Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (188)

Search Parameters:
Keywords = Karst Desertification Control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6223 KB  
Article
Research on Vegetation Dynamics and Driving Mechanisms in Karst Desertified Areas Integrating Remote Sensing and Multi-Source Data
by Jimin Tang, Yifei Liu, Yan Wang, Jiangxia Ye, Xiaojie Yin, Zhexiu Yu and Chao Zhang
Agriculture 2025, 15(23), 2464; https://doi.org/10.3390/agriculture15232464 - 27 Nov 2025
Viewed by 222
Abstract
Rocky desertification severely restricts socio-economic development in the karst regions. However, assessments linking karst rocky desertification and NPP changes over the long term and at high resolution are limited. This study aims to reveal the spatiotemporal patterns and driving mechanisms of NPP changes [...] Read more.
Rocky desertification severely restricts socio-economic development in the karst regions. However, assessments linking karst rocky desertification and NPP changes over the long term and at high resolution are limited. This study aims to reveal the spatiotemporal patterns and driving mechanisms of NPP changes in Wenshan Prefecture, addressing the scientific gap in quantitative process research and mechanism identification in karst desertification areas. We estimated vegetation NPP from 2000 to 2020 using remote sensing data and the CASA model. The Theil–Sen trend analysis and Mann–Kendall test were applied to assess temporal variation, while a Geographical Detector identified the dominant natural and human factors and their interactions shaping NPP spatial patterns. Our results showed that NPP increased overall by 4.07 gC m−2 a−1, alongside a general decline in rocky desertification. The most significant improvement occurred between 2010 and 2015, when rocky desertification shrank by 2224 km2 and the dynamic rate reached 1.42%. Mean NPP reached 1057 gC m−2 a−1, with a “northwest high–southeast low” spatial pattern, and 77% of the region showed significant increases. Rocky desertification was most severe at elevations between 1000 and 2000 m. In the karst region, NPP is mainly controlled by natural factors, with soil depth and slope being the strongest influences. Human activity had the largest negative impact, and most factors interacted synergistically, where hydrothermal gradients and human disturbances more strongly suppressed NPP on steep, thin slopes than individually expected. These findings provide robust scientific evidence and practical decision-making support for ecological restoration, rocky desertification control and long-term sustainable development in Wenshan and other karst regions, highlighting the importance of continuous monitoring and adaptive management strategies to consolidate restoration achievements and guide future land-use planning and regional ecological policy. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

21 pages, 3827 KB  
Article
Systematic Analysis of Nutritional Components and Characteristics in Red-Fleshed Dragon Fruit from Different Origins Using Non-Targeted Metabolomics
by Zhibing Zhao, Lang Wang, Yinmei Luo and Liangjie Ba
Horticulturae 2025, 11(12), 1436; https://doi.org/10.3390/horticulturae11121436 - 27 Nov 2025
Viewed by 392
Abstract
This research sought to analyze the nutritional composition of red-fleshed dragon fruit cultivated in various regions of Guizhou, focusing on samples obtained from three distinct production areas: Guanling (GL), Zhenfeng (ZF), and Luodian (LD). The findings revealed notable regional variations in nutritional constituents. [...] Read more.
This research sought to analyze the nutritional composition of red-fleshed dragon fruit cultivated in various regions of Guizhou, focusing on samples obtained from three distinct production areas: Guanling (GL), Zhenfeng (ZF), and Luodian (LD). The findings revealed notable regional variations in nutritional constituents. Specifically, the GL samples exhibited the highest concentrations of betacyanin, vitamin C, total phenolics, and flavonoids; ZF samples demonstrated the greatest levels of soluble sugars alongside the lowest titratable acidity, whereas LD samples presented the opposite trend. Through non-targeted metabolomic profiling, a total of 4515 metabolites were identified. Multivariate analyses, including principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA), indicated that metabolic differences corresponded with geographical origin. Furthermore, the OPLS-DA S-plot identified L-Histidine, Glu-Leu, Uridine, Leu-Glu, (2S)-2-Isopropylmalate, 2-amino-4-({1-[(carboxymethyl)-C-hydroxycarbonimidoyl]-2-[(3-hydroxy-2-methyl-4-oxobutan-2-yl}sulfanyl]ethyl)-C-hydroxycarbonimidoyl)butanoic acid, Leu-Leu-Ser-Pro-Tyr, 1,1′-bis(iso-13-carbon saturated acyl)-2-(iso-12-carbon saturated acyl)-3-[(9Z,11Z)-octadecadienoyl] cardiolipin. The eight characteristic metabolites under scrutiny can evidently differentiate dragon fruits from disparate regions and thus serve as potential markers for distinguishing their origins. This study offers a theoretical foundation for quality assessment, investigations into health benefits, and the sustainable advancement of the dragon fruit industry. Full article
Show Figures

Figure 1

23 pages, 3172 KB  
Article
Machine Learning-Based Spatial Prediction of Soil Erosion Susceptibility Using Geo-Environmental Variables in Karst Landscapes of Southwest China
by Binglan Yang, Yiqiu Li, Man Li, Ou Deng, Guangbin Yang and Xinyong Lei
Land 2025, 14(11), 2277; https://doi.org/10.3390/land14112277 - 18 Nov 2025
Viewed by 377
Abstract
Soil erosion poses a significant threat to the sustainability of land systems in karst mountainous regions, where steep slopes, shallow soils, and intensive human activities exacerbate land degradation, undermining both the productive functions and ecological services of land resources. This study evaluated soil [...] Read more.
Soil erosion poses a significant threat to the sustainability of land systems in karst mountainous regions, where steep slopes, shallow soils, and intensive human activities exacerbate land degradation, undermining both the productive functions and ecological services of land resources. This study evaluated soil erosion susceptibility in the karst-dominated Qingshui River watershed, Southwest China, and identified key drivers of land degradation to support targeted land management strategies. Four machine learning models, BPANN, BRTs, RF, and SVR were trained using twelve geo-environmental variables representing lithological, topographic, pedological, hydrological, and anthropogenic factors. Variable importance analysis revealed that annual precipitation, land use type, distance to roads, slope, and aspect consistently had the greatest influence on soil erosion patterns. Model performance assessment indicated that BRTs achieved the highest predictive accuracy (RMSE = 0.161, MAE = 0.056), followed by RF, BPANN, and SVR. Spatial susceptibility maps showed that high and very high erosion risk zones were mainly concentrated in the central and southeastern areas with steep slopes and exposed carbonate rocks, while low-risk zones were located in flatter, vegetated southwestern regions. These results confirm that hydrological conditions, topography, and anthropogenic activities are the primary drivers of soil erosion in karst landscapes. Importantly, the findings provide actionable insights for land and landscape management—such as optimizing land use, restoring vegetation on steep slopes, and regulating human activities in sensitive areas—to mitigate erosion, preserve land quality, and enhance the sustainability of karst land systems. Full article
Show Figures

Figure 1

21 pages, 7619 KB  
Article
The Impact of Ecological Restoration Measures on Carbon Storage: Spatio-Temporal Dynamics and Driving Mechanisms in Karst Desertification Control
by Shui Li, Pingping Yang, Changxin Yang, Haoru Zhang and Xiong Gao
Land 2025, 14(9), 1903; https://doi.org/10.3390/land14091903 - 18 Sep 2025
Viewed by 676
Abstract
Karst landscapes, characterized by ecological constraints such as thin soil layers, severe rock desertification, and fragile habitats, require a clear understanding of the mechanisms regulating carbon storage and the impacts of ecological restoration measures. However, current research lacks detailed insights into the specific [...] Read more.
Karst landscapes, characterized by ecological constraints such as thin soil layers, severe rock desertification, and fragile habitats, require a clear understanding of the mechanisms regulating carbon storage and the impacts of ecological restoration measures. However, current research lacks detailed insights into the specific effects of ecological restoration measures. This study integrates multi-source remote sensing data and adjusts InVEST model parameters to systematically reveal the spatiotemporal evolution of carbon storage and its driving mechanisms in typical karst plateau regions of southwest China under ecological restoration measures. The results indicate: (1) From 2000 to 2020, the carbon stock in the study area increased by 6.09% overall. However, from 2020 to 2025, due to the rapid conversion of forest land into building land and grassland, the carbon stock decreased sharply by 7.69%. (2) Severe rock desertification constrains carbon stock, and afforestation provides significantly higher long-term carbon sink benefits. (3) The spatial heterogeneity of carbon storage is primarily influenced by the combined effects of natural factors (rock desertification, elevation, NDVI) and human factors (POP). Based on the research findings, it is recommended that measures to promote close forests be prioritized in karst regions to protect and restore forest ecosystems. At the same time, local habitat improvement and the establishment of ecological compensation mechanisms should be implemented, and the expansion of building land should be strictly controlled to enhance the stability of ecosystems and their carbon sink functions. These research findings provide a solid scientific basis for enhancing and precisely regulating the carbon sink capacity of fragile karst ecosystems, and are of great significance for formulating scientifically sound and reasonable ecological protection policies. Full article
(This article belongs to the Section Land – Observation and Monitoring)
Show Figures

Figure 1

16 pages, 3861 KB  
Article
Moss-Induced Changes in Soil C/N/P and CEC: An Integrated Spectral Perspective
by Yu Lu and Zhikui Liu
Sustainability 2025, 17(18), 8348; https://doi.org/10.3390/su17188348 - 17 Sep 2025
Viewed by 667
Abstract
This study investigated how moss species identity and coverage density influence soil organic carbon (OC), total nitrogen (TN), total phosphorus (TP), cation exchange capacity (CEC), and stoichiometric ratios (C/N, C/P, N/P ratios) across soil depths in karst ecosystems of northern Guangxi, China. Spectral [...] Read more.
This study investigated how moss species identity and coverage density influence soil organic carbon (OC), total nitrogen (TN), total phosphorus (TP), cation exchange capacity (CEC), and stoichiometric ratios (C/N, C/P, N/P ratios) across soil depths in karst ecosystems of northern Guangxi, China. Spectral responses to moss cover were concurrently analyzed. Soil properties under moss crusts and bare controls were quantified through chemical assays. Coverage effects were compared via bar charts (sparse) and point-line plots (dense) with fitted curves and 95% confidence intervals. Spectral reflectance (250–2500 nm) was measured to characterize surface optical properties. Statistical correlations between variables were established. Research has shown the following: (1) Moss coverage significantly enhanced OC, TN, and CEC versus bare soil (B. dichotomum showed the strongest improvement: dense crust increased OC/TN/TP by 6.37/1.73/0.45 g kg−1 and doubled CEC). (2) All nutrients and CEC decreased with depth, most sharply for G. humillimum OC (22.38% reduction at 3–6 cm) and P. yokohamae CEC (9.97% reduction). (3) Stoichiometric ratios exhibited species-specific responses: B. dichotomum had the smallest inter-layer differences in C/N/P ratios, while G. humillimum increased C/N by 34.33% at 3–6 cm. Sparse coverage elevated N/P ratios up to 59.38% (G. humillimum, 0–3 cm). (4) Spectral analysis revealed the following: Sparse coverage boosted reflectance via edge scattering and soil background contributions. Dense coverage suppressed reflectance due to water absorption (1450/1900 nm) and limited scattering. Bare soil exhibited persistently low reflectance from hematite absorption (500–700 nm). Moss biocrusts—particularly dense B. dichotomum—optimize topsoil fertility and CEC in karst soils, though effects diminish sharply below 3 cm. Spectral signatures provide non-invasive indicators of coverage density and erosion resistance. These insights highlight the crucial role of species-specific moss selection in promoting sustainable restoration practices and long-term ecological recovery in rocky desertification regions. Full article
Show Figures

Figure 1

24 pages, 7737 KB  
Article
Socio-Ecological Drivers of Ecosystem Services in Karst Forest Park: Interactions Among Climate, Vegetation, Geomorphology, and Tourism
by Zhixin Li, Rui Li and Mei Chen
Sustainability 2025, 17(18), 8174; https://doi.org/10.3390/su17188174 - 11 Sep 2025
Viewed by 798
Abstract
Forest parks are vital terrestrial ecosystems that provide multiple ecosystem services (ESs) to both society and nature, including carbon storage, water conservation, soil retention, and tourism-related cultural services. These services are essential for maintaining ecological security and supporting socio-economic development. However, little is [...] Read more.
Forest parks are vital terrestrial ecosystems that provide multiple ecosystem services (ESs) to both society and nature, including carbon storage, water conservation, soil retention, and tourism-related cultural services. These services are essential for maintaining ecological security and supporting socio-economic development. However, little is known about how ESs vary across forest parks situated in different karst landforms, and integrated re-search on the combined effects of climate, vegetation, karst surface characteristics, and tourism remains limited. In this study, we examine forest parks in Guizhou Province, China, selecting four key ESs—water conservation, soil retention, carbon storage, and cultural services associated with tourism—and evaluate their levels through a comprehensive ecosystem services index (CES). We apply a structural equation model (PLS-SEM) to disentangle how climate, vegetation, karst surface features, and tourism activities drive spatial heterogeneity in CES. The results reveal significant differences among karst land-form units: carbon storage is relatively low in karst plateaus and gorges, whereas water conservation is highest in non-karst areas. Together, the four categories of driving factors explain 71.6–74.2% of the variance in CES, with climate emerging as the dominant contributor to spatial variation. For individual services, the principal drivers differ: normalized difference vegetation index (NDVI) and tourist numbers are jointly shaped by karst surface characteristics and climate, while multi-year average spring precipitation is the most influential factor across forest parks. This study provides new evidence of the socio-ecological mechanisms regulating ESs in karst mountain forestscapes and offers a scientific reference for enhancing and regeneratively managing ecosystem services in these fragile regions. Full article
Show Figures

Figure 1

47 pages, 13862 KB  
Review
Land Use/Land Cover Remote Sensing Classification in Complex Subtropical Karst Environments: Challenges, Methodological Review, and Research Frontiers
by Denghong Huang, Zhongfa Zhou, Zhenzhen Zhang, Qingqing Dai, Huanhuan Lu, Ya Li and Youyan Huang
Appl. Sci. 2025, 15(17), 9641; https://doi.org/10.3390/app15179641 - 2 Sep 2025
Cited by 1 | Viewed by 1186
Abstract
Land use/land cover (LULC) data serve as a critical information source for understanding the complex interactions between human activities and global environmental change. The subtropical karst region, characterized by fragmented terrain, spectral confusion, topographic shadowing, and frequent cloud cover, represents one of the [...] Read more.
Land use/land cover (LULC) data serve as a critical information source for understanding the complex interactions between human activities and global environmental change. The subtropical karst region, characterized by fragmented terrain, spectral confusion, topographic shadowing, and frequent cloud cover, represents one of the most challenging natural scenes for remote sensing classification. This study reviews the evolution of multi-source data acquisition (optical, SAR, LiDAR, UAV) and preprocessing strategies tailored for subtropical regions. It evaluates the applicability and limitations of various methodological frameworks, ranging from traditional approaches and GEOBIA to machine learning and deep learning. The importance of uncertainty modeling and robust accuracy assessment systems is emphasized. The study identifies four major bottlenecks: scarcity of high-quality samples, lack of scale awareness, poor model generalization, and insufficient integration of geoscientific knowledge. It suggests that future breakthroughs lie in developing remote sensing intelligent models that are driven by few samples, integrate multi-modal data, and possess strong geoscientific interpretability. The findings provide a theoretical reference for LULC information extraction and ecological monitoring in heterogeneous geomorphic regions. Full article
Show Figures

Figure 1

16 pages, 10318 KB  
Article
Effect of Forest Greening on Carbonate Rock Weathering Carbon Sink in the Subtropical Humid Zone
by Xuewei Ma, Huan Ruan, Fei Yuan, Hao Qiu, Jin Chen, Feng Xiang, Cheng Tang, Anhua Tian, Guibing He, Yingqun Guo and Shihao Zhang
Forests 2025, 16(9), 1391; https://doi.org/10.3390/f16091391 - 1 Sep 2025
Viewed by 708
Abstract
The karst inorganic carbon sink is crucial for carbon neutrality, but its trends and drivers in subtropical humid zones remain unclear. This study selected subtropical humid zones in China with significant forest greening, quantified the carbonate rock weathering carbon sink (CCS) using a [...] Read more.
The karst inorganic carbon sink is crucial for carbon neutrality, but its trends and drivers in subtropical humid zones remain unclear. This study selected subtropical humid zones in China with significant forest greening, quantified the carbonate rock weathering carbon sink (CCS) using a thermodynamic dissolution model, and explored the effects of climate, vegetation, hydrology, and radiation energy on CCS through importance analysis. The results showed that from 1982 to 2020, the CCS flux was 12.40 t C km−2 yr−1, and the total carbon sink was 1188.54 × 104 t C yr−1. Normalized difference vegetation index, leaf area index, and CCS exhibited an increasing trend, with growth rates of 0.002, 0.01 m2 m−2, and 0.05 t C km−2 yr−1, respectively. Surface available water, precipitation, and evapotranspiration were the dominant factors affecting CCS. This study found that forest greening caused precipitation to increase faster than evapotranspiration, driving an increase in available surface water and ultimately promoting the karst carbon sink in subtropical humid zones. Our findings highlight forest greening as a vital strategy for carbon neutrality. Full article
Show Figures

Figure 1

20 pages, 5671 KB  
Article
Precipitation Alleviates Adverse Effects of Nitrogen and Phosphorus Enrichment on Soil Microbial Co-Occurrence Network Complexity and Stability in Karst Shrubland
by Jiangnan Li, Jie Zhao, Xionghui Liao, Xianwen Long, Wenyu Wang, Peilei Hu, Wei Zhang and Kelin Wang
Microorganisms 2025, 13(9), 2012; https://doi.org/10.3390/microorganisms13092012 - 28 Aug 2025
Cited by 1 | Viewed by 852
Abstract
The karst region is highly ecologically fragile due to its unique geology and poor water and nutrient retention. Despite long-term restoration, vegetation often remains in the secondary shrubland stage. Soil microorganisms play a vital role in maintaining ecosystem functions, but how microbial communities [...] Read more.
The karst region is highly ecologically fragile due to its unique geology and poor water and nutrient retention. Despite long-term restoration, vegetation often remains in the secondary shrubland stage. Soil microorganisms play a vital role in maintaining ecosystem functions, but how microbial communities respond to combined water and nitrogen-phosphorus nutrient changes in karst shrubland remains poorly understood. This knowledge gap hinders effective restoration strategies in karst shrublands. Here, the effects of water, nitrogen, and phosphorous additions and their interactions on soil physico-chemical properties, soil microbial abundance, diversity, community composition, and the co-occurrence network were explored. A full factorial experiment (water × nitrogen × phosphorous, each at two levels) was conducted in a karst shrubland with over 20 years of vegetation restoration, with treatments including control, water (+120 mm yr−1), nitrogen (+20 g N m−2 yr−1), phosphorus (+16 g P m−2 yr−1), and their four combinations. Our results suggested that water addition significantly increased soil water content and soil microbial abundance but reduced fungal diversity. Nitrogen addition significantly increased soil nitrate nitrogen content and fungal diversity, and fungal diversity showed an increasing trend under phosphorous addition. The addition of nitrogen and phosphorous did not significantly alter the soil microbial community composition, while water addition showed a tendency to change the soil fungal community composition. Network topological properties, robustness, and vulnerability analyses indicated that individual nitrogen or phosphorous additions, as well as their interactions, reduced network complexity and stability. In contrast, water addition alone or in combination with nitrogen and/or phosphorous alleviated these negative effects, and the water and phosphorous interaction exhibited the highest levels of network complexity and stability. Further analysis showed that the soil pH, available phosphorous, ratio of carbon to phosphorous, and ammonium nitrogen were explanatory variables contributing significantly to soil microbial abundance, diversity, community composition, and network complexity. Overall, these findings highlighted the pivotal role of water availability in enhancing soil microbial stability under nutrient enrichment, offering valuable insights into ecological restoration in karst ecosystems. Full article
(This article belongs to the Special Issue Soil Microbial Carbon/Nitrogen/Phosphorus Cycling: 2nd Edition)
Show Figures

Figure 1

22 pages, 2526 KB  
Article
Impacts of Ecological Engineering Interventions on Carbon Sequestration: Spatiotemporal Dynamics and Driving Mechanisms in Karst Rocky Desertification Control
by Pingping Yang, Shui Li and Zhongfa Zhou
Forests 2025, 16(9), 1361; https://doi.org/10.3390/f16091361 - 22 Aug 2025
Cited by 1 | Viewed by 780
Abstract
Karst regions, characterized by thin soil layers, severe rocky desertification, and fragile vegetation, hold significant scientific value for achieving China’s “dual-carbon” goals. This study focuses on Zhijin County in Guizhou Province, integrating provincial carbon density data with forest resource inventory data. By constructing [...] Read more.
Karst regions, characterized by thin soil layers, severe rocky desertification, and fragile vegetation, hold significant scientific value for achieving China’s “dual-carbon” goals. This study focuses on Zhijin County in Guizhou Province, integrating provincial carbon density data with forest resource inventory data. By constructing a model to adjust aboveground forest carbon density (AGC) estimation parameters and utilizing the InVEST model alongside hotspot analysis, the research systematically examines the spatiotemporal heterogeneity of carbon storage from 2000 to 2020. These findings provide actionable strategies for enhancing carbon sequestration efficiency in ecologically fragile regions, supporting China’s “dual-carbon” policy goals. Key findings include: (1) Carbon storage exhibits a “growth-turning point” two-phase pattern, increasing by 0.46% from 2000 to 2015 but decreasing by 3.31% in 2020 due to construction land expansion. (2) There are significant differences in carbon storage among ecological engineering projects, with the highest carbon storage found in the “Grain-for-Green Program” project area and the lowest in the “National Rocky Desertification Control Program” area. (3) Elevation is the primary controlling factor for carbon storage, with rocky desertification showing notable spatial differentiation. This study provides theoretical support for the precise regulation of ecological programs and the development of high-precision carbon storage models in karst regions. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

23 pages, 4722 KB  
Article
Spatial and Temporal Inconsistency of Forest Resilience and Forest Vegetation Greening in Southwest China Under Climate Change
by Lu Cai, Yining Luo, Yan Lan, Guoxiang Shu, Denghong Huang, Zhongfa Zhou and Lihui Yan
Plants 2025, 14(16), 2493; https://doi.org/10.3390/plants14162493 - 11 Aug 2025
Cited by 1 | Viewed by 764
Abstract
Under the backdrop of global climate warming, both forest vegetation greening and resilience decline coexist, and the consistency of these trends at the regional scale remains controversial. This study uses the kNDVI (Kernel Normalized Difference Vegetation Index) and TAC (Temporal Autocorrelation) index framework, [...] Read more.
Under the backdrop of global climate warming, both forest vegetation greening and resilience decline coexist, and the consistency of these trends at the regional scale remains controversial. This study uses the kNDVI (Kernel Normalized Difference Vegetation Index) and TAC (Temporal Autocorrelation) index framework, combined with BEAST and Random Forest methods, to quantify and analyze the spatiotemporal evolution of forest resilience and its driving factors in Southwest China from 2000 to 2022. The results show the following: (1) Forest resilience exhibits a “high in the northwest and low in the southeast” spatial distribution, with a temporal pattern of “increase-decrease-increase.” The years 2010 and 2015 are key turning points. Trend shift analysis divides resilience into six types. (2) Although forest vegetation shows a clear greening trend, resilience does not necessarily increase with greening, and in some areas, an “increase in greening—decline in resilience” asynchronous pattern appears. (3) The annual average temperature, precipitation, and solar radiation are the main climate factors and their influence on resilience follows a nonlinear relationship. Higher temperatures and increased radiation may suppress resilience, while increased precipitation can enhance it. This study suggests incorporating the TAC indicator into ecological monitoring and early warning systems, along with applying trend classification results for region-specific management to improve the scientific basis and adaptability of forest governance under climate change. Full article
Show Figures

Figure 1

24 pages, 9000 KB  
Article
Ultrasound-Optimized Extraction and Multi-Target Mechanistic Analysis of Antioxidant and Hypoglycemic Effects of Amomum villosum Essential Oil
by Wenxiang Wu, Yining Liao, Lixia Wei, Xuezhen Feng, Yan Dai, Qingrong Liu and Shuzhen Feng
Foods 2025, 14(16), 2772; https://doi.org/10.3390/foods14162772 - 9 Aug 2025
Viewed by 1151
Abstract
Amomum villosum, a medicinal and edible plant, has shown promise in improving digestive health; however, the mechanisms underlying its antioxidant and hypoglycemic effects remain unclear. This study aimed to optimize the extraction of A. villosum essential oil (AVEO) and elucidate its bioactive [...] Read more.
Amomum villosum, a medicinal and edible plant, has shown promise in improving digestive health; however, the mechanisms underlying its antioxidant and hypoglycemic effects remain unclear. This study aimed to optimize the extraction of A. villosum essential oil (AVEO) and elucidate its bioactive potential. Ultrasound-assisted extraction yielded 3.84% AVEO under optimal conditions. Gas chromatography–mass spectrometry combined with SwissADME analysis identified nine active components, including bornyl acetate, (−)-Spathulenol, and (−)-Pogostol. In vitro assays demonstrated potent α-glucosidase inhibition (IC50: 0.99 mg/mL) and strong free radical scavenging activities against 1,1-diphenyl-2-picrylhydrazyl (IC50: 0.87 mg/mL), hydroxyl (IC50: 0.18 mg/mL), and superoxide anion radicals (IC50: 0.01 mg/mL). A significant positive correlation was observed between its antioxidant and hypoglycemic activities. Network pharmacology identified 11 core targets involved in oxidative stress and glucose metabolism, with functional enrichment pointing to the PPAR and steroid hormone signaling pathways. Molecular docking confirmed stable binding affinities of bornyl acetate, (−)-spathulenol, and (−)-pogostol to JAK2, NCOA2, and PPARA via hydrogen bonding and hydrophobic interactions. These findings provide a mechanistic basis for the dual antioxidant–hypoglycemic effects of AVEO and support its potential application in the development of functional foods and natural therapeutics targeting metabolic disorders. Full article
Show Figures

Figure 1

27 pages, 42290 KB  
Article
Study on the Dynamic Changes in Land Cover and Their Impact on Carbon Stocks in Karst Mountain Areas: A Case Study of Guiyang City
by Rui Li, Zhongfa Zhou, Jie Kong, Cui Wang, Yanbi Wang, Rukai Xie, Caixia Ding and Xinyue Zhang
Remote Sens. 2025, 17(15), 2608; https://doi.org/10.3390/rs17152608 - 27 Jul 2025
Viewed by 993
Abstract
Investigating land cover patterns, changes in carbon stocks, and forecasting future conditions are essential for formulating regional sustainable development strategies and enhancing ecological and environmental quality. This study centers on Guiyang, a mountainous urban area in southwestern China, to analyze the dynamic changes [...] Read more.
Investigating land cover patterns, changes in carbon stocks, and forecasting future conditions are essential for formulating regional sustainable development strategies and enhancing ecological and environmental quality. This study centers on Guiyang, a mountainous urban area in southwestern China, to analyze the dynamic changes in land cover and their effects on carbon stocks from 2000 to 2035. A carbon stocks assessment framework was developed using a cellular automaton-based artificial neural network model (CA-ANN), the InVEST model, and the geographical detector model to predict future land cover changes and identify the primary drivers of variations in carbon stocks. The results indicate that (1) from 2000 to 2020, impervious surfaces expanded significantly, increasing by 199.73 km2. Compared to 2020, impervious surfaces are projected to increase by 1.06 km2, 13.54 km2, and 34.97 km2 in 2025, 2030, and 2035, respectively, leading to further reductions in grassland and forest areas. (2) Over time, carbon stocks in Guiyang exhibited a general decreasing trend; spatially, carbon stocks were higher in the western and northern regions and lower in the central and southern regions. (3) The level of greenness, measured by the normalized vegetation index (NDVI), significantly influenced the spatial variation of carbon stocks in Guiyang. Changes in carbon stocks resulted from the combined effects of multiple factors, with the annual average temperature and NDVI being the most influential. These findings provide a scientific basis for advancing low-carbon development and constructing an ecological civilization in Guiyang. Full article
(This article belongs to the Special Issue Smart Monitoring of Urban Environment Using Remote Sensing)
Show Figures

Figure 1

46 pages, 2814 KB  
Review
From Application-Driven Growth to Paradigm Shift: Scientific Evolution and Core Bottleneck Analysis in the Field of UAV Remote Sensing
by Denghong Huang, Zhongfa Zhou, Zhenzhen Zhang, Xiandan Du, Ruiqi Fan, Qianxia Li and Youyan Huang
Appl. Sci. 2025, 15(15), 8304; https://doi.org/10.3390/app15158304 - 25 Jul 2025
Viewed by 1774
Abstract
Unmanned Aerial Vehicle Remote Sensing (UAV-RS) has emerged as a transformative technology in high-resolution Earth observation, with widespread applications in precision agriculture, ecological monitoring, and disaster response. However, a systematic understanding of its scientific evolution and structural bottlenecks remains lacking. This study collected [...] Read more.
Unmanned Aerial Vehicle Remote Sensing (UAV-RS) has emerged as a transformative technology in high-resolution Earth observation, with widespread applications in precision agriculture, ecological monitoring, and disaster response. However, a systematic understanding of its scientific evolution and structural bottlenecks remains lacking. This study collected 4985 peer-reviewed articles from the Web of Science Core Collection and conducted a comprehensive scientometric analysis using CiteSpace v.6.2.R4, Origin 2022, and Excel. We examined publication trends, country/institutional collaboration networks, keyword co-occurrence clusters, and emerging research fronts. Results reveal an exponential growth in UAV-RS research since 2015, dominated by application-driven studies. Hotspots include vegetation indices, structure from motion modeling, and deep learning integration. However, foundational challenges—such as platform endurance, sensor coordination, and data standardization—remain underexplored. The global collaboration network exhibits a “strong hubs, weak bridges” pattern, limiting transnational knowledge integration. This review highlights the imbalance between surface-level innovation and deep technological maturity and calls for a paradigm shift from fragmented application responses to integrated systems development. Our findings provide strategic insights for researchers, policymakers, and funding agencies to guide the next stage of UAV-RS evolution. Full article
Show Figures

Figure 1

15 pages, 1897 KB  
Article
Dual Mechanisms of Nitrate in Alleviating Ammonium Toxicity: Enhanced Photosynthesis and Optimized Ammonium Utilization in Orychophragmus violaceus
by Kaiyan Zhang, Haitao Li, Hongtao Hang, Xinhua He and Yanyou Wu
Agronomy 2025, 15(8), 1789; https://doi.org/10.3390/agronomy15081789 - 25 Jul 2025
Viewed by 605
Abstract
Ammonium (NH4+) toxicity impairs plant growth, but nitrate (NO3) can mitigate this effect through unresolved mechanisms. Using leaf δ13C values (photosynthetic capacity) and a bidirectional 15N tracer (NH4+ assimilation efficiency and source [...] Read more.
Ammonium (NH4+) toxicity impairs plant growth, but nitrate (NO3) can mitigate this effect through unresolved mechanisms. Using leaf δ13C values (photosynthetic capacity) and a bidirectional 15N tracer (NH4+ assimilation efficiency and source utilization), this study investigated these mechanisms in 35-day-old Orychophragmus violaceus plantlets grown in modified Murashige and Skoog media under varying NH4+:NO3 ratios. 15N isotope fractionation during NH4+ (same fixed 20 mM NH4Cl) assimilation decreased with increasing NO3 supply (10, 20, and 40 mM NaNO3). Under 20 mM NH4+15N = −2.64‰) at two 15NO3-labels (δ15N-NO3 = 8.08‰, low 15N, L) and (δ15N-NO3 = 22.67‰, high 15N, H), increasing NO3 concentrations enhanced NO3 assimilation, alleviating acidic stress from NH4+ and improving photosynthesis. Higher NO3 levels also increased NH4+ utilization efficiency, reducing futile NH4+ cycling and decreasing associated 15N fractionation during assimilation. Our results demonstrate that NO3 alleviates NH4+ toxicity primarily by enhancing photosynthetic performance and optimizing NH4+ utilization efficiency. Full article
Show Figures

Figure 1

Back to TopTop