Spatiotemporal Evolution and Prediction of Carbon Storage in Karst Fault Basin Based on FLUS and InVEST Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.1.1. Study Area
2.1.2. Data Collection
2.2. Methodology
2.2.1. InVEST Model
2.2.2. FLUS Model
2.2.3. Land Use Transfer Matrix
2.2.4. Land Use Scenario Simulation and Its Accuracy Verification
2.3. Land Use Change from 1985 to 2020
3. Results and Analysis
3.1. Spatiotemporal Variation in Carbon Storage and Its Response to Land Use Change
3.2. Prediction of Land Use Change and Carbon Storage Under Different Scenarios in 2020–2050
3.3. Spatial Changes of Carbon Density in Three Prediction Scenarios at the County Scale
4. Discussions
4.1. Carbon Sequestration Potential Analysis of Karst Fault Basin
4.2. Implications of Carbon Storage Results Under Different Scenarios for Future Planning
4.3. Limitations of This Study
5. Conclusions
- (1)
- From 1985 to 2020, carbon storage in the karst fault basin exhibited a fluctuating downward trend. This was primarily due to an increase in carbon storage in construction land and cultivated land and a decrease in carbon storage in grassland. The central part of the karst fault basin experienced significant carbon storage loss, while the carbon density in the marginal areas was relatively high.
- (2)
- Cultivated land, forest land, and grassland remained the most important land use types in the karst fault basin under the three scenarios. Nevertheless, there was a considerable reduction in grassland area, coupled with the growth of construction and cultivated lands. Across the three scenarios carbon storage in the ecological protection state showed a significant increase, while carbon storage under the cultivated land protection and natural evolution scenarios decreased. Notably, under the natural evolution scenario, the expansion of construction land area was 426 km2, representing a 53.6% increase. This expansion resulted in a carbon loss of 2.8 × 106 t.
- (3)
- Based on the predictions under the three scenarios, it is crucial to continue implementing ecological protection in the study area and combine cultivated land protection with ecological measures to enhance the carbon sink capacity of the karst area. Additionally, efforts to inhibit grassland degradation and implement hierarchical control at the county level, along with refined ecological restoration measures, are necessary. Failure to do so may significantly reduce the carbon sink potential of the area and transform the karst fault basin into a carbon source, hindering the achievement of China’s carbon peaking and carbon neutrality goals.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lu, F.; Hu, H.F.; Sun, W.J.; Zhu, J.J.; Liu, G.B.; Zhou, W.M.; Zhang, Q.F.; Shi, P.L.; Liu, X.P.; Wu, X.; et al. Effects of national ecological restoration projects on carbon sequestration in China from 2001 to 2010. Proc. Natl. Acad. Sci. USA 2018, 115, 4039–4044. [Google Scholar] [CrossRef]
- Zhu, L.; Song, R.; Sun, S.; Li, Y.; Hu, K. Land use/land cover change and its impact on ecosystem carbon storage in coastal areas of China from 1980 to 2050. Ecol. Indic. 2022, 142, 109178. [Google Scholar] [CrossRef]
- Lambin, E.F.; Turner, B.L.; Geist, H.J.; Agbola, S.B.; Angelsen, A.; Bruce, J.W.; Coomes, O.T.; Dirzo, R.; Fischer, G.; Folke, C.; et al. The causes of land-use and land-cover change: Moving beyond the myths. Glob. Environ. Change-Hum. Policy Dimens. 2001, 11, 261–269. [Google Scholar] [CrossRef]
- Houghton, R.A. Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850-2000. Tellus Ser. B-Chem. Phys. Meteorol. 2003, 55, 378–390. [Google Scholar]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef]
- Lawler, J.J.; Lewis, D.J.; Nelson, E.; Plantinga, A.J.; Polasky, S.; Withey, J.C.; Helmers, D.P.; Martinuzzi, S.; Pennington, D.; Radeloff, V.C. Projected land-use change impacts on ecosystem services in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 7492–7497. [Google Scholar] [CrossRef]
- Kondo, M.; Ichii, K.; Patra, P.K.; Canadell, J.G.; Poulter, B.; Sitch, S.; Calle, L.; Liu, Y.Y.; van Dijk, A.I.J.M.; Saeki, T.; et al. Land use change and el nino-southern oscillation drive decadal carbon balance shifts in southeast Asia. Nat. Commun. 2018, 9, 1154. [Google Scholar] [CrossRef]
- Jiang, W.; Deng, Y.; Tang, Z.; Lei, X.; Chen, Z. Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the clues and the invest models. Ecol. Model. 2017, 345, 30–40. [Google Scholar] [CrossRef]
- Phang, V.X.H.; Chou, L.M.; Friess, D.A. Ecosystem carbon stocks across a tropical intertidal habitat mosaic of mangrove forest, seagrass meadow, mudflat and sandbar. Earth Surf. Process. Landf. 2015, 40, 1387–1400. [Google Scholar] [CrossRef]
- Xu, Z.; Fan, W.; Wei, H.; Zhang, P.; Ren, J.; Gao, Z.; Ulgiati, S.; Kong, W.; Dong, X. Evaluation and simulation of the impact of land use change on ecosystem services based on a carbon flow model: A case study of the manas river basin of Xinjiang, China. Sci. Total Environ. 2019, 652, 117–133. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, X.; Chuai, X.; Yang, H.; Lai, L.; Tan, J. Impact of land use type conversion on carbon storage in terrestrial ecosystems of China: A spatial-temporal perspective. Sci. Rep. 2015, 5, 10233. [Google Scholar] [CrossRef]
- Fu, Q.; Li, B.; Hou, Y.; Bi, X.; Zhang, X.S. Effects of land use and climate change on ecosystem services in central asia’s arid regions: A case study in altay prefecture, China. Sci. Total Environ. 2017, 607, 633–646. [Google Scholar] [CrossRef]
- Nelson, E.; Sander, H.; Hawthorne, P.; Conte, M.; Ennaanay, D.; Wolny, S.; Manson, S.; Polasky, S. Projecting global land-use change and its effect on ecosystem service provision and biodiversity with simple models. PLoS ONE 2010, 5, e14327. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Cao, J.; Adamowski, J.F.; Biswas, A.; Zhou, J.; Liu, Y.; Zhang, Y.; Liu, C.; Dong, X.; Qin, Y. Assessing the effects of ecological engineering on spatiotemporal dynamics of carbon storage from 2000 to 2016 in the loess plateau area using the invest model: A case study in Huining county, China. Environ. Dev. 2021, 39, 100641. [Google Scholar] [CrossRef]
- Babbar, D.; Areendran, G.; Sahana, M.; Sarma, K.; Raj, K.; Sivadas, A. Assessment and prediction of carbon sequestration using markov chain and invest model in Sariska tiger reserve, India. J. Clean. Prod. 2021, 278, 123333. [Google Scholar] [CrossRef]
- Lin, T.; Wu, D.F.; Yang, M.Z.; Ma, P.F.; Liu, Y.Y.; Liu, F.; Gan, Z.Y. Evolution and simulation of terrestrial ecosystem carbon storage and sustainability assessment in karst areas: A case study of Guizhou province. Int. J. Environ. Res. Public Health 2022, 19, 16219. [Google Scholar] [CrossRef] [PubMed]
- Hoque, M.Z.; Cui, S.H.; Islam, I.; Xu, L.L.; Ding, S.P. Dynamics of plantation forest development and ecosystem carbon storage change in coastal Bangladesh. Ecol. Indic. 2021, 130, 107954. [Google Scholar] [CrossRef]
- Anputhas, M.; Janmaat, J.A.; Nichol, C.F.; Wei, X. Modelling spatial association in pattern based land use simulation models. J. Environ. Manag. 2016, 181, 465–476. [Google Scholar] [CrossRef]
- Piyathilake, I.D.U.H.; Udayakumara, E.P.N.; Ranaweera, L.V.; Gunatilake, S.K. Modeling predictive assessment of carbon storage using invest model in uva province, Sri Lanka. Model. Earth Syst. Environ. 2022, 8, 2213–2223. [Google Scholar] [CrossRef]
- Fu, F.; Deng, S.; Wu, D.; Liu, W.; Bai, Z. Research on the spatiotemporal evolution of land use landscape pattern in a county area based on ca-markov model. Sustain. Cities Soc. 2022, 80, 103760. [Google Scholar] [CrossRef]
- Huang, D.; Huang, J.; Liu, T. Delimiting urban growth boundaries using the clue-s model with village administrative boundaries. Land Use Policy 2019, 82, 422–435. [Google Scholar] [CrossRef]
- Zhou, L.; Dang, X.; Sun, Q.; Wang, S. Multi-scenario simulation of urban land change in shanghai by random forest and ca-markov model. Sustain. Cities Soc. 2020, 55, 102045. [Google Scholar] [CrossRef]
- Lin, X.; Jiao, X.; Tian, Z.Q.; Sun, Q.Q.; Zhang, Y.X.; Zhang, P.; Ji, Z.X.; Chen, L.; Lun, F.; Chang, X.; et al. Projecting diversity conflicts of future land system pathways in China under anthropogenic and climate forcing. Earths Future 2023, 11, e2022EF003406. [Google Scholar] [CrossRef]
- Zhao, M.M.; He, Z.B.; Du, J.; Chen, L.F.; Lin, P.F.; Fang, S. Assessing the effects of ecological engineering on carbon storage by linking the ca-markov and invest models. Ecol. Indic. 2019, 98, 29–38. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (flus) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Li, S.; Li, X. Multi-scenario simulation analysis of land use and carbon storage changes in Changchun city based on flus and invest model. Land 2022, 11, 647. [Google Scholar] [CrossRef]
- Jiang, Z.C.; Lian, Y.Q.; Qin, X.Q. Rocky desertification in southwest China: Impacts, causes, and restoration. Earth-Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Tang, X.G.; Xiao, J.F.; Ma, M.G.; Yang, H.; Li, X.; Ding, Z.; Yu, P.J.; Zhang, Y.G.; Wu, C.Y.; Huang, J.; et al. Satellite evidence for China’s leading role in restoring vegetation productivity over global karst ecosystems. For. Ecol. Manag. 2022, 507, 120000. [Google Scholar] [CrossRef]
- Chen, L.; Tan, L.; Zhao, M.; Sinha, A.; Wang, T.; Gao, Y. Karst carbon sink processes and effects: A review. Quat. Int. 2023, 652, 63–73. [Google Scholar] [CrossRef]
- Jiang, Z.; Lian, Y.; Qin, X. Carbon cycle in the epikarst systems and its ecological effects in south China. Environ. Earth Sci. 2013, 68, 151–158. [Google Scholar] [CrossRef]
- Wang, S.; Liu, Z.; Ni, J.; Yan, J.; Liu, X. A review of research progress and future prospective of carbon cycle in karst area of south China. Earth Environ. 2017, 45, 2–9. [Google Scholar]
- Yan, J.; Wang, Y.P.; Zhou, G.; Li, S.; Yu, G.; Li, K. Carbon uptake by karsts in the Houzhai Basin, southwest China. J. Geophys. Res.-Biogeosci. 2011, 116, G04012. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, W.; Zhong, J.; Chen, S.; Yi, Y.; Xu, X.; Chen, S.; Li, S.-L. Carbon sequestration and decreased CO2 emission caused by biological carbon pump effect: Insights from diel hydrochemical variations in subtropical karst reservoirs. J. Hydrol. 2024, 632, 130909. [Google Scholar] [CrossRef]
- Song, X.; Gao, Y.; Wen, X.; Guo, D.; Yu, G.; He, N.; Zhang, J. Carbon sequestration potential and its eco-service function in the karst area, China. J. Geogr. Sci. 2017, 27, 967–980. [Google Scholar] [CrossRef]
- Gong, W.; Duan, X.; Mao, M.; Hu, J.; Sun, Y.; Wu, G.; Zhang, Y.; Xie, Y.; Qiu, X.; Rao, X.; et al. Assessing the impact of land use and changes in land cover related to carbon storage by linking trajectory analysis and invest models in the nandu river basin on Hainan island in China. Front. Environ. Sci. 2022, 10, 1038752. [Google Scholar] [CrossRef]
- Ni, J.; Luo, D.H.; Xia, J.; Zhang, Z.H.; Hu, G. Vegetation in karst terrain of southwestern China allocates more biomass to roots. Solid Earth 2015, 6, 799–810. [Google Scholar] [CrossRef]
- Huang, Q.H.; Cai, Y.L.; Xing, X.S. Rocky desertification, antidesertification, and sustainable development in the karst mountain region of southwest China. Ambio 2008, 37, 390–392. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, M.L.; Liu, X.N.; Luo, W.Q.; Wu, L.; Zhu, L.H. Spectral analysis of seasonal rock and vegetation changes for detecting karst rocky desertification in southwest China. Int. J. Appl. Earth Obs. Geoinf. 2021, 100, 102337. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Li, Y.; Geng, H. Spatiotemporal trends in ecosystem carbon stock evolution and quantitative attribution in a karst watershed in southwest China. Ecol. Indic. 2023, 153, 110429. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Guo, K.; Wang, S.; Liu, H.; Zhao, H.; Qiao, X.; Hou, D.; Li, S. Aboveground carbon stock, allocation and sequestration potential during vegetation recovery in the karst region of southwestern China: A case study at a watershed scale. Agric. Ecosyst. Environ. 2016, 235, 91–100. [Google Scholar] [CrossRef]
- Wang, M.; Chen, H.; Zhang, W.; Wang, K. Soil organic carbon stock and its changes in a typical karst area from 1983 to 2015. J. Soils Sediments 2021, 21, 42–51. [Google Scholar] [CrossRef]
- Fang, Z.; Ding, T.; Chen, J.; Xue, S.; Zhou, Q.; Wang, Y.; Wang, Y.; Huang, Z.; Yang, S. Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Sci. Total Environ. 2022, 831, 154967. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Shen, C.; Shi, L.; Wan, Y.; Ding, J.; Wen, Q. Spatio-temporal evolution characteristics and simulation prediction of carbon storage: A case study in Sanjiangyuan area, China. Ecol. Inform. 2024, 80, 102485. [Google Scholar] [CrossRef]
- Li, X.; Chen, G.; Liu, X.; Liang, X.; Wang, S.; Chen, Y.; Pei, F.; Xu, X. A new global land-use and land-cover change product at a 1-km resolution for 2010 to 2100 based on human-environment interactions. Ann. Am. Assoc. Geogr. 2017, 107, 1040–1059. [Google Scholar] [CrossRef]
- Xu, H.; Song, Y.; Tian, Y. Simulation of land-use pattern evolution in hilly mountainous areas of north China: A case study in Jincheng. Land Use Policy 2022, 112, 105826. [Google Scholar] [CrossRef]
- Luo, D.; Zhou, Z.; Chen, Q.; Zhang, L.; Wu, L.; Wu, T. Responses of carbon storage to land use pattern in karst area: A case study of Nanbei panjiang river basin. Acta Ecol. Sin. 2023, 43, 3500–3516. [Google Scholar]
Land Use Type | Cabove | Cbelow | Csoil | Cdead |
---|---|---|---|---|
Cropland. | 16.83 | 11.12 | 75.89 | 2.11 |
Forest | 30.76 | 18.40 | 100.24 | 2.78 |
Grassland | 14.59 | 17.50 | 87.13 | 2.42 |
Water | 1.62 | 0 | 64.09 | 1.78 |
Impervious | 7.77 | 1.55 | 34.36 | 0 |
Barren | 10.57 | 2.11 | 34.45 | 0.96 |
Data Classification | Data Type | Data Source | Data Description |
---|---|---|---|
Natural factors | DEM | http://www.gscloud.cn/ | 30 m × 30 m |
Slope | Calculated by DEM | 30 m × 30 m | |
River | http://www.dsac.cn/ | Vector data | |
Social factors | To highway | https://www.webmap.cn | Euclidean distance Euclidean distance |
To train | https://www.webmap.cn | ||
Population | https://www.resdc.cn | 1000 m × 1000 m | |
GDP | https://www.resdc.cn | 1000 m × 1000 m |
Land Use Type | Cropland | Forest | Grassland | Water | Impervious | Barren |
---|---|---|---|---|---|---|
Weight settings | 0.3 | 0.9 | 0.5 | 0.7 | 1 | 0.6 |
Q1 | Q2 | Q3 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
a | b | c | d | e | f | a | b | c | d | e | f | a | b | c | d | e | f | |
a | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
b | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 |
c | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 | 1 | 1 | 0 |
d | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
e | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
f | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Land Use Type | 1985–1995 | 1995–2005 | 2005–2015 | 2015–2020 | ||||
---|---|---|---|---|---|---|---|---|
Change (km2) | Dynamics (%) | Change (km2) | Dynamics (%) | Change (km2) | Dynamics (%) | Change (km2) | Dynamics (%) | |
Cropland | 975.92 | 0.30% | −363.51 | −0.11% | 608.09 | 0.18% | 208.40 | 0.12% |
Forest | −291.68 | −0.05% | −171.79 | −0.03% | 1028.75 | 0.16% | 1194.90 | 0.38% |
Grass | −721.07 | −0.53% | 286.58 | 0.22% | −1933.71 | −1.47% | −1548.13 | −2.76% |
Water | 11.78 | 0.13% | 80.35 | 0.86% | 34.08 | 0.34% | 9.85 | 0.19% |
Impervious | 45.96 | 2.36% | 165.48 | 6.87% | 255.60 | 6.29% | 132.19 | 3.99% |
Barren | −20.91 | −4.57% | 6.35 | 2.55% | 3.71 | 1.19% | 2.77 | 1.59% |
1985 | 2000 | ||||||
---|---|---|---|---|---|---|---|
G | C | I | F | W | B | Total | |
G | 8752.83 | 1501.59 | 15.08 | 2271.45 | 34.62 | 8.27 | 12,583.84 |
C | 2693.59 | 26,073.28 | 101.65 | 3611.14 | 81.79 | 1.08 | 32,562.53 |
I | 2.50 | 10.22 | 140.85 | 0.52 | 6.53 | 0.01 | 160.62 |
F | 967.99 | 4553.53 | 0.80 | 58,591.76 | 13.58 | 0.02 | 64,127.67 |
W | 8.01 | 25.57 | 0.92 | 15.92 | 841.93 | 1.92 | 894.28 |
Total | 12,424.92 | 32,164.19 | 259.3 | 64,490.79 | 978.45 | 11.3 | 110,328.94 |
2000 | 2020 | ||||||
---|---|---|---|---|---|---|---|
G | C | I | F | W | B | Total | |
G | 6653.40 | 2882.56 | 101.68 | 2751.94 | 39.69 | 11.92 | 12,441.18 |
C | 1542.82 | 25,286.22 | 382.86 | 4861.32 | 83.30 | 8.20 | 32,164.73 |
I | 3.54 | 17.24 | 234.67 | 0.78 | 4.40 | 0.02 | 260.65 |
F | 727.02 | 5686.96 | 3.73 | 58,047.61 | 20.89 | 0.24 | 64,486.45 |
W | 14.29 | 65.09 | 3.71 | 16.77 | 879.23 | 2.34 | 981.43 |
B | 10.34 | 0.33 | 2.48 | 0.14 | 1.97 | 11.05 | 26.31 |
Total | 8951.41 | 33,938.40 | 729.13 | 65,678.56 | 1029.48 | 33.78 | 110,360.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Tang, R.; Liu, W.; Zhang, G.; Hao, X.; Gong, Y.; Zhou, Y.; Yang, Y. Spatiotemporal Evolution and Prediction of Carbon Storage in Karst Fault Basin Based on FLUS and InVEST Models. Sustainability 2025, 17, 3931. https://doi.org/10.3390/su17093931
Zhang J, Tang R, Liu W, Zhang G, Hao X, Gong Y, Zhou Y, Yang Y. Spatiotemporal Evolution and Prediction of Carbon Storage in Karst Fault Basin Based on FLUS and InVEST Models. Sustainability. 2025; 17(9):3931. https://doi.org/10.3390/su17093931
Chicago/Turabian StyleZhang, Jiabin, Rong Tang, Wenting Liu, Guobao Zhang, Xiangru Hao, Yaguang Gong, Ying Zhou, and Yuanhui Yang. 2025. "Spatiotemporal Evolution and Prediction of Carbon Storage in Karst Fault Basin Based on FLUS and InVEST Models" Sustainability 17, no. 9: 3931. https://doi.org/10.3390/su17093931
APA StyleZhang, J., Tang, R., Liu, W., Zhang, G., Hao, X., Gong, Y., Zhou, Y., & Yang, Y. (2025). Spatiotemporal Evolution and Prediction of Carbon Storage in Karst Fault Basin Based on FLUS and InVEST Models. Sustainability, 17(9), 3931. https://doi.org/10.3390/su17093931