Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = LBD gene family

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 5952 KiB  
Article
Genome-Wide Characterization of the Phosphofructokinase Gene Family in Arabidopsis thaliana and Functional Analysis of AtPFK2 in Stress Tolerance
by Siyu Liu, Jiheng Gou, Yunni Tang, Yunxiao Wei and Rui Zhang
Int. J. Mol. Sci. 2025, 26(14), 6828; https://doi.org/10.3390/ijms26146828 - 16 Jul 2025
Viewed by 248
Abstract
The phosphofructokinase (PFK) gene family plays a pivotal role in glycolysis and energy metabolism in plants. This study aimed to systematically characterize the PFK gene family in Arabidopsis thaliana at the genome-wide level and to investigate the function of AtPFK2 (ATP-dependent [...] Read more.
The phosphofructokinase (PFK) gene family plays a pivotal role in glycolysis and energy metabolism in plants. This study aimed to systematically characterize the PFK gene family in Arabidopsis thaliana at the genome-wide level and to investigate the function of AtPFK2 (ATP-dependent phosphofructokinase 2) in response to salt and drought stress. Through bioinformatics analysis, 11 AtPFK genes were identified. Phylogenetic analysis revealed that these PFK genes can be classified into two subfamilies: PFK and PFP. Notably, AtPFK2 possesses a unique structure, containing only a single intron, and its promoter is enriched with stress- and hormone-responsive elements, such as ABRE and MBS. T-DNA insertion mutants (pfk2) exhibited slightly shorter roots but slightly higher fresh weight under stress conditions, whereas Arabidopsis lines AtPFK2-overexpressing (OE-PFK2) showed increased stress sensitivity, with inhibited root and leaf growth, leaf wilting, reduced malondialdehyde and chlorophyll content, and enhanced accumulation of proline and soluble sugars. Weighted gene co-expression network analysis (WGCNA) identified 14 stress-related modules, from which six core genes—LBD41, TRP3, PP2-A3, SAUR10, IAA6, and JAZ1—were selected. These genes are involved in glycine metabolism and plant hormone signaling. The results of this study indicate that AtPFK2 mediates stress responses by regulating osmoregulatory substances and hormone signaling pathways, offering new insights into the mechanisms of stress resistance in crops. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

20 pages, 6526 KiB  
Article
The LBD Transcription Factor ZmLBD33 Confers Drought Tolerance in Transgenic Arabidopsis
by Jing Xiong, Xin Mi, Lijuan Du and Xianqiu Wang
Plants 2025, 14(9), 1305; https://doi.org/10.3390/plants14091305 - 25 Apr 2025
Viewed by 502
Abstract
Drought stress severely impacts maize productivity, necessitating the exploration of molecular mechanisms underlying drought responses. In maize, while Class I members of the LBD family have been extensively studied for their essential functions in developmental regulation and environmental stress responses, the potential involvement [...] Read more.
Drought stress severely impacts maize productivity, necessitating the exploration of molecular mechanisms underlying drought responses. In maize, while Class I members of the LBD family have been extensively studied for their essential functions in developmental regulation and environmental stress responses, the potential involvement of Class II LBD genes in abiotic stress tolerance mechanisms remains poorly characterized. This study characterizes ZmLBD33, a maize Class II LBD gene, to elucidate its role in drought responses. Promoter analysis identified ABA-responsive cis-elements (AREB); ZmLBD33 expression was strongly induced in roots under drought and ABA treatments, localized to the nucleus, and exhibited dimerization via yeast two-hybrid despite lacking intact leucine zipper motifs. ZmLBD33-overexpressed plants showed later germination, shorter roots, and decreased survival rates than wild-type plants under osmotic stress and soil drought. Compared to wild-type plants, ZmLBD33-overexpressed plants showed significantly faster water loss, a greater stomatal density, and reduced stomatal closure efficiency. Histochemical analysis using DAB and NBT showed attenuated reactive oxygen species accumulation in transgenic Arabidopsis overexpressing ZmLBD33. Quantitative enzymatic activity analyses further indicated that SOD and POD levels were significantly elevated in ZmLBD33-overexpressing plants compared to wild-type plants. These findings indicate that ZmLBD33 negatively regulates drought tolerance by modulating stomatal aperture and H2O2 signaling. This study highlights the divergent roles of Class II LBD genes in stress adaptation and positions ZmLBD33 as a potential target for engineering drought-resilient crops. Full article
(This article belongs to the Special Issue Plant Stress Physiology and Molecular Biology—2nd Edition)
Show Figures

Figure 1

23 pages, 25306 KiB  
Article
Comprehensive Characterization and Functional Analysis of the Lateral Organ Boundaries Domain Gene Family in Rice: Evolution, Expression, and Stress Response
by Shang Sun, Jingjing Yi, Peiling Gu, Yongtian Huang, Xin Huang, Hanqing Li, Tingting Fan, Jing Zhao, Ruozhong Wang, Mahmoud Mohamed Gaballah, Langtao Xiao and Haiou Li
Int. J. Mol. Sci. 2025, 26(9), 3948; https://doi.org/10.3390/ijms26093948 - 22 Apr 2025
Viewed by 483
Abstract
In this study, the LBD (Lateral Organ Boundaries Domain) gene family, a group of plant-specific transcription factors critical for plant growth and development as well as metabolic regulation, was comprehensively characterized in rice. We identified 36 LBD genes using multi-source genomic data and [...] Read more.
In this study, the LBD (Lateral Organ Boundaries Domain) gene family, a group of plant-specific transcription factors critical for plant growth and development as well as metabolic regulation, was comprehensively characterized in rice. We identified 36 LBD genes using multi-source genomic data and systematically classified them into Class I (31 genes) and Class II (5 genes). Analysis of their physicochemical properties revealed significant variations in amino acid length, molecular weight, isoelectric points, and hydropathicity. Motif analysis identified conserved LOB domains and other motifs potentially linked to functional diversity. Cis-acting element analysis indicated the involvement of these genes in various biological processes, including light response, hormone signaling, and stress response. Expression profiling demonstrated tissue-specific expression patterns, with several genes, such as XM_015770711.2, XM_015776632.2, and XM_015792766.2, showing relatively high expression in rice roots, implying their important role in root development. Transcriptome data further supported the involvement of specific genes in responses to phytohormones such as jasmonic acid (JA) and abscisic acid (ABA), as well as environmental stresses like cold and drought. Notably, XM_015770711.2, XM_015776632.2, and XM_015772758.2 may contribute to the regulation of rice environmental adaptability by mediating ABA and JA signaling pathways, respectively. In conclusion, this study identified members of the LBD gene family through the screening of two rice gene databases, and performed a comprehensive analysis of their physicochemical properties, evolutionary relationships, and expression profiles under various conditions. These findings provided valuable insights for further functional studies of LBD genes. Moreover, this study provides a foundation for targeting LBD genes to enhance stress resilience (e.g., drought/cold tolerance) and root architecture optimization. The LBD gene family possesses dual values in both stress resistance regulation and developmental optimization. The construction of its multidimensional functional map lays the theoretical and resource foundation for the precise design of high-yield and stress-resistant varieties. Full article
Show Figures

Figure 1

17 pages, 7966 KiB  
Article
BcAS2 Regulates Leaf Adaxial Polarity Development in Non-Heading Chinese Cabbage by Directly Activating BcPHB Transcription
by Cheng Jiang, Qiang Ding, Ying He, Yiran Li, Zhanyuan Gao, Entong Li and Xilin Hou
Plants 2025, 14(8), 1207; https://doi.org/10.3390/plants14081207 - 14 Apr 2025
Viewed by 431
Abstract
Leaves are the primary organs for plant photosynthesis, and their flat, symmetric morphology is crucial for plant growth and development. The LBD family transcription factor ASYMMETRIC LEAVES 2 (AS2) plays a central role in the establishment of leaf polarity. In this [...] Read more.
Leaves are the primary organs for plant photosynthesis, and their flat, symmetric morphology is crucial for plant growth and development. The LBD family transcription factor ASYMMETRIC LEAVES 2 (AS2) plays a central role in the establishment of leaf polarity. In this study, we cloned the BcAS2 gene from the non-heading Chinese cabbage cultivar “NHCC001” and successfully generated overexpression strains through genetic transformation. Phenotypic analysis revealed that overexpression of BcAS2 led to significant upward curling of leaves in non-heading Chinese cabbage. Additionally, we found that the expression of BcPHB, a gene associated with leaf adaxial polarity development, was significantly up-regulated in BcAS2-overexpressing plants compared to controls. This interaction was further confirmed through yeast one-hybridization (Y1H), dual-luciferase reporter assays, and electrophoretic mobility shift assay (EMSA), all of which demonstrated that BcAS2 directly binds to the GATA-motif site of the BcPHB promoter and promotes its transcription. Functional validation via overexpression and silencing of BcPHB confirmed its role in regulating adaxial polarity development in non-heading Chinese cabbage leaves. This study elucidates the molecular mechanism of the BcAS2-BcPHB pathway in regulating leaf polarity in non-heading Chinese cabbage, providing a theoretical foundation for morphological improvement breeding. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

25 pages, 14640 KiB  
Article
Genome-Wide Identification and Functional Analysis of CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) in Three Populus Species
by Zheng Li, Feng-Xin Chen, Ming-Ming Li, Xian-Li Tang, Yu-Qi Liu, Meng-Bo Huang, Hao-Qiang Niu, Chao Liu, Hou-Ling Wang, Xin-Li Xia and Wei-Lun Yin
Int. J. Mol. Sci. 2025, 26(5), 1944; https://doi.org/10.3390/ijms26051944 - 24 Feb 2025
Viewed by 815
Abstract
Intercellular communication mediated by CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptides and their receptors is crucial for plant development and environmental adaptation. In this study, 45 and 89 CLEs were identified in Populus tomentosa and Populus alba × Populus glandulosa, respectively, and, together with [...] Read more.
Intercellular communication mediated by CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptides and their receptors is crucial for plant development and environmental adaptation. In this study, 45 and 89 CLEs were identified in Populus tomentosa and Populus alba × Populus glandulosa, respectively, and, together with the 52 CLEs in Populus trichocarpa, the chromosome localization, gene and protein characteristics, collinearity and gene duplication events, cis-acting regulatory elements in promoters and evolutionary relationships of CLEs in these three poplar species were analyzed. The CLEs of three poplar species were divided into four subfamilies. Among them, the CLEs in subfamilies I, II and IV were A-type CLEs, while those in subfamily III were B-type CLEs. During the evolutionary process of poplar, the selection pressure faced by whole-genome duplication or segmental duplication was purifying selection, and the duplication events led to the expansion of the CLE family in poplar. The exogenous addition of a certain concentration of poplar CLE13 peptides inhibits the root growth of Arabidopsis thaliana and poplar and simultaneously reduces the expression levels of ARFs and LBDs in the roots. In addition, drought stress induces the expression of PtrCLE13A. The overexpression of preCLE13A significantly enhances the osmotic and drought tolerance in Populus tomentosa. These results have provided valuable information for further research on the molecular mechanisms of CLE peptide signaling pathways in the woody model plant poplar regarding plant growth and stress resistance. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

24 pages, 5822 KiB  
Article
Transcriptome Analysis Revealed the Regulatory Mechanism of DIMBOA Affecting Early Somatic Embryogenesis in Dimocarpus longan Lour.
by Xiaoqiong Xu, Chunyu Zhang, Ning Tong, Xiaoyuan Lan, Jing Cui, Awais Muhammad, Zhilin Zhang, Zihao Zhang, Yukun Chen, Yuling Lin and Zhongxiong Lai
Plants 2025, 14(3), 442; https://doi.org/10.3390/plants14030442 - 3 Feb 2025
Viewed by 1230
Abstract
Dimocarpus longan Lour. is an evergreen tree of the genus Longan in the Sapindaceae family, native to tropical and subtropical regions. Longan embryonic development is closely related to fruit set and fruit quality. An in-depth study of the mechanism of longan embryonic development [...] Read more.
Dimocarpus longan Lour. is an evergreen tree of the genus Longan in the Sapindaceae family, native to tropical and subtropical regions. Longan embryonic development is closely related to fruit set and fruit quality. An in-depth study of the mechanism of longan embryonic development could therefore contribute to the development of the longan industry. DIMBOA is the principal compound representing benzoxazinoids (BXs), and is closely linked to auxin biosynthesis and signal transduction. Auxin is one of the crucial hormones for inducing somatic embryogenesis (SE) in plants. Previous research has shown that DIMBOA promotes morphogenesis in the early somatic embryogenesis of longan, but the specific regulatory mechanism has not yet been clarified. To elucidate the molecular mechanism by which DIMBOA affects early somatic embryogenesis in longan, we chose longan embryogenic cultures grown under 0 mg/L DIMBOA as the control group (the check, CK), and longan embryogenic cultures grown under 0.1 mg/L DIMBOA as the treatment group (D) to be analyzed by transcriptomic sequencing. A total of 478 differentially expressed genes (DEGs) are detected in check vs. D, of which 193 are upregulated and 285 are downregulated. These DEGs are significantly enriched in the biosynthetic and metabolic functions of various substances such as vitamin B6 (VB6) biosynthesis, phenylpropanoid pathways, and carbohydrate metabolism. DIMBOA affects SE processes in longan via TFs, including MYB, ZF, bHLH, LBD, NAC, WRKY, etc. After DIMBOA treatment, the expression of most of the key genes for IAA synthesis was significantly downregulated, VB6 content was significantly reduced, and H2O2 content was significantly increased. Therefore, it is suggested that DIMBOA directly or indirectly affects the H2O2 content through the VB6 metabolic pathway, thereby regulating the endogenous IAA level to modulate the early SE morphogenesis of longan. Full article
(This article belongs to the Special Issue Bioinformatics and Functional Genomics in Modern Plant Science)
Show Figures

Figure 1

24 pages, 13711 KiB  
Article
Characterization of LBD Genes in Cymbidium ensifolium with Roles in Floral Development and Fragrance
by Yukun Peng, Suying Zhan, Feihong Tang, Yuqing Zhao, Haiyan Wu, Xiangwen Li, Ruiliu Huang, Qiuli Su, Long-Hai Zou, Kai Zhao, Zhong-Jian Liu and Yuzhen Zhou
Horticulturae 2025, 11(2), 117; https://doi.org/10.3390/horticulturae11020117 - 22 Jan 2025
Viewed by 999
Abstract
LBD transcription factors are critical regulators of plant growth and development. Recent studies highlighted their significant role in the transcriptional regulation of plant growth and metabolism. Thus, identifying the CeLBD gene in Cymbidium ensifolium, a species abundant in floral scent metabolites, could [...] Read more.
LBD transcription factors are critical regulators of plant growth and development. Recent studies highlighted their significant role in the transcriptional regulation of plant growth and metabolism. Thus, identifying the CeLBD gene in Cymbidium ensifolium, a species abundant in floral scent metabolites, could provide deeper insights into its functional significance. A total of 34 LBD genes were identified in C. ensifolium. These CeLBDs fell into two major groups: Class I and Class II. The Class I group contained 30 genes, while the Class II group included only 4 genes. Among the 30 Class I genes, several genes in the Ie branch exhibited structural variations or partial deletions (CeLBD20 and CeLBD21) in the coiled-coil motif (LX6LX3LX6L). These changes may contribute to the difficulty in root hair formation in C. ensifolium. The variations may prevent normal transcription, leading to low or absent expression, which may explain the fleshy and corona-like root system of C. ensifolium without prominent lateral roots. The expansion for CeLBDs was largely due to special WGD events in orchids during evolution, or by segmental duplication and tandem duplication. CeLBDs in different branches exhibit similar functions and expression characteristics. Promoter analysis enriched environmental response elements, such as AP2/ERF, potentially mediating the specific expression of CeLBDs under different stresses. CeLBDs were predicted to interact with multiple transcription factors or ribosomal proteins, forming complex regulatory networks. CeLBD20 was localized in the cytoplasm, it may act as a signaling factor to activate other transcription factors. CeLBD6 in Class II was significantly up-regulated under cold, drought, and ABA treatments, suggesting its role in environmental responses. Furthermore, metabolic correlation analysis revealed that its expression was associated with the release of major aromatic compounds, such as MeJA. These findings offer valuable insights for further functional studies of CeLBD genes in C. ensifolium. Full article
(This article belongs to the Special Issue Orchids: Advances in Propagation, Cultivation and Breeding)
Show Figures

Figure 1

14 pages, 3439 KiB  
Article
Overexpression Analysis of PtrLBD41 Suggests Its Involvement in Salt Tolerance and Flavonoid Pathway in Populus trichocarpa
by Jiewan Wang, Yi Liu and Xingshun Song
Int. J. Mol. Sci. 2024, 25(22), 12349; https://doi.org/10.3390/ijms252212349 - 17 Nov 2024
Cited by 2 | Viewed by 1272
Abstract
Soil salinization is a significant environmental stress factor, threatening global agricultural yield and ecological security. Plants must effectively cope with the adverse effects of salt stress on survival and successful reproduction. Lateral Organ Boundaries (LOB) Domain (LBD) genes, a gene family encoding plant-specific [...] Read more.
Soil salinization is a significant environmental stress factor, threatening global agricultural yield and ecological security. Plants must effectively cope with the adverse effects of salt stress on survival and successful reproduction. Lateral Organ Boundaries (LOB) Domain (LBD) genes, a gene family encoding plant-specific transcription factors (TFs), play important roles in plant growth and development. Here, we identified and functionally characterized the LBD family TF PtrLBD41 from Populus trichocarpa, which can be induced by various abiotic stresses, including salt, dehydration, low temperature, and Abscisic Acid (ABA). Meanwhile, transgenic plants overexpressing PtrLBD41 showed a better phenotype and higher tolerance than the wild-type (WT) plants under salt stress treatment. Transcriptome analysis found that the differentially expressed genes (DEGs) between the WT and overexpression (OE) line were enriched in the flavonoid biosynthetic process, in which chalcone synthases (CHS), naringenin 3-dioxygenase (F3H), and chalcone isomerase (CHI) were significantly up-regulated under salt stress conditions through qRT-PCR analysis. Therefore, we demonstrate that PtrLBD41 plays an important role in the tolerance to salt stress in P. trichocarpa. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 3306 KiB  
Article
Deciphering Nitrogen Stress Responses in Maize Rhizospheres: Comparative Transcriptomics of Monocropping and Intercropping Systems
by Bing Zhang, Jamal Nasar, Siqi Dong, Guozhong Feng, Xue Zhou and Qiang Gao
Agronomy 2024, 14(11), 2554; https://doi.org/10.3390/agronomy14112554 - 31 Oct 2024
Viewed by 1114
Abstract
A well-developed rhizospheric system is crucial for maize to adapt to environmental stresses, thereby enhancing yield and quality. However, nitrogen (N) stress significantly impedes rhizospheric development and growth in maize. The genetic responses of maize’s rhizosphere to N stress under monocropping systems with [...] Read more.
A well-developed rhizospheric system is crucial for maize to adapt to environmental stresses, thereby enhancing yield and quality. However, nitrogen (N) stress significantly impedes rhizospheric development and growth in maize. The genetic responses of maize’s rhizosphere to N stress under monocropping systems with exogenous inorganic N fertilization and intercropping systems reliant on biological N fixation are not well understood, especially regarding common and specific response genes. Therefore, through transcriptomic analysis, this study systematically investigated the gene expression and molecular responses of maize’s rhizosphere under two N supply regimes to N stress. The results showed that N stress generated 196 common and 3350 specific differentially expressed genes across the two systems, with the intercropping system exhibiting a stronger specific response. KEGG analysis revealed that the common genes, though few, are involved in key pathways essential for crop growth. Maize monocropping specific differentially expressed genes (MM) were enriched in pathways related to membrane lipids, cell wall formation, and intracellular signaling, while maize/alfalfa intercropping specific differentially expressed genes (MA) were linked to stress resistance through the glutathione metabolic pathway. WGCNA analysis identified five co-expression modules (CM). MA significantly increased the transcription factor families and structural domains directly targeting rhizospheric growth and development genes, including AP2, GRAS, Cys2His2 Zinc Finger, and LBD in CM blue. Conversely, MM significantly increased the transcription factor families and NAC structural domain targeting the promoters of N transporter protein genes in CM pink. This study emphasizes the importance of both common and specific genes in maintaining maize growth under suboptimal N supply in monocropping and intercropping systems. Full article
(This article belongs to the Section Innovative Cropping Systems)
Show Figures

Figure 1

25 pages, 9520 KiB  
Article
Genome-Wide Analysis Elucidates the Roles of AhLBD Genes in Different Abiotic Stresses and Growth and Development Stages in the Peanut (Arachis hypogea L.)
by Cuicui Wu, Baoguo Hou, Rilian Wu, Liuliu Yang, Gang Lan, Zhi Xia, Cairong Cao, Zhuanxia Pan, Beibei Lv and Pengbo Li
Int. J. Mol. Sci. 2024, 25(19), 10561; https://doi.org/10.3390/ijms251910561 - 30 Sep 2024
Viewed by 1135
Abstract
The lateral organ boundaries domain (LBD) genes, as the plant-specific transcription factor family, play a crucial role in controlling plant architecture and stress tolerance. However, the functions of AhLBD genes in the peanut plant (Arachis hypogea L.) remain unclear. In [...] Read more.
The lateral organ boundaries domain (LBD) genes, as the plant-specific transcription factor family, play a crucial role in controlling plant architecture and stress tolerance. However, the functions of AhLBD genes in the peanut plant (Arachis hypogea L.) remain unclear. In this study, 73 AhLBDs were identified in the peanut plant and divided into three groups by phylogenetic tree analysis. Gene structure and conserved protein motif analysis supported the evolutionary conservation of AhLBDs. Tandem and segment duplications contributed to the expansion of AhLBDs. The evolutionary relationship analysis of LBD gene family between A. hypogaea and four other species indicated that the peanut plant had a close relationship with the soybean plant. AhLBDs played a very important role in response to growth and development as well as abiotic stress. Furthermore, gene expression profiling and real-time quantitative qRT-PCR analysis showed that AhLBD16, AhLBD33, AhLBD67, and AhLBD72 were candidate genes for salt stress, while AhLBD24, AhLBD33, AhLBD35, AhLBD52, AhLBD67, and AhLBD71 were candidate genes for drought stress. Our subcellular localization experiment revealed that AhLBD24, AhLBD33, AhLBD67, and AhLBD71 were located in the nucleus. Heterologous overexpression of AhLBD33 and AhLBD67 in Arabidopsis significantly enhanced tolerance to salt stress. Our results provide a theoretical basis and candidate genes for studying the molecular mechanism for abiotic stress in the peanut plant. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

17 pages, 8319 KiB  
Article
Genome-Wide Survey of the Potential Function of CrLBDs in Catharanthus roseus MIA Biosynthesis
by Chunhao Chang, Bingrun Yang, Xiaorui Guo, Chunyan Gao, Biying Wang, Xiaoju Zhao and Zhonghua Tang
Genes 2024, 15(9), 1140; https://doi.org/10.3390/genes15091140 - 29 Aug 2024
Viewed by 1284
Abstract
Catharanthus roseus (C. roseus) can produce over 150 types of monoterpenoid indole alkaloids (MIAs), including vinblastine and vincristine, which are currently the primary sources of these alkaloids. Exploring the complex regulatory mechanisms of C. roseus is significant for resolving [...] Read more.
Catharanthus roseus (C. roseus) can produce over 150 types of monoterpenoid indole alkaloids (MIAs), including vinblastine and vincristine, which are currently the primary sources of these alkaloids. Exploring the complex regulatory mechanisms of C. roseus is significant for resolving MIA biosynthesis. The Lateral Organ Boundaries Domain (LBD) is a plant-specific transcription factor family that plays crucial roles in the physiological processes of plant growth, stress tolerance, and specialized metabolism. However, the LBD gene family has not been extensively characterized in C. roseus, and whether its members are involved in MIA biosynthesis is still being determined. A total of 34 C. roseus LBD (CrLBD) genes were identified. RNA-Seq data were investigated to examine the expression patterns of CrLBD genes in various tissues and methyl jasmonate (MeJA) treatments. The results revealed that the Class Ia member CrLBD4 is positively correlated with iridoid biosynthetic genes (p < 0.05, r ≥ 0.8); the Class IIb member CrLBD11 is negatively correlated with iridoid biosynthetic genes (p < 0.05, r ≤ −0.8). Further validation in leaves at different growth stages of C. roseus showed that CrLBD4 and CrLBD11 exhibited different potential expression trends with iridoid biosynthetic genes and the accumulation of vindoline and catharanthine. Yeast one-hybrid (Y1H) and subcellular localization assays demonstrated that CrLBD4 and CrLBD11 could bind to the “aattatTCCGGccgc” cis-element and localize to the nucleus. These findings suggest that CrLBD4 and CrLBD11 may be potential candidates for regulating MIA biosynthesis in C. roseus. In this study, we systematically analyzed the CrLBD gene family and provided insights into the roles of certain CrLBDs in the MIA biosynthesis of C. roseus. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

16 pages, 3210 KiB  
Article
Transcriptome Analysis of Early Lateral Root Formation in Tomato
by Aiai Zhang and Qingmao Shang
Plants 2024, 13(12), 1620; https://doi.org/10.3390/plants13121620 - 12 Jun 2024
Cited by 3 | Viewed by 1772
Abstract
Lateral roots (LRs) receive signals from the inter-root environment and absorb water and nutrients from the soil. Auxin regulates LR formation, but the mechanism in tomato remains largely unknown. In this study, ‘Ailsa Craig‘ tomato LRs appeared on the third day and were [...] Read more.
Lateral roots (LRs) receive signals from the inter-root environment and absorb water and nutrients from the soil. Auxin regulates LR formation, but the mechanism in tomato remains largely unknown. In this study, ‘Ailsa Craig‘ tomato LRs appeared on the third day and were unevenly distributed in primary roots. According to the location of LR occurrence, roots were divided into three equal parts: the shootward part of the root (RB), the middle part of the root (RM), and the tip part of the root (RT). Transverse sections of roots from days 1 to 6 revealed that the number of RB cells and the root diameter were significantly increased compared with RM and RT. Using roots from days 1 to 3, we carried out transcriptome sequencing analysis. Identified genes were classified into 16 co-expression clusters based on K-means, and genes in four associated clusters were highly expressed in RB. These four clusters (3, 5, 8, and 16) were enriched in cellulose metabolism, microtubule, and peptide metabolism pathways, all closely related to LR development. The four clusters contain numerous transcription factors linked to LR development including transcription factors of LATERAL ORGAN BOUNDRIES (LOB) and MADS-box families. Additionally, auxin-related genes GATA23, ARF7, LBD16, EXP, IAA4, IAA7, PIN1, PIN2, YUC3, and YUC4 were highly expressed in RB tissue. Free IAA content in 3 d RB was notably higher, reaching 3.3–5.5 ng/g, relative to RB in 1 d and 2 d. The LR number was promoted by 0.1 μM of exogenous IAA and inhibited by exogenous NPA. We analyzed the root cell state and auxin signaling module during LR formation. At a certain stage of pericycle cell development, LR initiation is regulated by auxin signaling modules IAA14-ARF7/ARF19-LBD16-CDKA1 and IAA14-ARF7/ARF19-MUS/MUL-XTR6/EXP. Furthermore, as a key regulatory factor, auxin regulates the process of LR initiation and LR primordia (LRP) through different auxin signaling pathway modules. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

16 pages, 17141 KiB  
Article
Genome-Wide Analysis of the LBD Gene Family in Melon and Expression Analysis in Response to Wilt Disease Infection
by Ling Zheng, Yanrong Chao, Yian Wang, Yizhuo Xu and Shipeng Li
Genes 2024, 15(4), 442; https://doi.org/10.3390/genes15040442 - 30 Mar 2024
Cited by 2 | Viewed by 1879
Abstract
LBD transcription factors are a class of transcription factors that regulate the formation of lateral organs, establish boundaries, and control secondary metabolism in plants. In this study, we identified 37 melon LBD transcription factors using bioinformatics methods and analyzed their basic information, chromosomal [...] Read more.
LBD transcription factors are a class of transcription factors that regulate the formation of lateral organs, establish boundaries, and control secondary metabolism in plants. In this study, we identified 37 melon LBD transcription factors using bioinformatics methods and analyzed their basic information, chromosomal location, collinearity, evolutionary tree, gene structure, and expression patterns. The results showed that the genes were unevenly distributed across the 13 chromosomes of melon plants, with tandem repeats appearing on chromosomes 11 and 12. These 37 transcription factors can be divided into two major categories, Class I and Class II, and seven subfamilies: Ia, Ib, Ic, Id, Ie, IIa, and IIb. Of the 37 included transcription factors, 25 genes each contained between one to three introns, while the other 12 genes did not contain introns. Through cis-acting element analysis, we identified response elements such as salicylic acid, MeJA, abscisic acid, and auxin, gibberellic acid, as well as light response, stress response, and MYB-specific binding sites. Expression pattern analysis showed that genes in the IIb subfamilies play important roles in the growth and development of various organs in melon plants. Expression analysis found that the majority of melon LBD genes were significantly upregulated after infection with wilt disease, with the strongest response observed in the stem. Full article
(This article belongs to the Section Plant Genetics and Genomics)
Show Figures

Figure 1

23 pages, 15480 KiB  
Article
Genome-Wide Analysis of the Lateral Organ Boundaries Domain (LBD) Gene Family in Sweet Potato (Ipomoea batatas)
by Lei Shi, Xiongjian Lin, Binquan Tang, Rong Zhao, Yichi Wang, Yingyi Lin, Liangliang Wu, Chao Zheng and Hongbo Zhu
Genes 2024, 15(2), 237; https://doi.org/10.3390/genes15020237 - 13 Feb 2024
Cited by 5 | Viewed by 2255
Abstract
The LBD family is a plant-specific transcription factor family that plays an important role in a variety of biological processes. However, the function of IbLBD genes in sweet potato remains unclear. In this study, we identified a total of 53 IbLBD genes in [...] Read more.
The LBD family is a plant-specific transcription factor family that plays an important role in a variety of biological processes. However, the function of IbLBD genes in sweet potato remains unclear. In this study, we identified a total of 53 IbLBD genes in sweet potato. Genetic structure showed that most of the IbLBD genes contained only two exons. Following the phylogenetic investigation, the IbLBD gene family was separated into Class I (45 members) and Class II (8) members. Both classes of proteins contained relatively conservative Motif1 and Motif2 domains. The chromosomal locations, gene duplications, promoters, PPI network, and GO annotation of the sweet potato LBD genes were also investigated. Furthermore, gene expression profiling and real-time quantitative PCR analysis showed that the expression of 12 IbLBD genes altered in six separate tissues and under various abiotic stresses. The IbLBD genes belonging to Class I were mostly expressed in the primary root, the pencil root, and the leaves of sweet potatoes, while the genes belonging to Class II were primarily expressed in the various sweet potato roots. The IbLBD genes belonging to Class I were mostly expressed in the primary root, the pencil root, and the leaves of sweet potatoes, while the genes belonging to Class II were primarily expressed in the fibrous root, pencil root, and tuber root. Full article
(This article belongs to the Section Bioinformatics)
Show Figures

Figure 1

20 pages, 4894 KiB  
Article
Genome Identification and Evolutionary Analysis of LBD Genes and Response to Environmental Factors in Phoebe bournei
by Yiming Ma, Minchen Zhong, Jingshu Li, Yiming Jiang, Xuerong Zhou, Chris Justice Ijeoma, Xinghao Tang, Shipin Chen and Shijiang Cao
Int. J. Mol. Sci. 2023, 24(16), 12581; https://doi.org/10.3390/ijms241612581 - 9 Aug 2023
Cited by 6 | Viewed by 2469
Abstract
Phoebe bournei is nationally conserved in China due to its high economic value and positive effect on the ecological environment. P. bournei has an excellent wood structure, making it useful for industrial and domestic applications. Despite its importance, there are only a few [...] Read more.
Phoebe bournei is nationally conserved in China due to its high economic value and positive effect on the ecological environment. P. bournei has an excellent wood structure, making it useful for industrial and domestic applications. Despite its importance, there are only a few studies on the lateral organ boundary domain (LBD) genes in P. bournei. The LBD gene family contributes to prompting rooting in multiple plant species and therefore supports their survival directly. To understand the LBD family in P. bournei, we verified its characteristics in this article. By comparing the sequences of Arabidopsis and identifying conserved domains and motifs, we found that there were 38 members of the LBD family in P. bournei, which were named PbLBD1 to PbLBD38. Through evolutionary analysis, we found that they were divided into two different populations and five subfamilies in total. The LBD gene family in P. bournei (Hemsl.) Yang species had two subfamilies, including 32 genes in Class I and 6 genes in Class II. It mainly consists of a Lateral Organ Boundary (LOB) conservative domain, and the protein structure is mostly “Y”-shaped. The gene expression pattern of the LBD gene family showed that the LBD genes were mainly expressed in lateral organs of plants, such as flowers and fruits. The response of LBD transcription factors to red and blue light was summarized, and several models of optogenetic expression regulation were proposed. The effect of regulatory mechanisms on plant rooting was also predicted. Moreover, quantitative real-time PCR (qRT-PCR) revealed that most PbLBDs were differentially expressed under cold, heat, drought, and salt stresses, indicating that PbLBDs might play different functions depending on the type of abiotic stress. This study provides the foundation for further research on the function of LBD in this tree species in the future. Full article
(This article belongs to the Special Issue Abiotic Stress Tolerance and Genetic Diversity in Plants)
Show Figures

Figure 1

Back to TopTop