Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (208)

Search Parameters:
Keywords = Kalman gain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3701 KB  
Article
Real-Time Sensorless Speed Control of PMSMs Using a Runge–Kutta Extended Kalman Filter
by Adile Akpunar Bozkurt
Mathematics 2026, 14(2), 274; https://doi.org/10.3390/math14020274 - 12 Jan 2026
Viewed by 231
Abstract
Permanent magnet synchronous motors (PMSMs) are widely preferred in modern applications due to their high efficiency, high torque-to-inertia ratio, high power factor, and rapid dynamic response. Achieving optimal PMSM performance requires precise control, which depends on accurate estimation of motor speed and rotor [...] Read more.
Permanent magnet synchronous motors (PMSMs) are widely preferred in modern applications due to their high efficiency, high torque-to-inertia ratio, high power factor, and rapid dynamic response. Achieving optimal PMSM performance requires precise control, which depends on accurate estimation of motor speed and rotor position. This information is traditionally obtained through sensors such as encoders; however, these devices increase system cost and introduce size and integration constraints, limiting their use in many PMSM-based applications. To overcome these limitations, sensorless control strategies have gained significant attention. Since PMSMs inherently exhibit nonlinear dynamic behavior, accurate modeling of these nonlinearities is essential for reliable sensorless operation. In this study, a Runge–Kutta Extended Kalman Filter (RKEKF) approach is developed and implemented to enhance estimation accuracy for both rotor position and speed. The developed method utilizes the applied stator voltages and measured phase currents to estimate the motor states. Experimental validation was conducted on the dSPACE DS1104 platform under various operating conditions, including forward and reverse rotation, acceleration, low- and high-speed operation, and loaded operation. Furthermore, the performance of the developed RKEKF under load was compared with the conventional Extended Kalman Filter (EKF), demonstrating its improved estimation capability. The real-time feasibility of the developed RKEKF was experimentally verified through execution-time measurements on the dSPACE DS1104 platform, where the conventional EKF and the RKEKF required 47 µs and 55 µs, respectively, confirming that the proposed approach remains suitable for real-time PMSM control while accommodating the additional computational effort associated with Runge–Kutta integration. Full article
(This article belongs to the Special Issue Nonlinear Dynamical Systems: Modeling, Control and Applications)
Show Figures

Figure 1

19 pages, 7461 KB  
Article
Walking Dynamics, User Variability, and Window Size Effects in FGO-Based Smartphone PDR+GNSS Fusion
by Amjad Hussain Magsi and Luis Enrique Díez
Sensors 2026, 26(2), 431; https://doi.org/10.3390/s26020431 - 9 Jan 2026
Viewed by 142
Abstract
The performance of smartphone-based pedestrian positioning strongly depends on the GNSS signal quality, the motion dynamics that influence PDR accuracy, and the way both sources of information are fused. While recent studies have shown the benefits of Factor Graph Optimization (FGO) for Pedestrian [...] Read more.
The performance of smartphone-based pedestrian positioning strongly depends on the GNSS signal quality, the motion dynamics that influence PDR accuracy, and the way both sources of information are fused. While recent studies have shown the benefits of Factor Graph Optimization (FGO) for Pedestrian Dead Reckoning (PDR) Global Navigation Satellite Systems (GNSS) fusion, the interaction between human motion, PDR errors, and FGO window configuration has not been systematically examined. This work investigates how walking dynamics affect the optimal configuration of sliding-window FGO, and to what extent FGO mitigates motion-dependent PDR errors compared with the Kalman Filter (KF). Using data collected from ten pedestrians performing four motion types (slow walking, normal walking, jogging, and running), we analyze: (1) the relationship between walking speed and the FGO window size required to achieve stable positioning accuracy, and (2) the ability of FGO to suppress PDR outliers arising from motion irregularities across different users. The results show that a window size of around 10 poses offers the best overall balance between accuracy and computational load, providing substantial improvement over SWFGO with a 1-pose window and approaching the accuracy of batch FGO at a fraction of its cost. Increasing the window further to 30 poses yields only marginal accuracy gains while increasing computation, and this trend is consistent across all motion types. Additionally, FGO and SWFGO reduce PDR-induced outliers more effectively than KF across all users and motions, demonstrating improved robustness under gait variability and transient disturbances. Full article
(This article belongs to the Special Issue Smart Sensor Systems for Positioning and Navigation)
Show Figures

Figure 1

33 pages, 5065 KB  
Article
Delay-Compensated EKF and Adaptive Delay Threshold Weighting for AUV–MDS Docking
by Han Yan and Shuxue Yan
J. Mar. Sci. Eng. 2026, 14(1), 86; https://doi.org/10.3390/jmse14010086 - 1 Jan 2026
Viewed by 280
Abstract
This study tackles real-time state estimation for autonomous underwater vehicle (AUV)–mobile docking station (MDS) cooperation over low-bandwidth, high-latency, jitter-dominated acoustic links, with the goal of turning delayed/out-of-sequence measurements (OOSM) into consistent and informative constraints without sacrificing online operation. We propose an integrated scheme [...] Read more.
This study tackles real-time state estimation for autonomous underwater vehicle (AUV)–mobile docking station (MDS) cooperation over low-bandwidth, high-latency, jitter-dominated acoustic links, with the goal of turning delayed/out-of-sequence measurements (OOSM) into consistent and informative constraints without sacrificing online operation. We propose an integrated scheme centered on a delay-compensated extended Kalman filter (DC-EKF): a ring buffer enables backward updates and forward replay so that OOSM are absorbed strictly at their physical timestamps; a data-driven delay threshold is learned from “effective information gain” combined with normalized estimation error squared (NEES) filtering; and dynamic confidence, derived from innovation statistics, delay, and signal-to-noise ratio (SNR) proxies, scales the measurement noise to adapt fusion weights. Simulations show the learned delay threshold converges to about 6.4 s (final 6.35 s), error spikes are suppressed, and the overall position root-mean-square error (RMSE) is 5.751 m; across the full data stream, 1067 station measurements were accepted and 30 rejected, and the fusion weights shifted smoothly from inertial measurement unit (IMU)-dominant to station-dominant (≈0.16/0.84) over time. On this basis, a cooperative augmented EKF (Co-Aug-EKF) is added as a lightweight upper layer for unified-frame cooperative estimation, further improving relative consistency. The results indicate that the framework reliably maps delayed acoustic measurements into closed-loop useful information, significantly enhancing estimator stability and docking readiness, while remaining practical to deploy and readily extensible. Full article
Show Figures

Figure 1

14 pages, 1926 KB  
Article
Adaptive Kalman Filter-Based UWB Location Tracking with Optimized DS-TWR in Workshop Non-Line-of-Sight Environments
by Jian Wu, Yijing Xiong, Wenyang Li and Wenwei Xia
Sensors 2025, 25(24), 7682; https://doi.org/10.3390/s25247682 - 18 Dec 2025
Viewed by 511
Abstract
At the current stage, indoor Ultra-Wideband (UWB) positioning systems often encounter challenges in achieving high localization accuracy under non-line-of-sight (NLOS) conditions within workshop environments when employing the Double-Sided Two-Way Ranging (DS-TWR) algorithm. To address this issue, a positioning optimization method based on the [...] Read more.
At the current stage, indoor Ultra-Wideband (UWB) positioning systems often encounter challenges in achieving high localization accuracy under non-line-of-sight (NLOS) conditions within workshop environments when employing the Double-Sided Two-Way Ranging (DS-TWR) algorithm. To address this issue, a positioning optimization method based on the DS-TWR algorithm is proposed. By streamlining message exchanges between nodes, the method reduces node energy consumption and shortens ranging time, thereby enhancing system energy efficiency and response speed. Furthermore, to improve positioning accuracy in workshop NLOS environments, an Adaptive Kalman Filtering algorithm is introduced. This algorithm dynamically evaluates the influence of obstruction information caused by NLOS conditions on the covariance of observation noise and adaptively adjusts the filtering gain of the signals accordingly. Through this approach, the system can effectively eliminate invalid positioning information in signals, mitigate the adverse effects of NLOS conditions on positioning accuracy and achieve more precise localization. Experimental results demonstrate that the proposed optimization algorithm achieves substantial performance improvements in both static and dynamic positioning experiments under workshop NLOS conditions. Specifically, the algorithm not only enhances system positioning accuracy but also further strengthens the real-time ranging precision of the DS-TWR algorithm. Full article
(This article belongs to the Special Issue Intelligent Maintenance and Fault Diagnosis of Mobility Equipment)
Show Figures

Figure 1

28 pages, 5821 KB  
Article
Four-Wheel Steering Control for Mining X-by-Wire Chassis Based on AUKF State Estimation
by Qiang Ji, Yueqi Bi, Mingrui Hao, Jiaran Li and Long Chen
World Electr. Veh. J. 2025, 16(12), 677; https://doi.org/10.3390/wevj16120677 - 17 Dec 2025
Viewed by 256
Abstract
To address the challenges to driving stability caused by large-curvature steering of wire-controlled mining vehicles in narrow tunnels, a fused four-wheel steering (4WS) control strategy based on real-time estimation of vehicle state parameters is proposed. A comprehensive longitudinal–lateral–yaw dynamics model for 4WS is [...] Read more.
To address the challenges to driving stability caused by large-curvature steering of wire-controlled mining vehicles in narrow tunnels, a fused four-wheel steering (4WS) control strategy based on real-time estimation of vehicle state parameters is proposed. A comprehensive longitudinal–lateral–yaw dynamics model for 4WS is established, and a comparative study is conducted on three control methods: proportional feedforward control, yaw rate feedback control, and fused control. Expressions for steady-state yaw rate gain under different control modes are derived, and the stability differences in 4WS characteristics among these strategies are thoroughly analyzed. To overcome the difficulty in directly acquiring state information for chassis steering control, a vehicle state parameter estimator based on the unscented Kalman filter (UKF) is designed. To enhance the robustness to noise and computational real-time performance of vehicle state estimation in complex environments, a method for real-time estimation of noise covariance matrices using innovative sequences is adopted, improving the estimation accuracy of the algorithm. To validate the effectiveness of the control strategies, a co-simulation platform integrating Carsim and Matlab/Simulink is developed to simulate the performance of the three 4WS control methods under step steering and sinusoidal steering input conditions. The results show that, under low-speed conditions, 4WS strategies increase the yaw rate by approximately 50% and reduce the turning radius by over 45%, significantly enhancing steering maneuverability. Under medium-high speed conditions, 4WS strategies decrease the yaw rate by up to 68% and increase the turning radius by 17–29%, effectively suppressing oversteering tendencies to comprehensively improve stability, with the integrated control strategy demonstrating the best performance. Under both test conditions, the fused feedforward and feedback control strategy reduces the steady-state yaw rate by approximately 12.7% and 48.7%, respectively, compared to other control strategies, demonstrating superior stability. Full article
Show Figures

Figure 1

19 pages, 2964 KB  
Article
Towards Occlusion-Aware Multi-Pedestrian Tracking
by Hechuang Wang, Tong Chen and Yifan Wang
Appl. Sci. 2025, 15(24), 13045; https://doi.org/10.3390/app152413045 - 11 Dec 2025
Viewed by 547
Abstract
Achieving robust multi-object tracking in complex real-world scenarios remains a challenging task. Existing approaches often struggle to effectively handle occlusion, primarily because occlusion can result in unreliable appearance features, inaccurate motion estimation, and biased association cues. To address these challenges, this study proposes [...] Read more.
Achieving robust multi-object tracking in complex real-world scenarios remains a challenging task. Existing approaches often struggle to effectively handle occlusion, primarily because occlusion can result in unreliable appearance features, inaccurate motion estimation, and biased association cues. To address these challenges, this study proposes OATrack, a pedestrian multi-object tracking framework with explicit occlusion awareness. First, an occlusion perception module is introduced to estimate the occlusion rate and provide it as input for subsequent components. Subsequently, the Kalman Filter’s innovation gain is adaptively suppressed according to the target’s occlusion level, and association cues are assigned adaptive weights based on occlusion severity. Experimental results on the MOT17 benchmark dataset demonstrate that the proposed method achieves state-of-the-art performance in key tracking metrics. Specifically, on the MOT17 test set, the method achieves an IDF1 score of 80.6% and a HOTA score of 65.3%. On the MOT20 test set, it attains an IDF1 of 77.8% and a HOTA of 63.6%. The proposed algorithm offers an effective solution for multi-object tracking in environments characterized by frequent and complex occlusions. Full article
Show Figures

Figure 1

21 pages, 2192 KB  
Article
Development, Implementation and Experimental Assessment of Path-Following Controllers on a 1:5 Scale Vehicle Testbed
by Luca Biondo, Angelo Domenico Vella and Alessandro Vigliani
Machines 2025, 13(12), 1116; https://doi.org/10.3390/machines13121116 - 3 Dec 2025
Viewed by 483
Abstract
The development of control strategies for autonomous vehicles requires a reliable and cost-effective validation approach. In this context, testbeds enabling repeatable experiments under controlled conditions are gaining relevance. Scaled vehicles have proven to be a valuable alternative to full-scale or simulation-based testing, enabling [...] Read more.
The development of control strategies for autonomous vehicles requires a reliable and cost-effective validation approach. In this context, testbeds enabling repeatable experiments under controlled conditions are gaining relevance. Scaled vehicles have proven to be a valuable alternative to full-scale or simulation-based testing, enabling experimental validation while reducing costs and risks. This work presents a 1:5 scale modular vehicle platform, derived from a commercial Radio-Controlled (RC) vehicle and adapted as experimental testbed for control strategy validation and vehicle dynamics studies. The vehicle features an electric powertrain, operated through a Speedgoat Baseline Real-Time Target Machine (SBRTM). The hardware architecture includes a high-performance Inertial Measurement Unit (IMU) with embedded Global Navigation Satellite System (GNSS). An Extended Kalman Filter (EKF) is implemented to enhance positioning accuracy by fusing inertial and GNSS data, providing reliable estimates of the vehicle position, velocity, and orientation. Two path-following algorithms, i.e., Stanley Controller (SC) and the Linear Quadratic Regulator (LQR), are designed and integrated. Outdoor experimental tests enable the evaluation of tracking accuracy and robustness. The results demonstrate that the proposed scaled testbed constitutes a reliable and flexible platform for benchmarking autonomous vehicle controllers and enabling experimental testing. Full article
Show Figures

Figure 1

25 pages, 1326 KB  
Article
KOSLM: A Kalman-Optimal Hybrid State-Space Memory Network for Long-Term Time Series Forecasting
by Xin Tan, Lei Wang, Mingwei Wang and Ying Zhang
Appl. Sci. 2025, 15(23), 12684; https://doi.org/10.3390/app152312684 - 29 Nov 2025
Viewed by 666
Abstract
Long-term time series forecasting (LTSF) remains challenging, as models must capture long-range dependencies and remain robust to noise accumulation. Traditional recurrent models, such as Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM), often suffer from instability and information degradation over extended horizons. [...] Read more.
Long-term time series forecasting (LTSF) remains challenging, as models must capture long-range dependencies and remain robust to noise accumulation. Traditional recurrent models, such as Recurrent Neural Networks (RNNs) and Long Short-Term Memory (LSTM), often suffer from instability and information degradation over extended horizons. The state-of-the-art method xLSTMTime improves memory retention through exponential gating and enhanced memory-transition rules, but it still lacks principled guidance. To address these issues, we propose the Kalman-Optimal Selective Long-Term Memory (KOSLM) model, which embeds a Kalman-optimal selective mechanism driven by the innovation signal within a structured state-space reformulation of LSTM. KOSLM dynamically regulates information propagation and forgetting to minimize state estimation uncertainty, providing both theoretical interpretability and practical efficiency. Extensive experiments across energy, finance, traffic, healthcare, and meteorology datasets show that KOSLM reduces mean squared error (MSE) by 14.3–38.9% compared with state-of-the-art methods, with larger gains at longer horizons. The model is lightweight, scalable, and achieves up to 2.5× speedup over Mamba-2. Beyond benchmarks, KOSLM is further validated on real-world Secondary Surveillance Radar (SSR) tracking under noisy and irregular sampling, demonstrating robust and generalizable long-term forecasting performance. Full article
(This article belongs to the Special Issue Advanced Methods for Time Series Forecasting)
Show Figures

Figure 1

26 pages, 496 KB  
Article
Simultaneous State and Parameter Estimation Methods Based on Kalman Filters and Luenberger Observers: A Tutorial & Review
by Amal Chebbi, Matthew A. Franchek and Karolos Grigoriadis
Sensors 2025, 25(22), 7043; https://doi.org/10.3390/s25227043 - 18 Nov 2025
Cited by 1 | Viewed by 1319
Abstract
Simultaneous state and parameter estimation is essential for control system design and dynamic modeling of physical systems. This capability provides critical real-time insight into system behavior, supports the discovery of underlying mechanisms, and facilitates adaptive control strategies. Surveyed in this review paper are [...] Read more.
Simultaneous state and parameter estimation is essential for control system design and dynamic modeling of physical systems. This capability provides critical real-time insight into system behavior, supports the discovery of underlying mechanisms, and facilitates adaptive control strategies. Surveyed in this review paper are two classes of state and parameter estimation methods: Kalman Filters and Luenberger Observers. The Kalman Filter framework, including its major variants such as the Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF), Cubature Kalman Filter (CKF), and Ensemble Kalman Filter (EnKF), has been widely applied for joint and dual estimation in linear and nonlinear systems under uncertainty. In parallel, Luenberger observers, typically used in deterministic settings, offer alternative approaches through high-gain, sliding mode, and adaptive observer structures. This review focuses on the theoretical foundations, algorithmic developments, and application domains of these methods and provides a comparative analysis of their advantages, limitations, and practical relevance across diverse engineering scenarios. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

3054 KB  
Proceeding Paper
SOC Estimation-Based Battery Management System for Electric Bicycles: Design and Implementation
by Pranid Reddy, Bhanu Pratap Soni and Satyanand Singh
Eng. Proc. 2025, 118(1), 76; https://doi.org/10.3390/ECSA-12-26513 - 7 Nov 2025
Viewed by 273
Abstract
Electric bicycles (E-Bikes) are gaining popularity as a sustainable mode of transportation due to their energy efficiency and zero-emission operation. However, challenges such as battery overcharging, overheating, and degradation from improper use can reduce battery lifespan and increase maintenance costs. To address these [...] Read more.
Electric bicycles (E-Bikes) are gaining popularity as a sustainable mode of transportation due to their energy efficiency and zero-emission operation. However, challenges such as battery overcharging, overheating, and degradation from improper use can reduce battery lifespan and increase maintenance costs. To address these issues, this paper presents the design and implementation of a Battery Management System (BMS) tailored for E-Bike applications, with a focus on enhancing safety, reliability, and performance. The proposed BMS includes core functionalities such as State of Charge (SOC) estimation, temperature monitoring, and under-voltage and overcharge protection. Different approaches, including open-circuit voltage (OCV), Coulomb counting (CC), and Kalman filter techniques are employed to improve SOC estimation accuracy. The circuit for CC-based BMS was first simulated using Proteus, and system behavior was modeled in MATLAB Simulink is used to validate design assumptions before hardware implementation. An Arduino Uno microcontroller was used to control the system, interfacing with an LM35 temperature sensor, a voltage divider, and an ACS712 current sensor. The BMS controls battery charging based on SOC levels and activates a cooling fan when the battery temperature exceeds 45 °C. It disconnects the charger at 100% SOC and triggers a beep alarm when the SOC falls below 40%. An external charger and regenerative charging from four electrodynamometers on the bicycle chain recharge the battery when the SOC drops below 20%, provided the load is disconnected. Measurement results closely matched simulation data, with the MATLAB model showing 44% SOC after 3 h, compared to the actual real-time 45.85%. The system accurately tracked charging/discharging patterns, validating its effectiveness. This compact and cost-effective BMS design ensures safe operation, improves battery longevity, and supports broader adoption of E-Bikes as an eco-friendly transportation solution. Full article
Show Figures

Figure 1

28 pages, 16333 KB  
Article
Autonomous Navigation Control and Collision Avoidance Decision-Making of an Under-Actuated ASV Based on Deep Reinforcement Learning
by Yiting Wang, Zhiyao Li, Lei Wang and Xuefeng Wang
J. Mar. Sci. Eng. 2025, 13(11), 2108; https://doi.org/10.3390/jmse13112108 - 6 Nov 2025
Viewed by 941
Abstract
For efficient and safe navigation for an autonomous surface vehicle (ASV), this paper proposes an autonomous navigation behavior framework that integrates deep reinforcement learning (DRL) to achieve autonomous decision-making and low-level control actions in path following and collision avoidance. By controlling both the [...] Read more.
For efficient and safe navigation for an autonomous surface vehicle (ASV), this paper proposes an autonomous navigation behavior framework that integrates deep reinforcement learning (DRL) to achieve autonomous decision-making and low-level control actions in path following and collision avoidance. By controlling both the propeller speed and the rudder angle, the policy of each behavior pattern is trained with the soft actor–critic (SAC) algorithm. Moreover, a dynamic obstacle trajectory predictor based on the Kalman filter and the long short-term memory module is developed for obstacle avoidance. Simulations and physical experiments using an under-actuated very large crude carrier (VLCC) model indicate that our DRL-based method produces appreciable performance gains in ASV autonomous navigation under environmental disturbances, which enables forecasting of the expected state of a vessel over a future time and improves the operational efficiency of the navigation process. Full article
(This article belongs to the Special Issue Advanced Control Strategies for Autonomous Maritime Systems)
Show Figures

Figure 1

20 pages, 1508 KB  
Article
Outlier-Robust Convergence of Integer- and Fractional-Order Difference Operators in Fuzzy-Paranormed Spaces: Diagnostics and Engineering Applications
by Muhammed Recai Türkmen
Fractal Fract. 2025, 9(10), 667; https://doi.org/10.3390/fractalfract9100667 - 16 Oct 2025
Cited by 1 | Viewed by 510
Abstract
We develop a convergence framework for Grünwald–Letnikov (GL) fractional and classical integer difference operators acting on sequences in fuzzy-paranormed (fp) spaces, motivated by data that are imprecise and contain sporadic outliers. Fuzzy paranorms provide a resolution-dependent notion of proximity, while statistical and lacunary [...] Read more.
We develop a convergence framework for Grünwald–Letnikov (GL) fractional and classical integer difference operators acting on sequences in fuzzy-paranormed (fp) spaces, motivated by data that are imprecise and contain sporadic outliers. Fuzzy paranorms provide a resolution-dependent notion of proximity, while statistical and lacunary statistical convergence downweight sparse deviations by natural density; together, they yield robust criteria for difference-filtered signals. Within this setting, we establish uniqueness of fp–Δm statistical limits; an equivalence between fp-statistical convergence of Δm (and its GL extension Δα) and fp-strong p-Cesàro summability; an equivalence between lacunary fp-Δm statistical convergence and blockwise strong p-Cesàro summability; and a density-based decomposition into a classically convergent part plus an fp-null remainder. We also show that GL binomial weights act as an 1 convolution, ensuring continuity of Δα in the fp topology, and that nabla/delta forms are transferred by the discrete Q–operator. The usefulness of the criteria is illustrated on simple engineering-style examples (e.g., relaxation with memory, damped oscillations with bursts), where the fp-Cesàro decay of difference residuals serves as a practical diagnostic for Cesàro compliance. Beyond illustrative mathematics, we report engineering-style diagnostics where the fuzzy Cesàro residual index correlates with measurable quantities (e.g., vibration amplitude and energy surrogates) under impulsive disturbances and missing data. We also calibrate a global decision threshold τglob via sensitivity analysis across (α,p,m), where mN is the integer difference order, α>0 is the fractional order, and p1 is the Cesàro exponent, and provide quantitative baselines (median/M-estimators, 1 trend filtering, Gaussian Kalman filtering, and an α-stable filtering structure) to show complementary gains under bursty regimes. The results are stated for integer m and lifted to fractional orders α>0 through the same binomial structure and duality. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

16 pages, 12891 KB  
Article
On Improving the Performance of Kalman Filter in Denoising Oil Palm Hyperspectral Data
by Imanurfatiehah Ibrahim, Hamzah Arof, Mohd Izzuddin Anuar and Mohamad Sofian Abu Talip
Agriculture 2025, 15(20), 2149; https://doi.org/10.3390/agriculture15202149 - 15 Oct 2025
Viewed by 688
Abstract
A common drawback of denoising methods of images is that all pixels are filtered regardless of the amount of noise affecting them individually. Since the essence of denoising is lowpass filtering, subjecting clean pixels to denoising results in blurring. In this paper, a [...] Read more.
A common drawback of denoising methods of images is that all pixels are filtered regardless of the amount of noise affecting them individually. Since the essence of denoising is lowpass filtering, subjecting clean pixels to denoising results in blurring. In this paper, a filtering framework is introduced where a fitness function is incorporated in a Kalman filter (KF) to assess the suitability of accepting the value recommended by KF or retaining the existing value of a pixel. Furthermore, a limit on the number of iterations is imposed to avoid over filtering that leads to shrinkage of pixel value ranges of the channels and loss of spectral signatures. In post processing, the means of the filtered channels are shifted to their original values prior to filtering, to spread the pixel value ranges and regain important spectral signatures. The experiments involve the implementation of KF, extended Kalman filter (EKF), Kalman smoother (KS), extended Kalman smoother (EKS) and moving average filter (MAF) in filtering noisy channels of oil palm hyperspectral data under the same framework. Their performances are compared in terms of execution time, SNR gain, NIQE and SSIM metrics. In the second set of experiments, the performance of the improved KF with a fitness function and mean restoration is compared to those of KF and MAF. The results show that the improved KF outperforms the other two filters in the spectral signature characteristics and pixel value ranges of the denoised channels. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

22 pages, 1799 KB  
Article
A Novel Hybrid Deep Learning–Probabilistic Framework for Real-Time Crash Detection from Monocular Traffic Video
by Reşat Buğra Erkartal and Atınç Yılmaz
Appl. Sci. 2025, 15(19), 10523; https://doi.org/10.3390/app151910523 - 29 Sep 2025
Viewed by 3385
Abstract
The rapid evolution of autonomous vehicle technologies has amplified the need for crash detection that operates robustly under complex traffic conditions with minimal latency. We propose a hybrid temporal hierarchy that augments a Region-based Convolutional Neural Network (R-CNN) with an adaptive time-variant Kalman [...] Read more.
The rapid evolution of autonomous vehicle technologies has amplified the need for crash detection that operates robustly under complex traffic conditions with minimal latency. We propose a hybrid temporal hierarchy that augments a Region-based Convolutional Neural Network (R-CNN) with an adaptive time-variant Kalman filter (with total-variation prior), a Hidden Markov Model (HMM) for state stabilization, and a lightweight Artificial Neural Network (ANN) for learned temporal refinement, enabling real-time crash detection from monocular video. Evaluated on simulated traffic in CARLA and real-world driving in Istanbul, the full temporal stack achieves the best precision–recall balance, yielding 83.47% F1 offline and 82.57% in real time (corresponding to 94.5% and 91.2% detection accuracy, respectively). Ablations are consistent and interpretable: removing the HMM reduces F1 by 1.85–2.16 percentage points (pp), whereas removing the ANN has a larger impact of 2.94–4.58 pp, indicating that the ANN provides the largest marginal gains—especially under real-time constraints. The transition from offline to real time incurs a modest overall loss (−0.90 pp F1), driven more by recall than precision. Compared to strong single-frame baselines, YOLOv10 attains 82.16% F1 and a real-time Transformer detector reaches 82.41% F1, while our full temporal stack remains slightly ahead in real time and offers a more favorable precision–recall trade-off. Notably, integrating the ANN into the HMM-based pipeline improves accuracy by 2.2%, while the time-variant Kalman configuration reduces detection lag by approximately 0.5 s—an improvement that directly addresses the human reaction time gap. Under identical conditions, the best RCNN-based configuration yields AP@0.50 ≈ 0.79 with an end-to-end latency of 119 ± 21 ms per frame (~8–9 FPS). Overall, coupling deep learning with probabilistic reasoning yields additive temporal benefits and advances deployable, camera-only crash detection that is cost-efficient and scalable for intelligent transportation systems. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

23 pages, 7271 KB  
Article
A Hybrid ASW-UKF-TRF Algorithm for Efficient Data Classification and Compression in Lithium-Ion Battery Management Systems
by Bowen Huang, Xueyuan Xie, Jiangteng Yi, Qian Yu, Yong Xu and Kai Liu
Electronics 2025, 14(19), 3780; https://doi.org/10.3390/electronics14193780 - 24 Sep 2025
Viewed by 619
Abstract
Electrochemical energy storage technology, primarily lithium-ion batteries, has been widely applied in large-scale energy storage systems. However, differences in assembly structures, manufacturing processes, and operating environments introduce parameter inconsistencies among cells within a pack, producing complex, high-volume datasets with redundant and fragmented charge–discharge [...] Read more.
Electrochemical energy storage technology, primarily lithium-ion batteries, has been widely applied in large-scale energy storage systems. However, differences in assembly structures, manufacturing processes, and operating environments introduce parameter inconsistencies among cells within a pack, producing complex, high-volume datasets with redundant and fragmented charge–discharge records that hinder efficient and accurate system monitoring. To address this challenge, we propose a hybrid ASW-UKF-TRF framework for the classification and compression of battery data collected from energy storage power stations. First, an adaptive sliding-window Unscented Kalman Filter (ASW-UKF) performs online data cleaning, imputation, and smoothing to ensure temporal consistency and recover missing/corrupted samples. Second, a temporally aware TRF segments the time series and applies an importance-weighted, multi-level compression that formally prioritizes diagnostically relevant features while compressing low-information segments. The novelty of this work lies in combining deployment-oriented engineering robustness with methodological innovation: the ASW-UKF provides context-aware, online consistency restoration, while the TRF compression formalizes diagnostic value in its retention objective. This hybrid design preserves transient fault signatures that are frequently removed by conventional smoothing or generic compressors, while also bounding computational overhead to enable online deployment. Experiments on real operational station data demonstrate classification accuracy above 95% and an overall data volume reduction in more than 60%, indicating that the proposed pipeline achieves substantial gains in monitoring reliability and storage efficiency compared to standard denoising-plus-generic-compression baselines. The result is a practical, scalable workflow that bridges algorithmic advances and engineering requirements for large-scale battery energy storage monitoring. Full article
Show Figures

Figure 1

Back to TopTop