Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (760)

Search Parameters:
Keywords = Karst Region

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3081 KiB  
Article
Habitat Distribution Pattern of François’ Langur in a Human-Dominated Karst Landscape: Implications for Its Conservation
by Jialiang Han, Xing Fan, Ankang Wu, Bingnan Dong and Qixian Zou
Diversity 2025, 17(8), 547; https://doi.org/10.3390/d17080547 - 1 Aug 2025
Viewed by 135
Abstract
The Mayanghe National Nature Reserve, a key habitat for the endangered François’ langur (Trachypithecus francoisi), faces significant anthropogenic disturbances, including extensive distribution of croplands, roads, and settlements. These human-modified features are predominantly concentrated at elevations between 500 and 800 m and [...] Read more.
The Mayanghe National Nature Reserve, a key habitat for the endangered François’ langur (Trachypithecus francoisi), faces significant anthropogenic disturbances, including extensive distribution of croplands, roads, and settlements. These human-modified features are predominantly concentrated at elevations between 500 and 800 m and on slopes of 10–20°, which notably overlap with the core elevation range utilized by François’ langur. Spatial analysis revealed that langurs primarily occupy areas within the 500–800 m elevation band, which comprises only 33% of the reserve but hosts a high density of human infrastructure—including approximately 4468 residential buildings and the majority of cropland and road networks. Despite slopes >60° representing just 18.52% of the area, langur habitat utilization peaked in these steep regions (exceeding 85.71%), indicating a strong preference for rugged karst terrain, likely due to reduced human interference. Habitat type analysis showed a clear preference for evergreen broadleaf forests (covering 37.19% of utilized areas), followed by shrublands. Landscape pattern metrics revealed high habitat fragmentation, with 457 discrete habitat patches and broadleaf forests displaying the highest edge density and total edge length. Connectivity analyses indicated that distribution areas exhibit a more continuous and aggregated habitat configuration than control areas. These results underscore François’ langur’s reliance on steep, forested karst habitats and highlight the urgent need to mitigate human-induced fragmentation in key elevation and slope zones to ensure the species’ long-term survival. Full article
(This article belongs to the Topic Advances in Geodiversity Research)
Show Figures

Figure 1

20 pages, 3033 KiB  
Review
Recharge Sources and Flow Pathways of Karst Groundwater in the Yuquan Mountain Spring Catchment Area, Beijing: A Synthesis Based on Isotope, Tracers, and Geophysical Evidence
by Yuejia Sun, Liheng Wang, Qian Zhang and Yanhui Dong
Water 2025, 17(15), 2292; https://doi.org/10.3390/w17152292 - 1 Aug 2025
Viewed by 190
Abstract
Karst groundwater systems are critical to water supply and ecological sustainability in northern China, yet their heterogeneity poses challenges for flow characterization. The Yuquan Mountain (YM) Spring, historically a major karst spring in western Beijing, has experienced persistent drying, raising concerns about its [...] Read more.
Karst groundwater systems are critical to water supply and ecological sustainability in northern China, yet their heterogeneity poses challenges for flow characterization. The Yuquan Mountain (YM) Spring, historically a major karst spring in western Beijing, has experienced persistent drying, raising concerns about its recharge and flow mechanisms. This study integrates published isotope data, spatial distributions of Na+ and Cl as hydrochemical tracers, groundwater age estimates, and geophysical survey results to assess the recharge sources and flow pathways within the YM Spring catchment area. The analysis identifies two major recharge zones: the Tanzhesi area, primarily recharged by direct infiltration of precipitation through exposed carbonate rocks, and the Junzhuang area, which receives mixed recharge from rainfall and Yongding River seepage. Three potential flow pathways are proposed, including shallow flow along faults and strata, and a deeper, speculative route through the Jiulongshan-Xiangyu syncline. The synthesis of multiple lines of evidence leads to a refined conceptual model that illustrates how geological structures govern recharge, flow, and discharge processes in this karst system. These findings not only enhance the understanding of subsurface hydrodynamics in complex geological settings but also provide a scientific basis for future spring restoration planning and groundwater management strategies in the regions. Full article
Show Figures

Figure 1

20 pages, 5219 KiB  
Article
Utilizing a Transient Electromagnetic Inversion Method with Lateral Constraints in the Goaf of Xiaolong Coal Mine, Xinjiang
by Yingying Zhang, Bin Xie and Xinyu Wu
Appl. Sci. 2025, 15(15), 8571; https://doi.org/10.3390/app15158571 (registering DOI) - 1 Aug 2025
Viewed by 151
Abstract
The abandoned goaf resulting from coal resource integration in China poses a significant threat to coal mine safety. The transient electromagnetic method (TEM) has emerged as a crucial technology for detecting goafs in coal mines due to its adaptable equipment and efficient implementation. [...] Read more.
The abandoned goaf resulting from coal resource integration in China poses a significant threat to coal mine safety. The transient electromagnetic method (TEM) has emerged as a crucial technology for detecting goafs in coal mines due to its adaptable equipment and efficient implementation. In recent years, small-loop TEM has demonstrated high resolution and adaptability in challenging terrains with vegetation, such as coal mine ponding areas, karst regions, and reservoir seepage scenarios. By considering the sedimentary characteristics of coal seams and addressing the resistivity changes encountered in single-point inversion, a joint optimization inversion process incorporating lateral weighting factors and vertical roughness constraints has been developed to enhance the connectivity between adjacent survey points and improve the continuity of inversion outcomes. Through an OCCAM inversion approach, the regularization factor is dynamically determined by evaluating the norms of the data objective function and model objective function in each iteration, thereby reducing the reliance of inversion results on the initial model. Using the Xiaolong Coal Mine as a geological context, the impact of lateral and vertical weighting factors on the inversion outcomes of high- and low-resistivity structural models is examined through a control variable method. The analysis reveals that optimal inversion results are achieved with a combination of a lateral weighting factor of 0.5 and a vertical weighting factor of 0.1, ensuring both result continuity and accurate depiction of vertical and lateral electrical interfaces. The practical application of this approach validates its effectiveness, offering theoretical support and technical assurance for old goaf detection in coal mines, thereby holding significant engineering value. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

23 pages, 6014 KiB  
Article
Modeling Water Table Response in Apulia (Southern Italy) with Global and Local LSTM-Based Groundwater Forecasting
by Lorenzo Di Taranto, Antonio Fiorentino, Angelo Doglioni and Vincenzo Simeone
Water 2025, 17(15), 2268; https://doi.org/10.3390/w17152268 - 30 Jul 2025
Viewed by 254
Abstract
For effective groundwater resource management, it is essential to model the dynamic behaviour of aquifers in response to rainfall. Here, a methodological approach using a recurrent neural network, specifically a Long Short-Term Memory (LSTM) network, is used to model groundwater levels of the [...] Read more.
For effective groundwater resource management, it is essential to model the dynamic behaviour of aquifers in response to rainfall. Here, a methodological approach using a recurrent neural network, specifically a Long Short-Term Memory (LSTM) network, is used to model groundwater levels of the shallow porous aquifer in Southern Italy. This aquifer is recharged by local rainfall, which exhibits minimal variation across the catchment in terms of volume and temporal distribution. To gain a deeper understanding of the complex interactions between precipitation and groundwater levels within the aquifer, we used water level data from six wells. Although these wells were not directly correlated in terms of individual measurements, they were geographically located within the same shallow aquifer and exhibited a similar hydrogeological response. The trained model uses two variables, rainfall and groundwater levels, which are usually easily available. This approach allowed the model, during the training phase, to capture the general relationships and common dynamics present across the different time series of wells. This methodology was employed despite the geographical distinctions between the wells within the aquifer and the variable duration of their observed time series (ranging from 27 to 45 years). The results obtained were significant: the global model, trained with the simultaneous integration of data from all six wells, not only led to superior performance metrics but also highlighted its remarkable generalization capability in representing the hydrogeological system. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

27 pages, 9975 KiB  
Article
Study on the Hydrogeological Characteristics of Roof Limestone Aquifers After Mining Damage in Karst Mining Areas
by Xianzhi Shi, Guosheng Xu, Ziwei Qian and Weiqiang Zhang
Water 2025, 17(15), 2264; https://doi.org/10.3390/w17152264 - 30 Jul 2025
Viewed by 232
Abstract
To study hydrogeological characteristics after the occurrence of abnormal water bursts from the weak water-rich (permeable) aquifer of the Changxing Formation limestone overlying deep working faces during production in Guizhou karst landform mining areas, hydrogeological data covering the exploration and production periods of [...] Read more.
To study hydrogeological characteristics after the occurrence of abnormal water bursts from the weak water-rich (permeable) aquifer of the Changxing Formation limestone overlying deep working faces during production in Guizhou karst landform mining areas, hydrogeological data covering the exploration and production periods of the Xinhua mining region in Jinsha County, Guizhou Province, were collected. On the basis of surface and underground drilling, geophysical exploration techniques, empirical equations, and indoor material simulation methods, the hydrogeological evolution characteristics of the Changxing Formation limestone in the mining region after mining damage to coalbed 9 were studied. The research results indicated that the ratio of the height of the roof failure fracture zone (as obtained via numerical simulation and ground borehole detection) to the mining height exceeded 25.78, which is far greater than the empirical model calculation values (from 13.0 to 15.8). After mining the underlying coalbed 9, an abnormal water-rich area developed in the Changxing Formation limestone, and mining damage fractures led to the connection of the original dissolution fissures and karst caves within the limestone, resulting in the weak water-rich (permeable) aquifer of the Changxing Formation limestone becoming a strong water-rich (permeable) aquifer, which served as the water source for mine water bursts. Over time, after mining damage occurrence, the voids in the Changxing Formation limestone were gradually filled with various substances, yielding water storage space and connectivity decreases. The specific yield decreased with an increasing water burst time and interval after the cessation of mining in the supply area, and the correlation coefficient R was 0.964, indicating a high degree of correlation between the two parameters. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

17 pages, 4176 KiB  
Article
Hydrochemical Characterization and Predictive Modeling of Groundwater Quality in Karst Aquifers Under Semi-Arid Climate: A Case Study of Ghar Boumaaza, Algeria
by Sabrine Guettaia, Abderrezzak Boudjema, Abdessamed Derdour, Abdessalam Laoufi, Hussein Almohamad, Motrih Al-Mutiry and Hazem Ghassan Abdo
Sustainability 2025, 17(15), 6883; https://doi.org/10.3390/su17156883 - 29 Jul 2025
Viewed by 374
Abstract
Understanding groundwater quality in karst environments is essential, particularly in semi-arid regions where water resources are highly vulnerable to both climatic variability and anthropogenic pressures. The Ghar Boumaaza karst aquifer, located in the semi-arid Tlemcen Mountains of Algeria, represents a critical yet understudied [...] Read more.
Understanding groundwater quality in karst environments is essential, particularly in semi-arid regions where water resources are highly vulnerable to both climatic variability and anthropogenic pressures. The Ghar Boumaaza karst aquifer, located in the semi-arid Tlemcen Mountains of Algeria, represents a critical yet understudied water resource increasingly threatened by climate change and human activity. This study integrates hydrochemical analysis, multivariate statistical techniques, and predictive modeling to assess groundwater quality and characterize the relationship between total dissolved solids (TDSs) and discharge (Q). An analysis of 66 water samples revealed that 96.97% belonged to a Ca2+–HCO3 facies, reflecting carbonate rock dissolution, while 3% exhibited a Cl–HCO3 facies associated with agricultural contamination. A principal component analysis identified carbonate weathering (40.35%) and agricultural leaching (18.67%) as the dominant drivers of mineralization. A third-degree polynomial regression model (R2 = 0.953) effectively captured the nonlinear relationship between TDSs and flow, demonstrating strong predictive capacity. Independent validation (R2 = 0.954) confirmed the model’s robustness and reliability. This study provides the first integrated hydrogeochemical assessment of the Ghar Boumaaza system in decades and offers a transferable methodological framework for managing vulnerable karst aquifers under similar climatic and anthropogenic conditions. Full article
Show Figures

Figure 1

21 pages, 4796 KiB  
Article
Hydrogeochemical Characteristics, Formation Mechanisms, and Groundwater Evaluation in the Central Dawen River Basin, Northern China
by Caiping Hu, Kangning Peng, Henghua Zhu, Sen Li, Peng Qin, Yanzhen Hu and Nan Wang
Water 2025, 17(15), 2238; https://doi.org/10.3390/w17152238 - 27 Jul 2025
Viewed by 327
Abstract
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely [...] Read more.
Rapid socio-economic development and the impact of human activities have exerted tremendous pressure on the groundwater system of the Dawen River Basin (DRB), the largest tributary in the middle and lower reaches of the Yellow River. Hydrochemical studies on the DRB have largely centered on the upstream Muwen River catchment and downstream Dongping Lake, with some focusing solely on karst groundwater. Basin-wide evaluations suggest good overall groundwater quality, but moderate to severe contamination is confined to the lower Dongping Lake area. The hydrogeologically complex mid-reach, where the Muwen and Chaiwen rivers merge, warrants specific focus. This region, adjacent to populous areas and industrial/agricultural zones, features diverse aquifer systems, necessitating a thorough analysis of its hydrochemistry and origins. This study presents an integrated hydrochemical, isotopic investigation and EWQI evaluation of groundwater quality and formation mechanisms within the multiple groundwater types of the central DRB. Central DRB groundwater has a pH of 7.5–8.2 (avg. 7.8) and TDSs at 450–2420 mg/L (avg. 1075.4 mg/L) and is mainly brackish, with Ca2+ as the primary cation (68.3% of total cations) and SO42− (33.6%) and NO3 (28.4%) as key anions. The Piper diagram reveals complex hydrochemical types, primarily HCO3·SO4-Ca and SO4·Cl-Ca. Isotopic analysis (δ2H, δ18O) confirms atmospheric precipitation as the principal recharge source, with pore water showing evaporative enrichment due to shallow depths. The Gibbs diagram and ion ratios demonstrate that hydrochemistry is primarily controlled by silicate and carbonate weathering (especially calcite dissolution), active cation exchange, and anthropogenic influences. EWQI assessment (avg. 156.2) indicates generally “good” overall quality but significant spatial variability. Pore water exhibits the highest exceedance rates (50% > Class III), driven by nitrate pollution from intensive vegetable cultivation in eastern areas (Xiyangzhuang–Liangzhuang) and sulfate contamination from gypsum mining (Guojialou–Nanxiyao). Karst water (26.7% > Class III) shows localized pollution belts (Huafeng–Dongzhuang) linked to coal mining and industrial discharges. Compared to basin-wide studies suggesting good quality in mid-upper reaches, this intensive mid-reach sampling identifies critical localized pollution zones within an overall low-EWQI background. The findings highlight the necessity for aquifer-specific and land-use-targeted groundwater protection strategies in this hydrogeologically complex region. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

18 pages, 2752 KiB  
Review
Research Advances in Multiple Embryos and Apomixis in Rice (Oryza sativa L.)
by Junhao Dan, Wuhua Long, Mudan Qiu, Longhui Zhang, Chaoxin Wu, Xue Jiang, Shengyan Fang, Susong Zhu and Huafeng Deng
Int. J. Mol. Sci. 2025, 26(15), 7257; https://doi.org/10.3390/ijms26157257 - 27 Jul 2025
Viewed by 219
Abstract
A typical seed of rice (Oryza sativa L.) gives rise to a single seedling. In contrast, seeds from multiple embryos may develop into two or more seedlings, one of which is generated via sexual reproduction, while the others are likely to originate [...] Read more.
A typical seed of rice (Oryza sativa L.) gives rise to a single seedling. In contrast, seeds from multiple embryos may develop into two or more seedlings, one of which is generated via sexual reproduction, while the others are likely to originate through apomictic pathways. Therefore, the occurrence of multiple embryos is often considered a hallmark of apomixis in rice. Apomixis refers to an asexual reproductive strategy wherein unreduced gametes form through modified meiosis (apomeiosis) without fertilization, thereby generating clonal offspring generally genetically identical to the maternal plant. This process is of great relevance in fixing heterosis in hybrid rice breeding. This review discusses the origin, frequency, genetic regulation, and candidate genes related to multiple embryos in rice and provides a systematic summary of the latest research advances in rice apomixis. The insights presented in this study provide a theoretical foundation for the application of apomixis in rice breeding. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

16 pages, 2713 KiB  
Article
Change in C, N, and P Characteristics of Hypericum kouytchense Organs in Response to Altitude Gradients in Karst Regions of SW China
by Yage Li, Chunyan Zhao, Jiajun Wu, Suyan Ba, Shuo Liu and Panfeng Dai
Plants 2025, 14(15), 2307; https://doi.org/10.3390/plants14152307 - 26 Jul 2025
Viewed by 167
Abstract
The environmental heterogeneity caused by altitude can lead to trade-offs in nutrient utilization and allocation strategies among plant organs; however, there is still a lack of research on the nutrient variation in the “flower–leaf–branch–fine root–soil” systems of native shrubs along altitude gradients in [...] Read more.
The environmental heterogeneity caused by altitude can lead to trade-offs in nutrient utilization and allocation strategies among plant organs; however, there is still a lack of research on the nutrient variation in the “flower–leaf–branch–fine root–soil” systems of native shrubs along altitude gradients in China’s unique karst regions. Therefore, we analyzed the carbon (C), nitrogen (N), and phosphorus (P) contents and their ratios in flowers, leaves, branches, fine roots, and surface soil of Hypericum kouytchense shrubs across 2200–2700 m altitudinal range in southwestern China’s karst areas, where this species is widely distributed and grows well. The results show that H. kouytchense organs had higher N content than both global and Chinese plant averages. The order of C:N:P value across plant organs was branches > fine roots > flowers > leaves. Altitude significantly affected the nutrient dynamics in plant organs and soil. With increasing altitude, P content in plant organs exhibited a significant concave pattern, leading to unimodal trends in the C:P of plant organs, as well as the N:P of leaves and fine roots. Meanwhile, plant organs except branches displayed significant homeostasis coefficients in C:P and fine root P, indicating a shift in H. kouytchense’s P utilization strategy from acquisitive-type to conservative-type. Strong positive relationships between plant organs and soil P and available P revealed that P was the key driver of nutrient cycling in H. kouytchense shrubs, enhancing plant organ–soil coupling relationships. In conclusion, H. kouytchense demonstrates flexible adaptability, suggesting that future vegetation restoration and conservation management projects in karst ecosystems should consider the nutrient adaptation strategies of different species, paying particular attention to P utilization. Full article
(This article belongs to the Special Issue Plant Functional Diversity and Nutrient Cycling in Forest Ecosystems)
Show Figures

Figure 1

14 pages, 636 KiB  
Article
Molecular Epidemiology of Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in Guizhou Angus Calves: Dominance of Angus Cattle-Adapted Genotypes and Zoonotic Potential of E. bieneusi
by Peixi Qin, Zhuolin Tao, Kaizhi Shi, Jiaxian Zhao, Bingyan Huang, Hui Liu, Chunqun Wang, Jigang Yin, Guan Zhu, Simone M. Cacciò and Min Hu
Microorganisms 2025, 13(8), 1735; https://doi.org/10.3390/microorganisms13081735 - 25 Jul 2025
Viewed by 310
Abstract
Limited molecular data exist on zoonotic parasites Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in Angus calves from Guizhou, China. This study constitutes the first molecular epidemiological survey of these pathogens in this region. 817 fecal samples from Angus calves across 7 [...] Read more.
Limited molecular data exist on zoonotic parasites Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi in Angus calves from Guizhou, China. This study constitutes the first molecular epidemiological survey of these pathogens in this region. 817 fecal samples from Angus calves across 7 intensive beef farms (Bijie City). Nested PCR methods targeting SSU rRNA (Cryptosporidium spp.), gp60 (Cryptosporidium bovis subtyping), bg/gdh/tpi (G. duodenalis), and ITS (E. bieneusi) coupled with DNA sequencing were employed. DNA sequences were analyzed against the NCBI. database. Statistical differences were assessed via a generalized linear mixed-effects model. Cryptosporidium spp. prevalence 23.5% (192/817; 95% CI 28.1–34.6%), with C. bovis predominating 89.6% (172/192; 95% CI 84.4–93.5%) and six subtypes (XXVIa-XXVIf). Highest infection in 4–8-week-olds 29.9% (143/479; 95% CI 25.8–34.1%) (p < 0.01). G. duodenalis: 31.3% (256/817; 95% CI 28.1–34.6%) positive, overwhelmingly assemblage E 97.6% (6/256; 95% CI 0.9–5.0%), zoonotic assemblage A was marginal 0.7% (6/817; 95% CI 0.3–1.6%). Farm-level variation exceeded 10-fold (e.g., Gantang: 55.0% (55/100; 95% CI 44.7–65.0%) vs. Tieshi: 4.9% (5/102; 95% CI 1.6–11.1%). E. bieneusi: prevalence 19.7% (161/817; 95% CI 17.0–22.6%), exclusively zoonotic genotypes BEB4: 49.7% (80/161; 95% CI 41.7–57.7%); I: 40.4% (65/161; 95% CI 32.7–48.4%). Strong diarrhea association (p < 0.01) and site-specific patterns (e.g., Guanyindong: 39.2%). While Giardia exhibited the highest prevalence (31.3%) with minimal zoonotic risk, Enterocytozoon—despite lower prevalence (19.7%)—posed the greatest public health threat due to exclusive circulation of human-pathogenic genotypes (BEB4/I) and significant diarrhea association, highlighting divergent control priorities for these enteric parasites in Guizhou calves. Management/Public health impact: Dominant zoonotic E. bieneusi genotypes (BEB4/I) necessitate: 1. Targeted treatment of 4–8-week-old Angus calves. 2. Manure biofermentation (≥55 °C, 3 days), and 3. UV-disinfection (≥1 mJ/cm2) for karst water to disrupt transmission in this high-humidity region. Full article
Show Figures

Figure 1

19 pages, 722 KiB  
Review
Karst Multi-Source Organic Solid Waste Bio-Enhanced Composting: The Potential of Circular Utilization to Enhance Soil Quality and Control Contaminants
by Chen Huang, Xinyu Zhao, Hui Zhang, Zihan Wang and Beidou Xi
Fermentation 2025, 11(8), 426; https://doi.org/10.3390/fermentation11080426 - 24 Jul 2025
Viewed by 433
Abstract
The dual environmental challenges of karst areas lie in organic solid waste’s (OSW) massive generation scale and diffuse dispersion, which accelerate bedrock exposure and soil contamination, while simultaneously representing an underutilized resource for soil amendments through optimized composting. Bio-enhanced composting of multi-source OSW [...] Read more.
The dual environmental challenges of karst areas lie in organic solid waste’s (OSW) massive generation scale and diffuse dispersion, which accelerate bedrock exposure and soil contamination, while simultaneously representing an underutilized resource for soil amendments through optimized composting. Bio-enhanced composting of multi-source OSW yields compounds with dual redox/adsorption capabilities, effectively improving soil quality and restoring ecological balance. The recycling and circular utilization of OSW resources become particularly critical in karst regions with vulnerable soil ecosystems, where sustainable resource management is urgently needed to maintain ecological balance. This review elucidates the ecological impacts of multi-source OSW compost applications on soil environments in ecologically fragile karst regions, specifically elucidating the mechanisms of heavy metals (HMs) migration–transformation and organic contaminant degradation (with emphasis on emerging pollutants), and the functional role of microbial carbon pumps in these processes. Furthermore, establishing a sustainable “multi-source OSW−compost−organic matter (adsorption and redox sites)−microorganisms−pollution remediation” cycle creates a green, low-carbon microenvironment for long-term soil remediation. Finally, this study evaluates the application prospects of the refined composting technology utilizing multi-objective regulation for OSW resource recycling and utilization in karst areas. This review provides critical insights for optimizing soil remediation strategies in karst ecosystems through organic waste valorization. Full article
Show Figures

Figure 1

21 pages, 2263 KiB  
Article
Elevational Patterns and Drivers of Soil Total, Microbial, and Enzymatic C:N:P Stoichiometry in Karst Peak-Cluster Depressions in Southwestern China
by Siyu Chen, Chaohao Xu, Cong Hu, Chaofang Zhong, Zhonghua Zhang and Gang Hu
Forests 2025, 16(8), 1216; https://doi.org/10.3390/f16081216 - 24 Jul 2025
Viewed by 278
Abstract
Elevational gradients in temperature, moisture, and vegetation strongly influence soil nutrient content and stoichiometry in mountainous regions. However, exactly how total, microbial, and enzymatic carbon (C), nitrogen (N), and phosphorus (P) stoichiometry vary with elevation in karst peak-cluster depressions remains poorly understood. To [...] Read more.
Elevational gradients in temperature, moisture, and vegetation strongly influence soil nutrient content and stoichiometry in mountainous regions. However, exactly how total, microbial, and enzymatic carbon (C), nitrogen (N), and phosphorus (P) stoichiometry vary with elevation in karst peak-cluster depressions remains poorly understood. To address this, we studied soil total, microbial, and enzymatic C:N:P stoichiometry in seasonal rainforests within karst peak-cluster depressions in southwestern China at different elevations (200, 300, 400, and 500 m asl) and depths (0–20 and 20–40 cm). We found that soil organic carbon (SOC), total nitrogen (TN), and the C:P and N:P ratios increased significantly with elevation, whereas total phosphorus (TP) decreased. Microbial phosphorus (MBP) also declined with elevation, while the microbial N:P ratio rose. Activities of nitrogen- (β-N-acetylglucosaminidase and L-leucine aminopeptidase combined) and phosphorus-related enzymes (alkaline phosphatase) increased markedly with elevation, suggesting potential phosphorus limitation for plant growth at higher elevations. Our results suggest that total, microbial, and enzymatic soil stoichiometry are collectively shaped by topography and soil physicochemical properties, with elevation, pH, and exchangeable calcium (ECa) acting as the key drivers. Microbial stoichiometry exhibited positive interactions with soil stoichiometry, while enzymatic stoichiometry did not fully conform to the expectations of resource allocation theory, likely due to the functional specificity of phosphatase. Overall, these findings enhance our understanding of C–N–P biogeochemical coupling in karst ecosystems, highlight potential nutrient limitations, and provide a scientific basis for sustainable forest management in tropical karst regions. Full article
(This article belongs to the Section Forest Soil)
Show Figures

Figure 1

15 pages, 2467 KiB  
Article
Definition of Groundwater Management Zones for a Fissured Karst Aquifer in Semi-Arid Northeastern Brazil
by Hailton Mello da Silva, Luiz Rogério Bastos Leal, Cezar Augusto Teixeira Falcão Filho, Thiago dos Santos Gonçalves and Harald Klammler
Hydrology 2025, 12(8), 195; https://doi.org/10.3390/hydrology12080195 - 23 Jul 2025
Viewed by 330
Abstract
The objective of this study is to define groundwater management zones for a complex deformed and fissured Precambrian karst aquifer, which underlies one of the most important agricultural areas in the semi-arid region of Irecê, Bahia, Brazil. It is an unconfined aquifer, hundreds [...] Read more.
The objective of this study is to define groundwater management zones for a complex deformed and fissured Precambrian karst aquifer, which underlies one of the most important agricultural areas in the semi-arid region of Irecê, Bahia, Brazil. It is an unconfined aquifer, hundreds of meters thick, resulting from a large sequence of carbonates piled up by thrust faults during tectonic plate collisions. Groundwater recharge and flow in this aquifer are greatly influenced by karst features, through the high density of sinkholes and vertical wells. Over the past four decades, population and agricultural activities have increased in the region, resulting in unsustainable groundwater withdrawal and, at the same time, water quality degradation. Therefore, it is important to develop legal and environmental management strategies. This work proposes the division of the karst area into three well-defined management zones by mapping karst structures, land use, and urban occupation, as well as the concentrations of chloride and nitrate in the region’s groundwater. Zone 1 in the north possesses the lowest levels of karstification, anthropization, and contamination, while zone 2 in the central region has the highest levels and zone 3 in the south ranging in-between (except for stronger karstification). The delimitation of management zones will contribute to the development and implementation of optimized zone-specific groundwater preservation and restoration strategies. Full article
Show Figures

Figure 1

31 pages, 23687 KiB  
Article
Spatiotemporal Dynamics of Ecosystem Services and Human Well-Being in China’s Karst Regions: An Integrated Carbon Flow-Based Assessment
by Yinuo Zou, Yuefeng Lyu, Guan Li, Yanmei Ye and Cifang Wu
Land 2025, 14(8), 1506; https://doi.org/10.3390/land14081506 - 22 Jul 2025
Viewed by 296
Abstract
The relationship between ecosystem services (ESs) and human well-being (HWB) is a central issue of sustainable development. However, current research often relies on qualitative frameworks or indicator-based assessments, limiting a comprehensive understanding of the relationship between natural environment and human acquisition, which still [...] Read more.
The relationship between ecosystem services (ESs) and human well-being (HWB) is a central issue of sustainable development. However, current research often relies on qualitative frameworks or indicator-based assessments, limiting a comprehensive understanding of the relationship between natural environment and human acquisition, which still needs to be strengthened. As an element transferred in the natural–society coupling system, carbon can assist in characterizing the dynamic interactions within coupled human–natural systems. Carbon, as a fundamental element transferred across ecological and social spheres, offers a powerful lens to characterize these linkages. This study develops and applies a novel analytical framework that integrates carbon flow as a unifying metric to quantitatively assess the spatiotemporal dynamics of the land use and land cover change (LUCC)–ESs–HWB nexus in Guizhou Province, China, from 2000 to 2020. The results show that: (1) Ecosystem services in Guizhou showed distinct trends from 2000 to 2020: supporting and regulating services declined and then recovered, and provisioning services steadily increased, while cultural services remained stable but varied across cities. (2) Human well-being generally improved over time, with health remaining stable and the HSI rising across most cities, although security levels fluctuated and remained low in some areas. (3) The contribution of ecosystem services to human well-being peaked in 2010–2015, followed by declines in central and northern regions, while southern and western areas maintained or improved their levels. (4) Supporting and regulating services were positively correlated with HWB security, while cultural services showed mixed effects, with strong synergies between culture and health in cities like Liupanshui and Qiandongnan. Overall, this study quantified the coupled dynamics between ecosystem services and human well-being through a carbon flow framework, which not only offers a unified metric for cross-dimensional analysis but also reduces subjective bias in evaluation. This integrated approach provides critical insights for crafting spatially explicit land management policies in Guizhou and offers a replicable methodology for exploring sustainable development pathways in other ecologically fragile karst regions worldwide. Compared with conventional ecosystem service frameworks, the carbon flow approach provides a process-based, dynamic mediator that quantifies biogeochemical linkages in LUCC–ESs–HWB systems, which is particularly important in fragile karst regions. However, we acknowledge that further empirical comparison with traditional ESs metrics could strengthen the framework’s generalizability. Full article
(This article belongs to the Special Issue Advances in Land Consolidation and Land Ecology (Second Edition))
Show Figures

Graphical abstract

24 pages, 5241 KiB  
Review
Global Environmental Geochemistry and Molecular Speciation of Heavy Metals in Soils and Groundwater from Abandoned Smelting Sites: Analysis of the Contamination Dynamics and Remediation Alternatives in Karst Settings
by Hang Xu, Qiao Han, Muhammad Adnan, Mengfei Li, Mingshi Wang, Mingya Wang, Fengcheng Jiang and Xixi Feng
Toxics 2025, 13(7), 608; https://doi.org/10.3390/toxics13070608 - 21 Jul 2025
Viewed by 492
Abstract
Abandoned smelting sites in karst terrain pose a serious environmental problem due to the complex relationship between specific hydrogeological elements and heavy metal contamination. This review combines work from across the globe to consider how karst-specific features (i.e., rapid underground drainage, high permeability, [...] Read more.
Abandoned smelting sites in karst terrain pose a serious environmental problem due to the complex relationship between specific hydrogeological elements and heavy metal contamination. This review combines work from across the globe to consider how karst-specific features (i.e., rapid underground drainage, high permeability, and carbonate mineralogy) influence the mobility, speciation, and bioavailability of “metallic” pollutants, such as Pb, Cd, Zn, and As. In some areas, such as Guizhou (China), the Cd content in the surface soil is as high as 23.36 mg/kg, indicating a regional risk. Molecular-scale analysis, such as synchrotron-based XAS, can elucidate the speciation forms that underlie toxicity and remediation potential. Additionally, we emphasize discrepancies between karst in Asia, Europe, and North America and synthesize cross-regional contamination events. The risk evaluation is complicated, particularly when dynamic flow systems and spatial heterogeneity are permanent, and deep models like DI-NCPI are required as a matter of course. The remediation is still dependent on the site; however, some technologies, such as phytoremediation, biosorption, and bioremediation, are promising if suitable geochemical and microbial conditions are present. This review presents a framework for integrating molecular data and hydrogeological concepts to inform the management of risk and sustainable remediation of legacy metal pollution in karst. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

Back to TopTop