Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = Krüppel-like factors 15

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 874 KiB  
Review
Effect of KLF15-Mediated Circadian Rhythm on Myocardial Infarction: A Narrative Review
by Junxin Zhao, Zhuoyang Chen, Jingyi Yang, Lincheng Duan, Hong Yang, Dingjun Cai and Zhengyu Zhao
Int. J. Mol. Sci. 2025, 26(10), 4831; https://doi.org/10.3390/ijms26104831 - 18 May 2025
Viewed by 510
Abstract
Normal circadian rhythms are essential for organisms to adapt to diurnal changes and maintain an optimal state of physiological function. Disturbances in circadian rhythms such as shift work and working at night increase the risk of cardiovascular disease. Myocardial infarction exhibits a marked [...] Read more.
Normal circadian rhythms are essential for organisms to adapt to diurnal changes and maintain an optimal state of physiological function. Disturbances in circadian rhythms such as shift work and working at night increase the risk of cardiovascular disease. Myocardial infarction exhibits a marked circadian rhythm, usually peaking in the early morning. Krüppel-like factor 15 (KLF15), a transcription factor with a circadian rhythm, plays an important role in cardiac physiopathology. It has a protective effect against myocardial injury after myocardial infarction by regulating energy metabolism and inflammatory factors, among other pathways. Currently, the association between circadian rhythm, KLF15, and myocardial infarction is unclear, thus this paper reviews how circadian rhythm influences the role of KLF15 in myocardial infarction, aiming to reveal the association between circadian rhythm, KLF15, and myocardial infarction, and to explore the underlying mechanisms, to provide new theoretical insights and therapeutic strategies for the clinical treatment of myocardial infarction. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

16 pages, 1850 KiB  
Review
Stress Can Induce Bovine Alpha-Herpesvirus 1 (BoHV-1) Reactivation from Latency
by Fouad El-Mayet and Clinton Jones
Viruses 2024, 16(11), 1675; https://doi.org/10.3390/v16111675 - 27 Oct 2024
Cited by 2 | Viewed by 2089
Abstract
Bovine alpha-herpesvirus 1 (BoHV-1) is a significant problem for the cattle industry, in part because the virus establishes latency, and stressful stimuli increase the incidence of reactivation from latency. Sensory neurons in trigeminal ganglia and unknown cells in pharyngeal tonsils are important
sites [...] Read more.
Bovine alpha-herpesvirus 1 (BoHV-1) is a significant problem for the cattle industry, in part because the virus establishes latency, and stressful stimuli increase the incidence of reactivation from latency. Sensory neurons in trigeminal ganglia and unknown cells in pharyngeal tonsils are important
sites for latency. Reactivation from latency can lead to reproductive problems in pregnant cows, virus transmission to young calves, suppression of immune responses, and bacterial pneumonia. BoHV-1 is also a significant cofactor in bovine respiratory disease (BRD). Stress, as mimicked by the synthetic corticosteroid dexamethasone, reproducibly initiates reactivation from latency. Stress-mediated activation of the glucocorticoid receptor (GR) stimulates viral replication and transactivation of viral promoters that drive the expression of infected cell protein 0 (bICP0) and bICP4. Notably, GR and Krüppel-like factor 15 (KLF15) form a feed-forward transcription loop that cooperatively transactivates immediate early transcription unit 1 (IEtu1 promoter). Two  pioneer transcription factors, GR and KLF4, cooperatively transactivate the bICP0 early promoter. Pioneer transcription factors bind silent viral  heterochromatin, remodel chromatin, and activate gene expression. Thus, we
predict that these novel transcription factors mediate early stages of BoHV-1 reactivation from latency. Full article
(This article belongs to the Special Issue Herpesvirus Latency 2024)
Show Figures

Figure 1

19 pages, 7014 KiB  
Article
Protective Role of Ethanol Extract of Cibotium barometz (Cibotium Rhizome) against Dexamethasone-Induced Muscle Atrophy in C2C12 Myotubes
by Na-Hyung Kim, Joo-Yeon Lee and Choon Young Kim
Int. J. Mol. Sci. 2023, 24(19), 14798; https://doi.org/10.3390/ijms241914798 - 30 Sep 2023
Cited by 5 | Viewed by 3248
Abstract
Sarcopenia is a progressive muscle disease characterized by the loss of skeletal muscle mass, strength, function, and physical performance. Since the disease code was assigned, attention has been focused on natural products that can protect against muscle atrophy. Cibotium barometz (Cibotium Rhizome) has [...] Read more.
Sarcopenia is a progressive muscle disease characterized by the loss of skeletal muscle mass, strength, function, and physical performance. Since the disease code was assigned, attention has been focused on natural products that can protect against muscle atrophy. Cibotium barometz (Cibotium Rhizome) has been used as an herbal medicine for the treatment of bone or joint diseases in Asian countries. However, no studies have identified the mechanism of action of Cibotium Rhizome on muscle atrophy related to sarcopenia at the site of myotubes. The aim of this study was to investigate the improvement effect of the ethanol extract of Cibotium Rhizome (ECR) on dexamethasone-induced muscle atrophy in an in vitro cell model, i.e., the C2C12 myotubes. High-performance liquid chromatography was performed to examine the phytochemicals in ECR. Seven peaks in the ECR were identified, corresponding to the following compounds: protocatechuic acid, (+)-catechin hydrate, p-coumaric acid, ellagic acid, chlorogenic acid, caffeic acid, and ferulic acid. In atrophy-like conditions induced by 100 μM dexamethasone for 24 h in C2C12, ECR increased the expression of the myosin heavy chain, p-Akt, the p-mammalian target of rapamycin (mTOR), p-p70S6K, and repressed the expression of regulated in development and DNA damage responses 1 (REDD1), kruppel-like factor 15 (KLF 15), muscle atrophy F-box, and muscle-specific RING finger protein-1 in C2C12. In addition, ECR alleviated dexamethasone-induced muscle atrophy by repressing REDD1 and KLF15 transcription in C2C12 myotubes, indicating the need for further studies to provide a scientific basis for the development of useful therapeutic agents using ECR to alleviate the effects of skeletal muscle atrophy or sarcopenia. Full article
(This article belongs to the Special Issue Cell Metabolism and Small Natural Compounds (2nd Edition))
Show Figures

Figure 1

18 pages, 8204 KiB  
Article
Krüppel-like Factor 15 Suppresses Ferroptosis by Activating an NRF2/GPX4 Signal to Protect against Folic Acid-Induced Acute Kidney Injury
by Xue Yang, Shihui Dong, Yun Fan, Yuanyuan Xia, Fan Yang, Zhaohong Chen, Dacheng Chen, Mingchao Zhang, Dandan Liang and Caihong Zeng
Int. J. Mol. Sci. 2023, 24(19), 14530; https://doi.org/10.3390/ijms241914530 - 26 Sep 2023
Cited by 5 | Viewed by 2564
Abstract
Acute kidney injury (AKI) is a common and serious disease with high morbidity and mortality, and its pathophysiological mechanisms are not fully understood. Increasing evidence suggests an important role of ferroptosis in AKI. Krüppel-like factor 15 (KLF15) is a transcription factor involved in [...] Read more.
Acute kidney injury (AKI) is a common and serious disease with high morbidity and mortality, and its pathophysiological mechanisms are not fully understood. Increasing evidence suggests an important role of ferroptosis in AKI. Krüppel-like factor 15 (KLF15) is a transcription factor involved in several metabolic diseases, but its role in AKI and ferroptosis remains unclear. In this study, we explored the potential role of KLF15 using a folic acid-induced AKI model. Our study showed that KLF15 expression was reduced in kidney tissues of AKI mice, and KLF15 knockout exacerbated folic acid-induced ferroptosis and kidney injury. In vitro studies revealed that the ferroptosis inducer erastin significantly suppressed KLF15 expression in human tubular epithelial cells. Notably, the overexpression of KLF15 attenuated ferroptosis, as evidenced by a decrease in the lipid peroxidation marker of malondialdehyde and the upregulation of glutathione peroxidase 4 (GPX4), while KLF15 knockdown with shRNA exerted the opposite effect. Mechanistically, KLF15 stabilized the protein of nuclear factor erythroid 2-related factor 2 (NRF2) and subsequently increased the GPX4 level. Collectively, KLF15 plays an important role in the modulation of ferroptosis in AKI and may be a potential therapeutic target for treating AKI. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Graphical abstract

15 pages, 4042 KiB  
Article
Independent Cis-Regulatory Modules within the Herpes Simplex Virus 1 Infected Cell Protein 0 (ICP0) Promoter Are Transactivated by Krüppel-like Factor 15 and Glucocorticoid Receptor
by Nishani Wijesekera, Nicholas Hazell and Clinton Jones
Viruses 2022, 14(6), 1284; https://doi.org/10.3390/v14061284 - 13 Jun 2022
Cited by 12 | Viewed by 2954
Abstract
A corticosteroid antagonist impairs Herpes Simplex Virus 1 (HSV-1) productive infection and explant-induced reactivation from latency, suggesting corticosteroids and the glucocorticoid receptor (GR) mediate certain aspects of these complex virus–host interactions. GR-hormone complexes regulate transcription positively and negatively, in part, by binding GR [...] Read more.
A corticosteroid antagonist impairs Herpes Simplex Virus 1 (HSV-1) productive infection and explant-induced reactivation from latency, suggesting corticosteroids and the glucocorticoid receptor (GR) mediate certain aspects of these complex virus–host interactions. GR-hormone complexes regulate transcription positively and negatively, in part, by binding GR response elements (GREs). Recent studies revealed infected cell protein 0 (ICP0), ICP4, and ICP27 promoter/cis-regulatory modules (CRMs) are cooperatively transactivated by GR and Krüppel-like factor 15 (KLF15), which forms a feed-forward transcription loop. We hypothesized the ICP0 promoter contains independent CRMs that are transactivated by GR, KLF15, and the synthetic corticosteroid dexamethasone (DEX). This hypothesis is based on the finding that the ICP0 promoter contains multiple transcription factor binding sites, and GR and KLF15 cooperatively transactivate the full-length ICP0 promoter. ICP0 promoter sequences spanning −800 to −635 (fragment A) were efficiently transactivated by GR, KLF15, and DEX in monkey kidney cells (Vero), whereas GR and DEX significantly enhanced promoter activity in mouse neuroblastoma cells (Neuro-2A). Furthermore, ICP0 fragment B (−458 to −635) was efficiently transactivated by GR, KLF15, and DEX in Vero cells, but not Neuro-2A cells. Finally, fragment D (−232 to −24) was transactivated significantly in Vero cells by GR, KLF15, and DEX, whereas KLF15 and DEX were sufficient for transactivation in Neuro-2A cells. Collectively, these studies revealed efficient transactivation of three independent CRMs within the ICP0 promoter by GR, KLF15, and/or DEX. Finally, GC-rich sequences containing specificity protein 1 (Sp1) binding sites were essential for transactivation. Full article
(This article belongs to the Special Issue Herpesvirus Latency)
Show Figures

Figure 1

16 pages, 5114 KiB  
Article
Comparative Genomic Characterization of Buffalo Fibronectin Type III Domain Proteins: Exploring the Novel Role of FNDC5/Irisin as a Ligand of Gonadal Receptors
by Siwen Wu, Faiz-ul Hassan, Yuhong Luo, Israr Fatima, Ishtiaq Ahmed, Awais Ihsan, Warda Safdar, Qingyou Liu and Saif ur Rehman
Biology 2021, 10(11), 1207; https://doi.org/10.3390/biology10111207 - 19 Nov 2021
Cited by 11 | Viewed by 3658
Abstract
FN-III proteins are widely distributed in mammals and are usually involved in cellular growth, differentiation, and adhesion. The FNDC5/irisin regulates energy metabolism and is present in different tissues (liver, brain, etc.). The present study aimed to investigate the physiochemical characteristics and the evolution [...] Read more.
FN-III proteins are widely distributed in mammals and are usually involved in cellular growth, differentiation, and adhesion. The FNDC5/irisin regulates energy metabolism and is present in different tissues (liver, brain, etc.). The present study aimed to investigate the physiochemical characteristics and the evolution of FN-III proteins and FNDC5/irisin as a ligand targeting the gonadal receptors including androgen (AR), DDB1 and CUL4 associated factor 6 (DCAF6), estrogen-related receptor β (ERR-β), estrogen-related receptor γ (ERR-γ), Krüppel-like factor 15 (KLF15), and nuclear receptor subfamily 3 group C member 1 (NR3C1). Moreover, the putative role of irisin in folliculogenesis and spermatogenesis was also elucidated. We presented the molecular structure and function of 29 FN-III genes widely distributed in the buffalo genome. Phylogenetic analysis, motif, and conserved domain pattern demonstrated the evolutionary well-conserved nature of FN-III proteins with a variety of stable to unstable, hydrophobic to hydrophilic, and thermostable to thermo-unstable properties. The comparative structural configuration of FNDC5 revealed amino acid variations but still the FNDC5 structure of humans, buffalo, and cattle was quite similar to each other. For the first time, we predicted the binding scores and interface residues of FNDC5/irisin as a ligand for six representative receptors having a functional role in energy homeostasis, and a significant involvement in folliculogenesis and spermatogenesis in buffalo. Full article
(This article belongs to the Section Developmental and Reproductive Biology)
Show Figures

Graphical abstract

19 pages, 3412 KiB  
Article
Stress Induced Transcription Factors Transactivate the Herpes Simplex Virus 1 Infected Cell Protein 27 (ICP27) Transcriptional Enhancer
by Jeffery B. Ostler and Clinton Jones
Viruses 2021, 13(11), 2296; https://doi.org/10.3390/v13112296 - 17 Nov 2021
Cited by 23 | Viewed by 3227
Abstract
Following acute infection, herpes simplex virus 1 (HSV-1) establishes lifelong latency in neurons, including sensory neurons within trigeminal ganglia. During latency, lytic cycle viral gene expression is silenced. However, stressful stimuli can trigger reactivation from latency. The viral tegument protein, VP-16, transactivates all [...] Read more.
Following acute infection, herpes simplex virus 1 (HSV-1) establishes lifelong latency in neurons, including sensory neurons within trigeminal ganglia. During latency, lytic cycle viral gene expression is silenced. However, stressful stimuli can trigger reactivation from latency. The viral tegument protein, VP-16, transactivates all immediate early (IE) promoters during productive infection. Conversely, cellular factors are expected to trigger viral gene expression during early stages of reactivation from latency and in non-neuronal cells that do not support high levels of productive infection. The glucocorticoid receptor (GR), synthetic corticosteroid dexamethasone, and certain stress-induced transcription factors cooperatively transactivate infected cell protein 0 (ICP0) and ICP4 promoters. Since ICP27 protein expression is required for productive infection, we hypothesized that the ICP27 promoter is transactivated by stress-induced transcription factors. New studies have demonstrated that ICP27 enhancer sequences were transactivated by GR and Krüppel-like factor 15 (KLF15). Mutation of a consensus Sp1 binding site within ICP27 enhancer sequences impaired transactivation by GR and KLF15. Chromatin immunoprecipitation studies have demonstrated that GR and KLF15 occupy ICP27 promoter sequences during productive infection. Cells transfected with an ICP27 enhancer fragment revealed the GR and KLF15 occupancy of ICP27 enhancer sequences required the intact Sp1 binding site. Notably, GR and KLF15 form a feed-forward transcription loop in response to stress, suggesting these cellular factors promote viral replication following stressful stimuli. Full article
(This article belongs to the Special Issue Replication and Spread of Alphaherpesviruses)
Show Figures

Figure 1

13 pages, 3043 KiB  
Article
Regulation of Krüppel-Like Factor 15 Expression by Herpes Simplex Virus Type 1 or Bovine Herpesvirus 1 Productive Infection
by Fouad S. El-mayet, Kelly S. Harrison and Clinton Jones
Viruses 2021, 13(6), 1148; https://doi.org/10.3390/v13061148 - 15 Jun 2021
Cited by 9 | Viewed by 3024
Abstract
Expression of Krüppel-like factor 15 (KLF15), a stress-induced transcription factor, is induced during bovine herpesvirus 1 (BoHV-1) reactivation from latency, and KLF15 stimulates BoHV-1 replication. Transient transfection studies revealed that KLF15 and glucocorticoid receptor (GR) cooperatively transactivate the BoHV-1-immediate-early transcription unit 1 (IEtu1), [...] Read more.
Expression of Krüppel-like factor 15 (KLF15), a stress-induced transcription factor, is induced during bovine herpesvirus 1 (BoHV-1) reactivation from latency, and KLF15 stimulates BoHV-1 replication. Transient transfection studies revealed that KLF15 and glucocorticoid receptor (GR) cooperatively transactivate the BoHV-1-immediate-early transcription unit 1 (IEtu1), herpes simplex virus type 1 (HSV-1) infected cell protein 0 (ICP0), and ICP4 promoters. The IEtu1 promoter drives expression of bICP0 and bICP4, two key BoHV-1 transcriptional regulatory proteins. Based on these studies, we hypothesized infection is a stressful stimulus that increases KLF15 expression and enhances productive infection. New studies demonstrated that silencing KLF15 impaired HSV-1 productive infection, and KLF15 steady-state protein levels were increased at late stages of productive infection. KLF15 was primarily localized to the nucleus following infection of cultured cells with HSV-1, but not BoHV-1. When cells were transfected with a KLF15 promoter construct and then infected with HSV-1, promoter activity was significantly increased. The ICP0 gene, and to a lesser extent, bICP0 transactivated the KLF15 promoter in the absence of other viral proteins. In contrast, BoHV-1 or HSV-1 encoded VP16 had no effect on KLF15 promoter activity. Collectively, these studies revealed that HSV-1 and BoHV-1 productive infection increased KLF15 steady-state protein levels, which correlated with increased virus production. Full article
(This article belongs to the Special Issue Herpesvirus Manipulation of Cellular Processes)
Show Figures

Figure 1

12 pages, 760 KiB  
Article
KLF15 Loss-of-Function Mutation Underlying Atrial Fibrillation as well as Ventricular Arrhythmias and Cardiomyopathy
by Ning Li, Ying-Jia Xu, Hong-Yu Shi, Chen-Xi Yang, Yu-Han Guo, Ruo-Gu Li, Xing-Biao Qiu, Yi-Qing Yang and Min Zhang
Genes 2021, 12(3), 408; https://doi.org/10.3390/genes12030408 - 12 Mar 2021
Cited by 11 | Viewed by 3107
Abstract
Atrial fibrillation (AF) represents the most common type of clinical cardiac arrhythmia and substantially increases the risks of cerebral stroke, heart failure and death. Accumulating evidence has convincingly demonstrated the strong genetic basis of AF, and an increasing number of pathogenic variations in [...] Read more.
Atrial fibrillation (AF) represents the most common type of clinical cardiac arrhythmia and substantially increases the risks of cerebral stroke, heart failure and death. Accumulating evidence has convincingly demonstrated the strong genetic basis of AF, and an increasing number of pathogenic variations in over 50 genes have been causally linked to AF. Nevertheless, AF is of pronounced genetic heterogeneity, and the genetic determinants underpinning AF in most patients remain obscure. In the current investigation, a Chinese pedigree with AF as well as ventricular arrhythmias and hypertrophic cardiomyopathy was recruited. Whole exome sequencing and bioinformatic analysis of the available family members were conducted, and a novel heterozygous variation in the KLF15 gene (encoding Krüppel-like factor 15, a transcription factor critical for cardiac electrophysiology and structural remodeling), NM_014079.4: c.685A>T; p.(Lys229*), was identified. The variation was verified by Sanger sequencing and segregated with autosomal dominant AF in the family with complete penetrance. The variation was absent from 300 unrelated healthy subjects used as controls. In functional assays using a dual-luciferase assay system, mutant KLF15 showed neither transcriptional activation of the KChIP2 promoter nor transcriptional inhibition of the CTGF promoter, alone or in the presence of TGFB1, a key player in the pathogenesis of arrhythmias and cardiomyopathies. The findings indicate KLF15 as a new causative gene responsible for AF as well as ventricular arrhythmias and hypertrophic cardiomyopathy, and they provide novel insight into the molecular mechanisms underlying cardiac arrhythmias and hypertrophic cardiomyopathy. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

15 pages, 6446 KiB  
Article
Bta-miR-376a Targeting KLF15 Interferes with Adipogenesis Signaling Pathway to Promote Differentiation of Qinchuan Beef Cattle Preadipocytes
by Xingyi Chen, Sayed Haidar Abbas Raza, Gong Cheng, Xinhao Ma, Jianfang Wang and Linsen Zan
Animals 2020, 10(12), 2362; https://doi.org/10.3390/ani10122362 - 10 Dec 2020
Cited by 17 | Viewed by 4076
Abstract
Intramuscular fat (IMF) is a quality index associated with the taste and juiciness of meat. The deposition of IMF is affected by genetic and non-genetic factors, such as age, slaughter location, gender of the animal, and diet. Micro-ribonucleic acids (miRNA) are transcriptional regulators [...] Read more.
Intramuscular fat (IMF) is a quality index associated with the taste and juiciness of meat. The deposition of IMF is affected by genetic and non-genetic factors, such as age, slaughter location, gender of the animal, and diet. Micro-ribonucleic acids (miRNA) are transcriptional regulators involved in adipogenesis, but the specific role of miR-376a in regulation of bovine adipocytes remains unknown. Our findings indicated that miR-376a was a potential negative regulator of bovine adipocyte differentiation. A bta-miR-376a mimic inhibited mRNA and protein expression of the marker genes, CDK1, CDK2, PCNA, C/EBPα, FAS, and PPAR γ, and significantly reduced ratios (%) of S-phase cells, the number of cells stained with 5-ethynyl-2′-deoxyuridine, and adipocyte proliferation. Oil red O staining and triglyceride content analysis also confirmed that bta-miR-376a was involved in adipocyte differentiation. Luciferase activities confirmed that Krüppel-like transcription factor 15 (KLF15) was a direct target gene of bta-miR-376a, and that KLF15 was a key transcription factor in adipogenesis. Therefore, bta-miR-376a might be a target for increasing beef IMF. Full article
(This article belongs to the Collection Advances in Cattle Breeding, Genetics and Genomics)
Show Figures

Figure 1

20 pages, 3504 KiB  
Article
A Special Amino-Acid Formula Tailored to Boosting Cell Respiration Prevents Mitochondrial Dysfunction and Oxidative Stress Caused by Doxorubicin in Mouse Cardiomyocytes
by Laura Tedesco, Fabio Rossi, Maurizio Ragni, Chiara Ruocco, Dario Brunetti, Michele O. Carruba, Yvan Torrente, Alessandra Valerio and Enzo Nisoli
Nutrients 2020, 12(2), 282; https://doi.org/10.3390/nu12020282 - 21 Jan 2020
Cited by 33 | Viewed by 6104
Abstract
Anthracycline anticancer drugs, such as doxorubicin (DOX), can induce cardiotoxicity supposed to be related to mitochondrial damage. We have recently demonstrated that a branched-chain amino acid (BCAA)-enriched mixture (BCAAem), supplemented with drinking water to middle-aged mice, was able to promote mitochondrial biogenesis in [...] Read more.
Anthracycline anticancer drugs, such as doxorubicin (DOX), can induce cardiotoxicity supposed to be related to mitochondrial damage. We have recently demonstrated that a branched-chain amino acid (BCAA)-enriched mixture (BCAAem), supplemented with drinking water to middle-aged mice, was able to promote mitochondrial biogenesis in cardiac and skeletal muscle. To maximally favor and increase oxidative metabolism and mitochondrial function, here we tested a new original formula, composed of essential amino acids, tricarboxylic acid cycle precursors and co-factors (named α5), in HL-1 cardiomyocytes and mice treated with DOX. We measured mitochondrial biogenesis, oxidative stress, and BCAA catabolic pathway. Moreover, the molecular relevance of endothelial nitric oxide synthase (eNOS) and mechanistic/mammalian target of rapamycin complex 1 (mTORC1) was studied in both cardiac tissue and HL-1 cardiomyocytes. Finally, the role of Krüppel-like factor 15 (KLF15), a critical transcriptional regulator of BCAA oxidation and eNOS-mTORC1 signal, was investigated. Our results demonstrate that the α5 mixture prevents the DOX-dependent mitochondrial damage and oxidative stress better than the previous BCAAem, implying a KLF15/eNOS/mTORC1 signaling axis. These results could be relevant for the prevention of cardiotoxicity in the DOX-treated patients. Full article
(This article belongs to the Special Issue Amino Acids and Health Effects)
Show Figures

Graphical abstract

11 pages, 1860 KiB  
Article
Transcriptional Regulation of the Bovine Fatty Acid Transport Protein 1 Gene by Krüppel-Like Factors 15
by Zhidong Zhao, Hongshan Tian, Bingang Shi, Yanyan Jiang, Xiu Liu and Jiang Hu
Animals 2019, 9(9), 654; https://doi.org/10.3390/ani9090654 - 5 Sep 2019
Cited by 10 | Viewed by 3948
Abstract
Oleic acid is a major monounsaturated fatty acid, which accounts for about 33% of the fatty acid content in beef and is considered to have the least negative effect on serum cholesterol levels. Fatty acid transport protein 1 (FATP1), an integral membrane protein [...] Read more.
Oleic acid is a major monounsaturated fatty acid, which accounts for about 33% of the fatty acid content in beef and is considered to have the least negative effect on serum cholesterol levels. Fatty acid transport protein 1 (FATP1), an integral membrane protein that facilitates long-chain fatty acid (LCFA) influx, is involved in the genetic network for oleic acid synthesis in beef. Its expression exhibits significant positive correlations with intramuscular fat (IMF) content in the longissimus thoracis. However, the expression mechanism of SLC27A1 or FATP1 is still unclear. To elucidate the molecular mechanisms involved in bovine SLC27A1 regulation, we cloned and characterized the promoter region of SLC27A1. By applying 5′-rapid amplification of cDNA end analysis, we identified two alternative splice variants of this gene. Using a series of 5′ deletion promoter plasmids in luciferase reporter assays, we found that the core promoter was 96 base pairs upstream from the transcription initiation site. Electrophoretic mobility shift assay combined with a site-directed mutation experiment demonstrated that KLF15 binding to the promoter region drives the SLC27A1 transcription. KLF15 plays an essential role in adipogenesis and skeletal muscle lipid flux. Thus, these results might provide further information on the regulatory roles of SLC27A1 gene in mediating the lipid composition in beef. Full article
Show Figures

Figure 1

12 pages, 654 KiB  
Review
Kruppel-Like Factor 15 Is Critical for the Development of Left Ventricular Hypertrophy
by Sheila K. Patel, Jay Ramchand, Vincenzo Crocitti and Louise M. Burrell
Int. J. Mol. Sci. 2018, 19(5), 1303; https://doi.org/10.3390/ijms19051303 - 27 Apr 2018
Cited by 13 | Viewed by 5740
Abstract
Left ventricular hypertrophy (LVH) is an independent risk factor for adverse cardiovascular events and is often present in patients with hypertension. Treatment to reduce blood pressure and regress LVH is key to improving health outcomes, but currently available drugs have only modest cardioprotective [...] Read more.
Left ventricular hypertrophy (LVH) is an independent risk factor for adverse cardiovascular events and is often present in patients with hypertension. Treatment to reduce blood pressure and regress LVH is key to improving health outcomes, but currently available drugs have only modest cardioprotective effects. Improved understanding of the molecular mechanisms involved in the development of LVH may lead to new therapeutic targets in the future. There is now compelling evidence that the transcription factor Kruppel-like factor 15 (KLF15) is an important negative regulator of cardiac hypertrophy in both experimental models and in man. Studies have reported that loss or suppression of KLF15 contributes to LVH, through lack of inhibition of pro-hypertrophic transcription factors and stimulation of trophic and fibrotic signaling pathways. This review provides a summary of the experimental and human studies that have investigated the role of KLF15 in the development of cardiac hypertrophy. It also discusses our recent paper that described the contribution of genetic variants in KLF15 to the development of LVH and heart failure in high-risk patients. Full article
(This article belongs to the Special Issue Role of Genomics in the Management of Hypertension)
Show Figures

Figure 1

Back to TopTop