Changes in Ecological–Production–Social Functions in Karst Areas: Insight from Guizhou Province, South China Karst
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Construction of Index System
2.3. Measurement of Three Functions
2.4. Dynamic Evolution of Spatial Pattern
2.4.1. Kernel Density Estimation Model
2.4.2. Standard Deviation Ellipse Model
2.5. Identification of Dominant and Combined Functions
2.6. Coordination of Three Functions
2.7. Data Sources
3. Results
3.1. Change in the Three Functions
3.2. Change in the Dominant and Combined Functions
3.3. Change in the Coordination
4. Discussion
4.1. Coordination Mechanism of Production–Social–Ecological Functions in Karst Area
4.2. Policy Implications
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ford, D.C.; Williams, P. Karst Hydrogeology and Geomorphology; John Wiley & Sons Ltd.: West Sussex, UK, 2007; p. 576. [Google Scholar]
- Li, Y.; Ke, Q.; Zhang, Z. Millennial Evolution of a Karst Socio-Ecological System: A Case Study of Guizhou Province, Southwest China. Int. J. Environ. Res. Public Health 2022, 19, 15151. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Wang, L.; Brandt, M.; Zhang, X.; Wang, K. A social-ecological framework to enhance sustainable reforestation under geological constraints. Earth’s Future 2024, 12, e2023EF004335. [Google Scholar] [CrossRef]
- Ouyang, N.; Rui, X.; Zhang, X.; Tang, H.; Xie, Y. Spatiotemporal evolution of ecosystem health and its driving factors in the southwestern karst regions of China. Ecol. Indic. 2024, 166, 112530. [Google Scholar] [CrossRef]
- Jiang, Z.; Lian, Y.; Qin, X. Rocky desertification in Southwest China: Impacts, causes, and restoration. Earth-Sci. Rev. 2014, 132, 1–12. [Google Scholar] [CrossRef]
- Qiu, S.; Peng, J.; Dong, J.; Wang, X.; Ding, Z.; Zhang, H.; Mao, Q.; Liu, H.; Quine, T.A.; Meersmans, J. Understanding the relationships between ecosystem services and associated social-ecological drivers in a karst region: A case study of Guizhou Province, China. Prog. Phys. Geogr. Earth Environ. 2020, 45, 98–114. [Google Scholar] [CrossRef]
- Jourde, H.; Wang, X. Advances, challenges and perspective in modelling the functioning of karst systems: A review. Environ. Earth Sci. 2023, 82, 396. [Google Scholar] [CrossRef]
- Yang, Y.; Bao, W.; Liu, Y. Coupling coordination analysis of rural production-living-ecological space in the Beijing-Tianjin-Hebei region. Ecol. Indic. 2020, 117, 106512. [Google Scholar] [CrossRef]
- Cao, Z.; Zhang, Z.; Zhang, K.; Wei, X.; Xiao, S.; Yang, Z. Identifying and estimating soil erosion and sedimentation in small karst watersheds using a composite fingerprint technique. Agric. Ecosyst. Environ. 2020, 294, 106881. [Google Scholar] [CrossRef]
- Liu, C.Q. Biogeochemical Processes and Cycling of the Nutrients in the Earth’s Surface: Nutrient Cycling in Soil and Plant System in Karstic Catchment, Southwest China; Science Press: Beijing, China, 2009; p. 618. [Google Scholar]
- Hu, Z.; Wang, S.; Bai, X.; Luo, G.; Li, Q.; Wu, L.; Yang, Y.; Tian, S.; Li, C.; Deng, Y. Changes in ecosystem service values in karst areas of China. Agric. Ecosyst. Environ. 2020, 301, 107026. [Google Scholar] [CrossRef]
- Tong, X.; Brandt, M.; Yue, Y.; Ciais, P.; Jepsen, M.R.; Penuelas, J.; Wigneron, J.; Xiao, X.; Song, X.; Horion, S.; et al. Forest management in southern China generates short term extensive carbon sequestration. Nature Commun. 2020, 11, 129. [Google Scholar] [CrossRef]
- Zhao, M.; Li, D.; Liu, Z.; Bao, Q.; Xia, F.; Yan, H.; Chen, B.; Hu, Y.; Cai, G.; Lang, R.; et al. Karst carbon sink mechanism and its contribution to carbon neutralization under land- use management. Sci. Total Environ. 2024, 937, 173381. [Google Scholar] [CrossRef] [PubMed]
- Xiong, K.; He, C.; Zhang, M.; Pu, J. A New Advance on the Improvement of Forest Ecosystem Functions in the Karst Desertification Control. Forests 2023, 14, 2115. [Google Scholar] [CrossRef]
- Boudet, F.; MacDonald, G.K.; Robinson, B.E.; Samberg, L.H. Rural-urban connectivity and agricultural land management across the Global South. Glob. Environ. Change 2020, 60, 101982. [Google Scholar] [CrossRef]
- Chen, Y.; Cheng, C.; Xiong, K.; Rong, L.; Zhang, S. Quantifying the biodiversity and ecosystem service outcomes of karst ecological restoration: A meta-analysis of South China Karst. Catena 2024, 245, 108278. [Google Scholar] [CrossRef]
- Yu, L.; Li, Y.; Luo, G.; Ge, G.; Zhang, H.; Tang, F.; Yu, M. Spatiotemporal evolution and driving mechanism of slope cultivated land in karst mountainous areas of Southwest China—A case study of Puding County, Guizhou Province. Land Degrad. Dev. 2024, 35, 568–585. [Google Scholar] [CrossRef]
- Deng, X.; Xiong, K.; Yu, Y.; Zhang, S.; Kong, L.; Zhang, Y. A Review of Ecosystem Service Trade-Offs/Synergies: Enlightenment for the Optimization of Forest Ecosystem Functions in Karst Desertification Control. Forests 2023, 14, 88. [Google Scholar] [CrossRef]
- Chen, Q.W.; Lu, S.X.; Xiong, K.N.; Zhao, R. Coupling analysis on ecological environment fragility and poverty in South China Karst. Environ. Res. 2021, 201, 111650. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Xu, Y.; Ma, W.; Gao, S. Does participation in poverty alleviation programmes increase subjective well-being? Results from a survey of rural residents in Shanxi, China. Habitat Int. 2021, 118, 102455. [Google Scholar] [CrossRef]
- Cui, Z.; Li, E.; Li, Y.; Deng, Q.; Shahtahmassebi, A. The impact of poverty alleviation policies on rural economic resilience in impoverished areas: A case study of lankao county, China. J. Rural Stud. 2023, 99, 92–106. [Google Scholar] [CrossRef]
- Wei, B.; Mao, X.; Liu, S.; Liu, M.; Wang, Z.; Kang, P.; Gao, H.; Tang, W.; Feng, S.; Pan, Z. Breaking the poverty trap in an ecologically fragile region through ecological engineering: A close-up look at long-term changes in ecosystem services. J. Environ. Manag. 2024, 358, 120921. [Google Scholar] [CrossRef]
- Bu, Z.; Fu, J.; Jiang, D.; Lin, G. Production–Living–Ecological Spatial Function Identification and Pattern Analysis Based on Multi-Source Geographic Data and Machine Learning. Land 2023, 12, 2029. [Google Scholar] [CrossRef]
- Tan, N.; Chang, X.; Ma, T. Study on Production–Living–Ecological Function Accounting and Management in China. Land 2023, 12, 1163. [Google Scholar] [CrossRef]
- Dai, R.; Wang, C.; Wu, X. Path of Rural Sustainable Development Based on the Evolution and Interaction of Rural Functions: A Case Study of Chongqing Municipality, China. Chin. Geogr. Sci. 2022, 32, 1035–1051. [Google Scholar] [CrossRef]
- Xia, N.; Hai, W.; Tang, M.; Song, J.; Quan, W.; Zhang, B.; Ma, Y. Spatiotemporal evolution law and driving mechanism of production-living-ecological space from 2000 to 2020 in Xinjiang, China. Ecol. Indic. 2023, 154, 110807. [Google Scholar] [CrossRef]
- Ma, Y.; Ji, W.; Meng, Q.; Zhang, Y.; Li, L.; Liu, M.; Wei, H. Assessing Land Use Ecological-Social-Production Functions and Interrelationships from the Perspective of Multifunctional Landscape in a Transitional Zone between Qinghai-Tibet Plateau and Loess Plateau. Diversity 2024, 16, 618. [Google Scholar] [CrossRef]
- Qin, Y.; Wang, L.; Yu, M.; Meng, X.; Fan, Y.; Huang, Z.; Luo, E.; Pijanowski, B. The spatio-temporal evolution and transformation mode of human settlement quality from the perspective of “production-living-ecological” spaces—A case study of Jilin Province. Habitat Int. 2024, 145, 103021. [Google Scholar] [CrossRef]
- Long, H.; Ma, L.; Zhang, Y.; Qu, L. Multifunctional rural development in China: Pattern, process and mechanism. Habitat Int. 2022, 121, 102530. [Google Scholar] [CrossRef]
- Liu, F.; Wang, C.; Luo, M.; Zhou, S.; Liu, C. An investigation of the coupling coordination of a regional agricultural economics-ecology-society composite based on a data-driven approach. Ecol. Indic. 2022, 143, 109363. [Google Scholar] [CrossRef]
- Wang, X.; Liu, Y.; Shao, Y.; Li, S. Evolution pattern and mechanism of rural areal functions in Xi’an metropolitan area, China. Habitat Int. 2024, 148, 103088. [Google Scholar] [CrossRef]
- Xiong, K.N.; Li, P.; Zhou, Z.F.; An, Y.L.; Lyu, T.; Lan, A.J. The Typical Study on RS-GIS of Karst Desertification with a Special Reference to Guizhou Province, 3rd ed.; Geology Press: Beijing, China, 2002; pp. 97–98. [Google Scholar]
- Li, S.L.; Liu, C.Q.; Chen, J.A.; Wang, S.J. Karst ecosystem and environment: Characteristics, evolution processes, and sustainable development. Agric. Ecosyst. Environ. 2021, 306, 107–173. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, C.; Chen, H.; Yue, Y.; Zhang, W.; Zhang, M.; Qi, X.; Fu, Z. Karst landscapes of China: Patterns, ecosystem processes and services. Landsc. Ecol. 2019, 34, 2743–2763. [Google Scholar] [CrossRef]
- Ingutia, R.; Rezitis, A.; Sumelius, J. Child poverty, status of rural women and education in sub–Saharan Africa. Child. Youth Serv. Rev. 2020, 111, 104869. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, C. Quality evaluation and division of regional types of rural human settlements in China. Habitat Int. 2020, 105, 102278. [Google Scholar] [CrossRef]
- Wang, C.; Tang, L. Spatio-temporal characteristics and evolution of rural production living-ecological space function coupling coordination in Chongqing Municipality. Geogr. Res. 2018, 37, 1100–1114. [Google Scholar]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Zou, L.; Liu, Y.; Yang, J.; Yang, S.; Wang, Y.; Cao, Z.; Hu, X. Quantitative identification and spatial analysis of land use ecological-production-living functions in rural areas on China’s southeast coast. Habitat Int. 2020, 100, 102182. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Chen, Y. Territorial multifunctionality evaluation and decision making mechanism at county scale in China. Acta Geogr. Sin. 2011, 66, 1379–1389. [Google Scholar]
- Xu, X.; Liu, J.; Zhang, S.; Zhang, S.; Li, R.; Yan, C.; Wu, S. China Multi-Period Land Use Remote Sensing Monitoring Dataset (CNLUCC). Resource and Environmental Science Data Registration and Publishing System. 2018. Available online: http://www.resdc.cn (accessed on 1 April 2023).
- Yang, L.; Li, Y.; Yu, L.; Chen, M.; Zhang, Y.; Ren, X. Characteristics of bare rocky land evolution in karst mountain areas of Southwest China based on socio-ecological system perspectives: The case study of Huajiang Canyon. Catena 2024, 242, 108–139. [Google Scholar] [CrossRef]
- Wang, K.; Yue, Y.; Ma, Z.; Lei, T.; Li, D.; Song, T. Research and demonstration on technologies for rocky desertification treatment and ecosystem services enhancement in karst peak cluster depression regions. Acta Ecol. Sin. 2016, 36, 7098–7102. [Google Scholar]
- Xiao, J.; Xiong, K.N. A review of agroforestry ecosystem services and its enlightenment on the ecosystem improvement of rocky desertification control. Sci. Total Environ. 2022, 856, 158538. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Li, Y.; Yu, L.; Chen, M.; Yu, M.; Zhang, Y. Theory and case of land use transition promoting ecological restoration in karst mountain areas of Southwest China. Ecol. Indic. 2024, 158, 111393. [Google Scholar] [CrossRef]
- Liu, Y. Household livelihood choices under the different eco-environment in the karst area: A case study of Anshun City, southwest of China. Environ. Res. 2021, 197, 111171. [Google Scholar] [CrossRef]
- Qin, X.; Li, Y.; Lu, Z.; Pan, W. What makes better village economic development in traditional agricultural areas of China? Evidence from 338 villages. Habitat Int. 2020, 106, 102286. [Google Scholar] [CrossRef]
- Hu, X.; Li, H.; Zhang, X.; Chen, X.; Yuan, Y. Multi-dimensionality and the totality of rural spatial restructuring from the perspective of the rural space system: A case study of traditional villages in the ancient huizhou region, China. Habitat Int. 2019, 94, 102062. [Google Scholar] [CrossRef]
- Li, Y.; Wu, W.; Liu, Y. Land consolidation for rural sustainability in China: Practical reflections and policy implications. Land Use Policy 2018, 74, 137–141. [Google Scholar] [CrossRef]
- Fu, B.J. Coupling human and natural systems for sustainable development. Natl. Sci. Rev. 2023, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Tedesco, A.M.; López-Cubillos, S.; Chazdon, R.; Rhodes, J.R.; Archibald, C.L.; Pérez-Hämmerle, K.V.; Brancalion, P.H.S.; Wilson, K.A.; Oliveira, M.; Correa, D.F.; et al. Beyond ecology: Ecosystem restoration as a process for social-ecological transformation. Trends Ecol. Evol. 2023, 38, 643–653. [Google Scholar] [CrossRef] [PubMed]
Target Layer | Indicator Layer | Indicator Description | Indicator Unit | Weighting |
---|---|---|---|---|
Ecological function | Proportion of forest and grassland | Forest and grassland area/total county area | % | 0.4487 |
Proportion of slope farmland | Slope farmland (>25°) area/total farmland area | % | 0.3326 | |
Fertilizer input intensity | Fertilizer input/total county population | kg/person | 0.3187 | |
Production function | Per capita agricultural production land area | Total area of cultivated land and garden land/total county population | mu/person | 0.2272 |
Per capita grain output | Total annual grain output of the county/total county population | ton/10,000 person | 0.2632 | |
GDP contribution ratio of secondary and tertiary industries | Combined output value of the secondary and tertiary industries and the county’s total GDP | % | 0.2691 | |
Number of non-agricultural employed persons in rural areas | Rural non-agricultural employment Population/total rural employees | % | 0.2405 | |
Social function | Per capital net income of residents | Average disposable income available to each individual within a county after deducting taxes, fees, and other costs | CNY/person | 0.2253 |
Per capital rural housing land area | Total area of rural housing land/total rural population | m2/person | 0.1784 | |
Number of students in primary schools | Total number of primary school students | person | 0.1782 | |
Number of beds in health institutions per 10,000 people | Number of beds in health institutions/10,000 people | bed/10,000 people | 0.1650 | |
Per capital social investment | Social fixed assets investment/total county population | CNY/person | 0.2531 |
Primary Types | Secondary Types | Code |
---|---|---|
Lagged development type (A) | Lagged development (A) | 000 |
Single function type (B) | Ecological-oriented (B-1) | 100 |
Production-oriented (B-2) | 010 | |
Social-oriented (B-3) | 001 | |
Compound function type (C) | Ecological–production (C-1) | 110 |
Ecological–social (C-2) | 101 | |
Production–social (C-3) | 011 | |
Comprehensive function type (D) | Production–social–ecological (D) | 111 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, R.; Xiong, K.; Lan, A.; Chen, Q.; Liu, Z.; Feng, F.; Yu, N. Changes in Ecological–Production–Social Functions in Karst Areas: Insight from Guizhou Province, South China Karst. Land 2025, 14, 209. https://doi.org/10.3390/land14020209
Zhao R, Xiong K, Lan A, Chen Q, Liu Z, Feng F, Yu N. Changes in Ecological–Production–Social Functions in Karst Areas: Insight from Guizhou Province, South China Karst. Land. 2025; 14(2):209. https://doi.org/10.3390/land14020209
Chicago/Turabian StyleZhao, Rong, Kangning Xiong, Anjun Lan, Qiwei Chen, Zhaojun Liu, Fangli Feng, and Nana Yu. 2025. "Changes in Ecological–Production–Social Functions in Karst Areas: Insight from Guizhou Province, South China Karst" Land 14, no. 2: 209. https://doi.org/10.3390/land14020209
APA StyleZhao, R., Xiong, K., Lan, A., Chen, Q., Liu, Z., Feng, F., & Yu, N. (2025). Changes in Ecological–Production–Social Functions in Karst Areas: Insight from Guizhou Province, South China Karst. Land, 14(2), 209. https://doi.org/10.3390/land14020209