerospace 2024, 11, 907. https://doi.org/10.3390/aerospace11110907
Younus OI, Riaz A, Binns R, Scullion E, Wicks R, Vernon J, Graham C, Bramall D, Schmoll J, Bourgenot C. Overview of Space-Based Laser Communication Missions and Payloads: Insights from the Autonomous Laser Inter-Satellite Gigabit Network (ALIGN). Aerospace. 2024; 11(11):907. https://doi.org/10.3390/aerospace11110907
Chicago/Turabian StyleYounus, Othman I., Amna Riaz, Richard Binns, Eamon Scullion, Robert Wicks, Jethro Vernon, Chris Graham, David Bramall, Jurgen Schmoll, and Cyril Bourgenot. 2024. "Overview of Space-Based Laser Communication Missions and Payloads: Insights from the Autonomous Laser Inter-Satellite Gigabit Network (ALIGN)" Aerospace 11, no. 11: 907. https://doi.org/10.3390/aerospace11110907
APA StyleYounus, O. I., Riaz, A., Binns, R., Scullion, E., Wicks, R., Vernon, J., Graham, C., Bramall, D., Schmoll, J., & Bourgenot, C. (2024). Overview of Space-Based Laser Communication Missions and Payloads: Insights from the Autonomous Laser Inter-Satellite Gigabit Network (ALIGN). Aerospace, 11(11), 907. https://doi.org/10.3390/aerospace11110907