Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (51)

Search Parameters:
Keywords = L-lysine biosynthesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1988 KiB  
Article
The Impact of Uranium-Induced Pulmonary Fibrosis on Gut Microbiota and Related Metabolites in Rats
by Ruifeng Dong, Xiaona Gu, Lixia Su, Qingdong Wu, Yufu Tang, Hongying Liang, Xiangming Xue, Teng Zhang and Jingming Zhan
Metabolites 2025, 15(8), 492; https://doi.org/10.3390/metabo15080492 - 22 Jul 2025
Viewed by 360
Abstract
Background/Objectives: This study aimed to evaluate the effects of lung injury induced by insoluble uranium oxide particles on gut microbiota and related metabolites in rats. Methods: The rats were randomly divided into six UO2 dose groups. A rat lung injury [...] Read more.
Background/Objectives: This study aimed to evaluate the effects of lung injury induced by insoluble uranium oxide particles on gut microbiota and related metabolites in rats. Methods: The rats were randomly divided into six UO2 dose groups. A rat lung injury model was established through UO2 aerosol. The levels of uranium in lung tissues were detected by ICP-MS. The expression levels of the inflammatory factors and fibrosis indexes were measured by enzyme-linked immunosorbent assay. Paraffin embedding-based hematoxylin & eosin staining for the lung tissue was performed to observe the histopathological imaging features. Metagenomic sequencing technology and HM700-targeted metabolomics were conducted in lung tissues. Results: Uranium levels in the lung tissues increased with dose increase. The expression levels of Tumor Necrosis Factor-α (TNF-α), Interleukin-1β (IL-1β), Collagen I, and Hydroxyproline (Hyp) in rat lung homogenate increased with dose increase. Inflammatory cell infiltration and the deposition of extracellular matrix were observed in rat lung tissue post-exposure. Compared to the control group, the ratio of Firmicutes and Bacteroides in the gut microbiota decreased, the relative abundance of Akkermansia_mucinphila decreased, and the relative abundance of Bacteroides increased. The important differential metabolites mainly include αlpha-linolenic acid, gamma-linolenic acid, 2-Hydroxybutyric acid, Beta-Alanine, Maleic acid, Hyocholic acid, L-Lysine, L-Methionine, L-Leucine, which were mainly concentrated in unsaturated fatty acid biosynthesis, propionic acid metabolism, aminoacyl-tRNA biosynthesis, phenylalanine metabolism, and other pathways in the UO2 group compared to the control group. Conclusions: These findings suggest that uranium-induced lung injury can cause the disturbance of gut microbiota and its metabolites in rats, and these changes are mainly caused by Akkermansia_mucinphila and Bacteroides, focusing on unsaturated fatty acid biosynthesis and the propionic acid metabolism pathway. Full article
(This article belongs to the Section Animal Metabolism)
Show Figures

Figure 1

13 pages, 1208 KiB  
Article
Acaricidal Activity of Biosurfactants Produced by Serratia ureilytica on Tetranychus urticae and Their Compatibility with the Predatory Mite Amblyseius swirskii
by Arnoldo Wong-Villareal, Esaú Ruiz-Sánchez, Marcos Cua-Basulto, Saúl Espinosa-Zaragoza, Avel A. González-Sánchez, Ernesto Ramos-Carbajal, Cristian Góngora-Gamboa, René Garruña-Hernández, Rodrigo Romero-Tirado, Guillermo Moreno-Basurto and Erika P. Pinson-Rincón
Microbiol. Res. 2025, 16(7), 150; https://doi.org/10.3390/microbiolres16070150 - 4 Jul 2025
Viewed by 346
Abstract
This study evaluated the acaricidal effects of biosurfactants produced by Serratia ureilytica against the two-spotted spider mite Tetranychus urticae and their compatibility with the predatory mite Ambliseus swirski. The biosurfactants were obtained via liquid cultures of the bacterial strains. In the laboratory, [...] Read more.
This study evaluated the acaricidal effects of biosurfactants produced by Serratia ureilytica against the two-spotted spider mite Tetranychus urticae and their compatibility with the predatory mite Ambliseus swirski. The biosurfactants were obtained via liquid cultures of the bacterial strains. In the laboratory, T. urticae was exposed via acaricide-immersed leaves and A. swirskii via acaricide-coated glass vials. In the greenhouse, mite-infested plants were sprayed with the biosurfactants. In the laboratory, biosurfactants produced by S. ureilytica NOD-3 and UTS exhibited strong acaricidal activity, causing 95% mortality in adults and reducing egg viability by more than 60%. In the greenhouse trial, all biosurfactants significantly suppressed T. urticae populations at all evaluated periods (7, 14, and 21 days post-application). Gas chromatography–mass spectrometry (GC-MS) analysis of the biosurfactants identified several fatty acids, including hexadecanoic acid, pentanoic acid, octadecanoic acid, decanoic acid, and tetradecanoic acid, as well as the amino acids L-proline, L-lysine, L-valine, and glutamic acid. These fatty acids and amino acids are known structural components of lipopeptides. Furthermore, the bioinformatic analysis of the genomes of the three S. ureilytica strains revealed nonribosomal peptide synthetase (NRPS) gene clusters homologous to those involved in the biosynthesis of lipopeptides. These findings demonstrate that S. ureilytica biosurfactants are promising eco-friendly acaricides, reducing T. urticae populations by >95% while partially sparing A. swirskii. Full article
Show Figures

Figure 1

18 pages, 3842 KiB  
Article
Systematic Investigations of the Huperzine A—Producing Endophytic Fungi of Huperzia serrata in China and Fermentation Optimization Using OSMAC Strategy
by Wei Li, Zhicheng Wang, Qiuyu Zhu and Pingfang Tian
Molecules 2025, 30(13), 2704; https://doi.org/10.3390/molecules30132704 - 23 Jun 2025
Viewed by 440
Abstract
Huperzine A (HupA) can alleviate Alzheimer’s disease due to its reversible inhibition of acetylcholinesterase (AChE). The chemical synthesis and plant extraction of HupA is plagued by route complexity and resource scarcity, respectively. Although some endophytic fungi from Huperzia serrata can independently biosynthesize HupA, [...] Read more.
Huperzine A (HupA) can alleviate Alzheimer’s disease due to its reversible inhibition of acetylcholinesterase (AChE). The chemical synthesis and plant extraction of HupA is plagued by route complexity and resource scarcity, respectively. Although some endophytic fungi from Huperzia serrata can independently biosynthesize HupA, their yields are trivial. After a comprehensive investigation of HupA-producing H. serrata across China, we focused on the endophytic fungi from Hunan and Hubei provinces, which demonstrated high-level HupA. Morphological characteristics and internal transcriptional sequence (ITS) analysis revealed their diversity. Among the four HupA-producing endophytic fungi, Colletotrichum kahawae is the best-performing and was thus subjected to fermentation optimization. When its fermentation medium was supplemented with H. serrata flavonoids daidzein and apigenin, HupA yields reached 58.38 μg/g (dry cell weight, dcw) and 72.21 μg/g dcw, respectively. In contrast, the addition of L-lysine and H. serrata extracts led to yields of 50.17 μg/g dcw and 255.32 μg/g dcw, respectively. Transcriptomic analysis revealed that H. serrata extracts substantially upregulated the expression of HupA biosynthesis genes in C. kahawae. Overall, H. serrata extracts outperformed L-lysine, daidzein, and apigenin in boosting HupA production, as they encompass all the necessary nutrients for C. kahawae growth. This study not only connotes a nutritional exchange between H. serrata and C. kahawae during long-term coevolution but also offers insights for harnessing plant extracts for the overproduction of desired metabolites in endophytic fungi. Full article
(This article belongs to the Special Issue Bioproducts for Health III)
Show Figures

Figure 1

28 pages, 4731 KiB  
Article
Time-Resolved Visualization of Cyanotoxin Synthesis via Labeling by the Click Reaction in the Bloom-Forming Cyanobacteria Microcystis aeruginosa and Planktothrix agardhii
by Rainer Kurmayer and Rubén Morón Asensio
Toxins 2025, 17(6), 278; https://doi.org/10.3390/toxins17060278 - 3 Jun 2025
Viewed by 921
Abstract
In non-ribosomal peptide synthesis of cyanobacteria, promiscuous adenylation domains allow the incorporation of clickable non-natural amino acids into peptide products—namely into microcystins (MCs) or into anabaenopeptins (APs): 4-azidophenylalanine (Phe-Az), N-propargyloxy-carbonyl-L-lysine (Prop-Lys), or O-propargyl-L-tyrosine (Prop-Tyr). Subsequently, chemo-selective labeling is used to visualize [...] Read more.
In non-ribosomal peptide synthesis of cyanobacteria, promiscuous adenylation domains allow the incorporation of clickable non-natural amino acids into peptide products—namely into microcystins (MCs) or into anabaenopeptins (APs): 4-azidophenylalanine (Phe-Az), N-propargyloxy-carbonyl-L-lysine (Prop-Lys), or O-propargyl-L-tyrosine (Prop-Tyr). Subsequently, chemo-selective labeling is used to visualize the clickable cyanopeptides using Alexa Fluor 488 (A488). In this study, the time-lapse build up or decline of azide- or alkyne-modified MCs or APs was visualized during maximum growth, specifically MC biosynthesis in Microcystis aeruginosa and AP biosynthesis in Planktothrix agardhii. Throughout the time-lapse build up or decline, the A488 signal occurred with heterogeneous intracellular distribution. There was a fast increase or decrease in the A488 signal for either Prop-Tyr or Prop-Lys, while a delayed or unobservable A488 signal for Phe-Az was related to increased cell size as well as a reduction in growth and autofluorescence. The proportion of clickable MC/AP in peptide extracts as recorded by a chemical–analytical technique correlated positively with A488 labeling intensity quantified via laser-scanning confocal microscopy for individual cells or via flow cytometry at the population level. It is concluded that chemical modification of MC/AP can be used to track intracellular dynamics in biosynthesis using both analytical chemistry and high-resolution imaging. Full article
Show Figures

Graphical abstract

17 pages, 5458 KiB  
Article
Integrated Metabolome and Microbiome Analysis Reveals the Regulatory Effects of Fermented Soybean Meal on the Gut Microbiota of Late Gestation
by Yantao Li, Lele Fu, Yushi Chen, Hua Yang, Yingping Xiao, Ying Ren and Cheng Wang
Fermentation 2025, 11(6), 315; https://doi.org/10.3390/fermentation11060315 - 31 May 2025
Viewed by 774
Abstract
Late gestation is a critical period for regulating maternal peripartum physiological metabolism and gut microbiota balance. Fermented diets have been widely recognized as effective exogenous nutritional interventions capable of modulating the maintenance of gut microbiota homeostasis. However, the mechanism through which fermented diets [...] Read more.
Late gestation is a critical period for regulating maternal peripartum physiological metabolism and gut microbiota balance. Fermented diets have been widely recognized as effective exogenous nutritional interventions capable of modulating the maintenance of gut microbiota homeostasis. However, the mechanism through which fermented diets modulate the gut microbiota in late-gestation remains poorly understood. In this study, an in vitro fermentation model combined with chemical composition analysis, untargeted metabolomics, and high-throughput sequencing was employed to investigate the metabolic alterations during soybean meal (SBM) fermentation and the regulatory effects of fermented soybean meal (FSBM) on gut microbiota of late-gestation sows. The findings revealed that fermentation significantly increased the levels of crude protein, lactic acid, acid-soluble protein, lysine, histidine, and total amino acids of SBM. Conversely, the levels of crude fiber, NDF, ADF, starch, and non-starch polysaccharides were markedly reduced, compared to the unfermented group. A total of 941 differentially expressed metabolites were identified between SBM and FSBM. Specifically, FSBM elevated the levels of lactic acid, L-pyroglutamic acid, 2-aminoisobutyric acid, and tyrosine, while substantially decreasing the levels of raffinose, sucrose, and stachyose. Metabolic pathway analysis identified glutathione metabolism, tyrosine metabolism, and pantothenate and coenzyme A (CoA) biosynthesis as the key pathways involved in SBM fermentation. In vitro fermentation experiments demonstrated that FSBM substantially increased the production of short-chain fatty acids (SCFAs) and notably increased the relative abundance of sows gut commensal Lactobacillus and Limosilactobacillus in late gestation. In summary, this study demonstrated that co-fermentation with bacteria and enzymes pretreatment of soybean meal reduced fiber components and enriched bioactive metabolites, optimizing intestinal microbial composition and increasing SCFA production in late-pregnant period. The present study provides novel insights into the regulatory effects of fermented diets on gut microbiota in late-gestation period from the perspectives of nutritional composition and metabolites. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

18 pages, 2630 KiB  
Article
Nitrogen Metabolism in Two Flor Yeast Strains at Mid-Second Bottle Fermentation in Sparkling Wine Production
by Juan Carlos García-García, Miguel E. G-García, Juan Carbonero-Pacheco, Inés M. Santos-Dueñas, Juan Carlos Mauricio, María Trinidad Alcalá-Jiménez, Juan Moreno and Teresa García-Martínez
Appl. Sci. 2025, 15(10), 5579; https://doi.org/10.3390/app15105579 - 16 May 2025
Viewed by 421
Abstract
This study investigates nitrogen metabolism during the middle of the second fermentation in stopped bottles of sparkling wine, focusing on two flor Saccharomyces cerevisiae yeast strains (G1 and N62) isolated from the velum of biologically aged wine. Nitrogen compounds, including amino acids, biogenic [...] Read more.
This study investigates nitrogen metabolism during the middle of the second fermentation in stopped bottles of sparkling wine, focusing on two flor Saccharomyces cerevisiae yeast strains (G1 and N62) isolated from the velum of biologically aged wine. Nitrogen compounds, including amino acids, biogenic amines, and ammonium chloride, were quantified, revealing strain-specific differences in nitrogen utilization and production. Proteomic analysis identified 1053 proteins, with 127 showing significant differences between strains. Strain G1 demonstrated enhanced cell wall remodeling and prioritized nitrogen conservation via arginine and lysine biosynthesis, while strain N62 exhibited increased translational activity and alternative carbon utilization pathways. Notably, strain N62 produced higher concentrations of biogenic amines (putrescine and tyramine), likely due to its greater decarboxylation capacity. Principal Component Analysis (PCA) highlighted clear differentiation in the nitrogen compound profiles across the base wine and wines inoculated with the two strains. The proteome of strain N62 showed increased mitochondrial activity and TCA cycle involvement, facilitating faster fermentation (27 days vs. 52 days for G1), growth (46 × 106 cells/mL vs. 21 × 106 cells/mL for G1) and cell viability (4 × 106 cells/mL vs. 0.7 × 106 cells/mL for G1). These findings suggest that yeast strain selection significantly influences nitrogen metabolism and potentially aroma profiles and and fermentation dynamics in sparkling wine production. Understanding these metabolic adaptations provides valuable insights for optimizing yeast performance to enhance wine quality and preserve regional characteristics. Full article
(This article belongs to the Special Issue Wine Technology and Sensory Analysis)
Show Figures

Figure 1

23 pages, 16122 KiB  
Article
Integrated Physiological, Transcriptomic, and Metabolomic Analysis Reveals Mechanism Underlying the Serendipita indica-Enhanced Drought Tolerance in Tea Plants
by Gaojian Shen, Hongli Cao, Qin Zeng, Xiaoyu Guo, Huixin Shao, Huiyi Wang, Liyong Luo, Chuan Yue and Liang Zeng
Plants 2025, 14(7), 989; https://doi.org/10.3390/plants14070989 - 21 Mar 2025
Viewed by 1002
Abstract
Drought stress significantly impairs the output of tea plants and the quality of tea products. Although Serendipita indica has demonstrated the ability to enhance drought tolerance in host plants, its impact on tea plants (Camellia sinensis) experiencing drought stress is unknown. [...] Read more.
Drought stress significantly impairs the output of tea plants and the quality of tea products. Although Serendipita indica has demonstrated the ability to enhance drought tolerance in host plants, its impact on tea plants (Camellia sinensis) experiencing drought stress is unknown. This study assessed the response of tea plants by inoculating S. indica under drought conditions. Phenotypic and physiological analyses demonstrated that S. indica mitigated drought damage in tea plants by regulating osmotic equilibrium and antioxidant enzyme activity. Metabolome analysis showed that S. indica promoted the accumulation of flavonoid metabolites, including naringin, (-)-epiafzelechin, naringenin chalcone, and dihydromyricetin, while inhibiting the content of amino acids and derivatives, such as homoarginine, L-arginine, N6-acetyl-L-lysine, and N-palmitoylglycine, during water deficit. The expression patterns of S. indica-stimulated genes were investigated using transcriptome analysis. S. indica-induced drought-responsive genes involved in osmotic regulation, antioxidant protection, transcription factors, and signaling were identified and recognized as possibly significant in S. indica-mediated drought tolerance in tea plants. Particularly, the flavonoid biosynthesis pathway was identified from the metabolomic and transcriptomic analysis using Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Moreover, flavonoid biosynthesis-related genes were identified. S. indica-inoculation significantly upregulated the expression of cinnamate 4-hydroxylase (C4H), chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), dihydroflavonol 4-reductase (DFR), anthocyanidin reductase (ANR), and leucoanthocyanidin reductase (LAR) genes compared to uninoculated plants subjected to water stress. Consequently, we concluded that S. indica inoculation primarily alleviates drought stress in tea plants by modulating the flavonoid biosynthesis pathway. These results will provide insights into the mechanisms of S. indica-enhanced drought tolerance in tea plants and establish a solid foundation for its application as a microbial agent in the management of drought in tea plants cultivation. Full article
(This article belongs to the Special Issue Tea Germplasm Improvement and Resistance Breeding)
Show Figures

Figure 1

15 pages, 5317 KiB  
Article
Metabolomics Provides New Insights into the Mechanisms of Wolbachia-Induced Plant Defense in Cotton Mites
by Xinlei Wang, Sha Wang, Ali Basit, Qianchen Wei, Kedi Zhao, Feng Liu and Yiying Zhao
Microorganisms 2025, 13(3), 608; https://doi.org/10.3390/microorganisms13030608 - 6 Mar 2025
Viewed by 699
Abstract
Endosymbiotic bacteria play a significant role in the co-evolution of insects and plants. However, whether they induce or inhibit host plant defense responses remains unclear. In this study, non-targeted metabolomic sequencing was performed on cotton leaves fed with Wolbachia-infected and uninfected spider [...] Read more.
Endosymbiotic bacteria play a significant role in the co-evolution of insects and plants. However, whether they induce or inhibit host plant defense responses remains unclear. In this study, non-targeted metabolomic sequencing was performed on cotton leaves fed with Wolbachia-infected and uninfected spider mites using parthenogenetic backcrossing and antibiotic treatment methods. A total of 55 differential metabolites were identified, which involved lipids, phenylpropanoids, and polyketides. KEGG pathway enrichment analysis revealed seven significantly enriched metabolic pathways. Among them, flavonoid and flavonol biosynthesis, glycerophospholipid metabolism, and ether lipid metabolism showed extremely significant differences. In Wolbachia-infected cotton leaves, the flavonoid biosynthesis pathway was significantly up-regulated, including quercetin and myricetin, suggesting that the plant produces more secondary metabolites to enhance its defense capability. Glycerophosphocholine (GPC) and sn-glycerol-3-phosphoethanolamine (PE) were significantly down-regulated, suggesting that Wolbachia may impair the integrity and function of plant cell membranes. The downregulation of lysine and the upregulation of L-malic acid indicated that Wolbachia infection may shorten the lifespan of spider mites. At various developmental stages of the spider mites, Wolbachia infection increased the expression of detoxification metabolism-related genes, including gene families such as cytochrome P450, glutathione S-transferase, carboxylesterase, and ABC transporters, thereby enhancing the detoxification capability of the host spider mites. This study provides a theoretical basis for further elucidating the mechanisms by which endosymbiotic bacteria induce plant defense responses and expands the theoretical framework of insect–plant co-evolution. Full article
(This article belongs to the Special Issue Plant-Microbe Interaction State-of-the-Art Research in China)
Show Figures

Figure 1

13 pages, 1871 KiB  
Article
Genomic and Metabolomic Analyses of Streptomyces albulus with Enhanced ε-Poly-l-lysine Production Through Adaptive Laboratory Evolution
by Xidong Ren, Xinjie Sun, Yan Chen, Xiangheng Xi, Yunzhe Ma, Xinyue Jiang, Xian Zhang, Chenying Wang, Deqiang Zhu and Xinli Liu
Microorganisms 2025, 13(1), 149; https://doi.org/10.3390/microorganisms13010149 - 13 Jan 2025
Viewed by 1085
Abstract
ε-poly-l-lysine (ε-PL), a natural food preservative, has garnered widespread attention. It is mainly produced by Streptomyces albulus, but the production by wild-type strains fails to meet the demands of industrialization. To address this issue, adaptive laboratory evolution (ALE) was successfully [...] Read more.
ε-poly-l-lysine (ε-PL), a natural food preservative, has garnered widespread attention. It is mainly produced by Streptomyces albulus, but the production by wild-type strains fails to meet the demands of industrialization. To address this issue, adaptive laboratory evolution (ALE) was successfully employed in this study, subjecting S. albulus CICC 11022 to environmental stresses such as acidic pH and antibiotics (rifampicin, gentamicin, and streptomycin). As a result of ALE, an evolutionary strain S. albulus C214 was obtained, exhibiting an increase in ε-PL production and cell growth by 153.23% and 234.51%, respectively, as compared with the original strain. Genomic and metabolic analyses revealed that mutations occurred in genes responsible for transcriptional regulation, transporter, cell envelope, energy metabolism, and secondary metabolite synthesis, as well as the enrichment of metabolites involved in the biosynthesis of ε-PL. These findings hold great significance for elucidating the mechanism underlying ε-PL synthesis. Full article
(This article belongs to the Special Issue Resources and Application of Industrial Microorganisms)
Show Figures

Figure 1

20 pages, 2521 KiB  
Article
Synergistic Effect of Arbuscular Mycorrhizal Fungi and Germanium on the Growth, Nutritional Quality, and Health-Promoting Activities of Spinacia oleracea L.
by Basma Najar, Ahlem Zrig, Emad A. Alsherif, Samy Selim, Abeer S. Aloufi, Shereen Magdy Korany, Mousa Nhs, Mohammad Aldilam and Nahla Alsayd Bouqellah
Plants 2024, 13(20), 2869; https://doi.org/10.3390/plants13202869 - 14 Oct 2024
Cited by 4 | Viewed by 1735
Abstract
Arbuscular mycorrhizal fungi (AMF) and the antioxidant germanium (Ge) are promising tools for boosting bioactive compound synthesis and producing healthier foods. However, their combined effect remains unexplored. This study demonstrates the synergistic impact of AMF and Ge on the growth, metabolite accumulation, biological [...] Read more.
Arbuscular mycorrhizal fungi (AMF) and the antioxidant germanium (Ge) are promising tools for boosting bioactive compound synthesis and producing healthier foods. However, their combined effect remains unexplored. This study demonstrates the synergistic impact of AMF and Ge on the growth, metabolite accumulation, biological activities, and nutritional qualities of Spinacia oleracea L. (spinach), a globally significant leafy vegetable. Individually, Ge and AMF increased biomass by 68.1% and 22.7%, respectively, while their combined effect led to an 86.3% increase. AMF and Ge also improved proximate composition, with AMF–Ge interaction enhancing crude fiber and mineral content (p < 0.05). Interestingly, AMF enhanced photosynthesis-related parameters (e.g., total chlorophyll) in Ge treated plants, which in turn increased carbohydrate accumulation. This accumulation could provide a route for the biosynthesis of amino acids, organic acids, and fatty acids, as evidenced by increased essential amino acid and organic acid levels. Consistently, the activity of key enzymes involved in amino acids biosynthesis (e.g., glutamine synthase (GS), methionine biosynthase (MS), lysine biosynthase (LS)) showed significant increments. Furthermore, AMF improved fatty acid levels, particularly unsaturated fatty acids in Ge-treated plants compared to the control. In addition, increased phenylalanine provided a precursor for the production of antioxidants (e.g., phenols and flavonoids), through the action of the enzyme phenylalanine ammonia-lyase (PAL), resulting in improved antioxidant activity gains as indicated by FRAP, ABTS, and DPPH assays. This study is the first to show that Ge enhances the beneficial effect of AMF on spinach, improving growth and nutritional quality, with promising implications for agricultural practices. Full article
Show Figures

Figure 1

16 pages, 4260 KiB  
Article
Metabolomics Reveals Glycerophospholipids, Peptides, and Flavonoids Contributing to Breast Meat Flavor and Benefit Properties of Beijing-You Chicken
by Jian Zhang, Xia Chen, Jing Cao, Ailian Geng, Qin Chu, Zhixun Yan, Yao Zhang and Huagui Liu
Foods 2024, 13(16), 2549; https://doi.org/10.3390/foods13162549 - 15 Aug 2024
Cited by 3 | Viewed by 1630
Abstract
Unique metabolites contribute to the performance of meat flavor and potential function. In this study, UHPLC-Q Exactive HF-X-based metabolomics and multivariate analysis were applied to explore the characteristic metabolites in the breast meat of Beijing-You chicken (BYC) aged 150, 300, and 450 days [...] Read more.
Unique metabolites contribute to the performance of meat flavor and potential function. In this study, UHPLC-Q Exactive HF-X-based metabolomics and multivariate analysis were applied to explore the characteristic metabolites in the breast meat of Beijing-You chicken (BYC) aged 150, 300, and 450 days (D150, D300, and D450). Based on the criteria of variable importance in the projection (VIP) > 1 and p < 0.05, a total of 154 and 97 differential metabolites (DMs) were screened out compared with D450 (D450 vs. D150, D450 vs. D300), respectively. In general, the relative content of carnosine, L-L-homoglutathione, demethyloleuropein, neohesperidin dihydrochalcone, 7-chloro-2-(3,4-dimethoxyphenyl)-3,5-dihydroxy-6,8-dimethoxy-4H-chromen-4-one, glycerophospholipids, exhibited the highest abundance at D450, while balenine, anserine, L-beta-aspartyl-L-leucine, glutathione, oxidized glutathione, stearoylcarnitine, ganoderic acid alpha, oleuroside, Lysoglycerophospholipid species (LGP) presented a downward trend with age. These 210 DMs were involved in 10 significantly enriched pathways related to the synthesis and metabolism of amino acids, peptides, and glycerophospholipid, such as glutathione metabolism, histidine metabolism, glycerophospholipid metabolism, arginine biosynthesis, tyrosine metabolism, and lysine degradation. In conclusion, this work could not only facilitate a better understanding of the differences of chicken flavor and benefit properties with age, but also provide potential valuable bioactive compounds for further research. Full article
Show Figures

Graphical abstract

16 pages, 7548 KiB  
Article
Metabolic Response of the Lycium barbarum Variety ‘Ningqi No. 7′ to Drought Stress
by Xiao Liu, Chuanzhe Wang, Qiao Xu, Dan Zhao, Fei Liu and Beibei Han
Plants 2024, 13(14), 1935; https://doi.org/10.3390/plants13141935 - 14 Jul 2024
Cited by 2 | Viewed by 1587
Abstract
Lycium barbarum has been widely planted in arid and semi-arid areas due to its drought-resistant ability, which is of great economic value as a medicinal and edible homology plant. In this study, the metabolome of the L. barbarum variety “Ningqi 7” under different [...] Read more.
Lycium barbarum has been widely planted in arid and semi-arid areas due to its drought-resistant ability, which is of great economic value as a medicinal and edible homology plant. In this study, the metabolome of the L. barbarum variety “Ningqi 7” under different drought stress conditions was compared and analyzed by the non-targeted UPLC-MS (ultra-high performance liquid chromatography with mass spectrometry) technique. The results showed that drought stress significantly decreased the water content of leaves, increased the activity of antioxidant enzymes in plants, and up-regulated the metabolites and pathways involved in osmoregulation, antioxidant stress, energy metabolism, and signal transduction. Under moderate drought (40–45% FC), L. barbarum accumulated osmoregulatory substances mainly through the up-regulation of the arginine metabolism pathway. At the same time, phenylalanine metabolism and cutin, suberine, and wax biosynthesis were enhanced to improve the antioxidant capacity and reduce water loss. However, in severe drought (10–15% FC), L. barbarum shifted to up-regulate purine metabolism and lysine degradation and redistributed energy and nitrogen resources. In addition, vitamin B6 metabolism was significantly upregulated in both groups of stress levels, playing a key role in antioxidant and growth regulation. These observations delineate the metabolic adaptations of L. barbarum “Ningqi 7” in response to drought stress. Full article
Show Figures

Graphical abstract

13 pages, 2596 KiB  
Article
Metabolomic Insights into Primary and Secondary Metabolites Variation in Common and Glutinous Rice (Oryza sativa L.)
by Mingchao Zhao, Jingfen Huang, Junfang Ren, Xiaorong Xiao, Yapeng Li, Linan Zhai, Xiaowei Yan, Yong Yun, Qingwen Yang, Qingjie Tang, Funeng Xing and Weihua Qiao
Agronomy 2024, 14(7), 1383; https://doi.org/10.3390/agronomy14071383 - 27 Jun 2024
Viewed by 1820
Abstract
Abstract: Interest in glutinous rice consumption has been expanding in East Asia. However, the extent of metabolite variation between common and glutinous rice has not been fully explored to identify metabolic targets for rice quality improvement. Thus, the objective of this study was [...] Read more.
Abstract: Interest in glutinous rice consumption has been expanding in East Asia. However, the extent of metabolite variation between common and glutinous rice has not been fully explored to identify metabolic targets for rice quality improvement. Thus, the objective of this study was to provide insights into the variation of metabolites and nutraceuticals between common and glutinous rice. Two black rice (common rice, BL-N, and glutinous rice, BL-G) and two white rice (common rice, WH-N, and glutinous rice, WH-G) types were analysed via LC-MS-based widely targeted metabolic profiling. We identified 441 and 343 types, including 160 key overlapping differentially accumulated metabolites between BL-N_vs_BL-G and WH-N_vs_WH-G, respectively. Glutinous rice showed a higher relative content of most categories of metabolites, except for quinones (in BL-N) and tannins (in WH-N). Seven vitamins, including B6, B3, B5, B13, isonicotinic acid, N-(beta-D-glucosyl)nicotinate, and 4-pyridoxic acid-O-glucoside, were significantly up-regulated in BL-G compared to BL-N. The biosynthesis of cofactors, zeatin biosynthesis, citrate cycle, amino acid metabolism, alpha-linolenic acid metabolism, and glyoxylate and dicarboxylate metabolism was the most differentially regulated pathway. Key differential metabolites in citrate cycle include citrate, isocitrate, fumarate, malate, succinate, and 2-oxoglutarate; in amino acid metabolism (L-serine, L-cysteine, L-lysine, L-glutamine, L-methionine, and L-tryptophan); and in glycolysis (UDP-glucose, D-glucose-1P, D-glucose-6P, and D-fructose-6P). The data resources in this study may contribute to a better understanding of the function and nutritional value of glutinous rice. Full article
(This article belongs to the Special Issue Advances in Rice Physioecology and Sustainable Cultivation)
Show Figures

Figure 1

21 pages, 3004 KiB  
Article
Enhanced ε-Poly-L-Lysine Production in Streptomyces albulus through Multi-Omics-Guided Metabolic Engineering
by Liang Wang, Hao Yang, Mengping Wu, Hongjian Zhang, Jianhua Zhang and Xusheng Chen
Biomolecules 2024, 14(7), 752; https://doi.org/10.3390/biom14070752 - 25 Jun 2024
Cited by 1 | Viewed by 1900
Abstract
Safe and eco-friendly preservatives are crucial to preventing food spoilage and illnesses, as foodborne diseases caused by pathogens result in approximately 600 million cases of illness and 420,000 deaths annually. ε-Poly-L-lysine (ε-PL) is a novel food preservative widely used in many countries. However, [...] Read more.
Safe and eco-friendly preservatives are crucial to preventing food spoilage and illnesses, as foodborne diseases caused by pathogens result in approximately 600 million cases of illness and 420,000 deaths annually. ε-Poly-L-lysine (ε-PL) is a novel food preservative widely used in many countries. However, its commercial application has been hindered by high costs and low production. In this study, ε-PL’s biosynthetic capacity was enhanced in Streptomyces albulus WG608 through metabolic engineering guided by multi-omics techniques. Based on transcriptome and metabolome data, differentially expressed genes (fold change >2 or <0.5; p < 0.05) and differentially expressed metabolites (fold change >1.2 or <0.8) were separately subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. The integrative analysis of transcriptome, metabolome, and overexpression revealed the essential roles of isocitrate lyase, succinate dehydrogenase, flavoprotein subunit, diaminopimelate dehydrogenase, polyphosphate kinase, and polyP:AMP phosphotransferase in ε-PL biosynthesis. Subsequently, a strain with enhanced ATP supply, L-lysine supply, and ε-PL synthetase expression was constructed to improve its production. Finally, the resulting strain, S. albulus WME10, achieved an ε-PL production rate of 77.16 g/L in a 5 L bioreactor, which is the highest reported ε-PL production to date. These results suggest that the integrative analysis of the transcriptome and metabolome can facilitate the identification of key pathways and genetic elements affecting ε-PL synthesis, guiding further metabolic engineering and thus significantly enhancing ε-PL production. The method presented in this study could be applicable to other valuable natural antibacterial agents. Full article
Show Figures

Figure 1

12 pages, 2971 KiB  
Article
Metabolomic Analysis of Lycoris radiata across Developmental and Dormancy Stages
by Xueru Jiang, Xuying Wei, Hua Cheng, Xin You and Junhuo Cai
Horticulturae 2024, 10(6), 636; https://doi.org/10.3390/horticulturae10060636 - 13 Jun 2024
Cited by 1 | Viewed by 1397
Abstract
The Lycoris radiata (L’ Herit.) Herb. is a perennial bulbous plant characterized by its high ornamental and medicinal value, exhibiting a unique growth rhythm where the flower and leaf do not coexist and a period of summer dormancy. However, its metabolic response to [...] Read more.
The Lycoris radiata (L’ Herit.) Herb. is a perennial bulbous plant characterized by its high ornamental and medicinal value, exhibiting a unique growth rhythm where the flower and leaf do not coexist and a period of summer dormancy. However, its metabolic response to various developmental stages remains unclear. To address this gap, we conducted a non-targeted metabolomic analysis spanning six developmental stages of L. radiata. The results showed that most differentially accumulated metabolites (DAMs) demonstrated enrichment predominantly in carbohydrate and amino acid metabolism pathways, with the former being more active during vegetative growth and the latter during reproductive stages. The proportion of DAMs categorized under “quaternary ammonium salts”, “tricarboxylic acids and derivatives”, “fatty acids and conjugates”, and “pyrimidine nucleotide sugars” was notably higher in comparisons between the flowering and dormancy stages than in other comparative groups. Furthermore, DAMs involved in the KEGG pathways of C5-branched dibasic acid metabolism and lysine biosynthesis were uniquely identified during the transition from Dormancy to Flowering. The proportion of DAMs associated with “linoleic acids and derivatives” and “pyridines and pyridine derivatives” was notably higher in the leafing out versus flowering comparison than in other comparative groups. Furthermore, the glycolysis/gluconeogenesis pathway was uniquely enriched by DAMs during this phase. This study provided an in-depth view of metabolite changes in L. radiata over its annual growth cycle, enriching our understanding of the regulatory mechanisms governing its development, dormancy, and flowering. Full article
(This article belongs to the Special Issue Propagation and Flowering of Ornamental Plants)
Show Figures

Figure 1

Back to TopTop