Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = KIT/RAS/MAPK

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 674 KB  
Article
Molecular Characterization of Seminoma Utilizing the AACR Project GENIE: A Retrospective Observational Study
by Suchit R. Geereddy, Amber Chang, Alma Gallegos, Jonathan Lin, Akaash Surendra, Suraj Puvvadi, Beau Hsia, Abubakar Tauseef, Joseph Thirumalareddy and Akshat Sood
Cancers 2025, 17(20), 3363; https://doi.org/10.3390/cancers17203363 (registering DOI) - 18 Oct 2025
Viewed by 122
Abstract
Background: Seminoma is a malignant germ cell tumor that most commonly involves the testicles but may involve the mediastinum, the retroperitoneum, and other extra-gonadal sites as well. This study aims to investigate the somatic genomic landscape of seminoma. Methods: Data for a retrospective [...] Read more.
Background: Seminoma is a malignant germ cell tumor that most commonly involves the testicles but may involve the mediastinum, the retroperitoneum, and other extra-gonadal sites as well. This study aims to investigate the somatic genomic landscape of seminoma. Methods: Data for a retrospective observational analysis of seminoma was acquired from the American Association for Cancer Research (AACR) Project Genomics Evidence Neoplasia Information Exchange (GENIE) with clinical and genomic data from 2017 and beyond. Using the R and R Studio software (R 4.5.0), analyses for common somatic mutations and copy number alterations were run with a statistical significance of p < 0.05. Results: The most mutated genes included KIT (22.6%), KRAS (17.1%), and MTOR (5.1%), with significant copy number alterations in CDKN1B (17.2%), KRAS (14.7%), CCND2 (10.3%), and H3F3C (9.8%). These suggest involvement within the KIT/RAS/MAPK and PI3K/AKT/mTOR (PAM) pathways for seminoma development. A novel finding within comparative evaluation of PMS1 and AMER1 mutations were found in Black individuals. Additionally, our findings were consistent with a lower testicular cancer rate among individuals with African ancestry than European ancestry. BRD4 mutations were found only in metastatic samples while KMT2C, STAG2, ALK, AXL, and EGFR were only found in primary samples, suggesting a possible association. Conclusions: This study provided a comprehensive molecular and genetic profiling of seminoma including key genetic alterations, affected pathways, and potential therapeutic strategies. Moreover, overlap between pathways and gene mutations provides the potential for alternative treatment options for seminoma via multiple pathways. Full article
(This article belongs to the Section Tumor Microenvironment)
Show Figures

Figure 1

34 pages, 13989 KB  
Article
Treatment-Related Mechanisms of Tibetan Medicine Terminalia chebula (TC) Aqueous Extract Against Mouse Gastroenteritis Caused by Yak-Origin Salmonella Determined Using Intestinal Microbiome Analysis and Metabolomics
by Dengyu Li, Kaiqin Zhang, Xiaofeng Xue, Zhanchun Bai, La Yang, Jingjing Qi and Sizhu Suolang
Animals 2025, 15(5), 755; https://doi.org/10.3390/ani15050755 - 6 Mar 2025
Viewed by 1412
Abstract
This study aimed to evaluate the therapeutic effect of Terminalia chebula (TC) on Tibetan yak-origin Salmonella-induced diarrhea and dysentery in mice. The levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α), anti-inflammatory cytokines (IL-4 and IL-10), and the oxidative stress markers malondialdehyde [...] Read more.
This study aimed to evaluate the therapeutic effect of Terminalia chebula (TC) on Tibetan yak-origin Salmonella-induced diarrhea and dysentery in mice. The levels of pro-inflammatory cytokines (IL-1β, IL-6, IL-8, and TNF-α), anti-inflammatory cytokines (IL-4 and IL-10), and the oxidative stress markers malondialdehyde (MDA), superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC), reduced glutathione (GSH-PX), and catalase (CAT) in the serum of mice were measured using ELISA kits. Using microbial diversity sequencing and non-targeted metabolomics detection techniques, the relevant mechanisms of TC treatment in a mouse Salmonella infection model were evaluated. The results showed the following: TC can effectively reduce the diarrhea rate; alleviate weight loss caused by Salmonella invasion; reduce the pro-inflammatory cytokines IL-1β, IL-6, IL-8, and TNF-α in serum; and increase the concentrations of the anti-inflammatory cytokines IL-4 and IL-10. TC can improve the body’s antioxidant levels to heal the damage caused by oxidative stress and lipid peroxidation. The histological section results show that TC can significantly improve gastric and intestinal tissue lesions and has no toxic effects on the liver and kidneys. 16S rRNA and ITS sequencing analysis suggests that Lactobacillus, Enterorhabdus, Alistipes (bacterial community), Lodderomyces, Saccharomyces, and Penicillium (fungal community) may be key functional microbial communities in TC. Non-targeted metabolomics also suggests that the antibacterial treatment of dysentery with chebulic acid may be related to regulation of the Ras signaling pathway, long-term potentiation, the MAPK signaling pathway, metabolic pathways, and gut microbiome composition. Conclusion: TC has clear clinical efficacy in treating bacterial diarrhea, presenting anti-inflammatory and antioxidant effects. Its roles in regulating the gut microbiome and metabolic pathways and products were determined as the main reason for its therapeutic effect in a mouse gastroenteritis model caused by Salmonella infection. Full article
(This article belongs to the Section Veterinary Clinical Studies)
Show Figures

Figure 1

18 pages, 2132 KB  
Article
Functional Role of Fatty Acid Synthase for Signal Transduction in Core-Binding Factor Acute Myeloid Leukemia with an Activating c-Kit Mutation
by Ruimeng Zhuang, Bente Siebels, Konstantin Hoffer, Anna Worthmann, Stefan Horn, Nikolas Christian Cornelius von Bubnoff, Cyrus Khandanpour, Niklas Gebauer, Sivahari Prasad Gorantla, Hanna Voss, Hartmut Schlüter, Malte Kriegs, Walter Fiedler, Carsten Bokemeyer, Manfred Jücker and Maxim Kebenko
Biomedicines 2025, 13(3), 619; https://doi.org/10.3390/biomedicines13030619 - 3 Mar 2025
Cited by 1 | Viewed by 1411
Abstract
Background/Objectives: Acute myeloid leukemia (AML) is a rare hematological malignancy with a poor prognosis. Activating c-Kit (CD117) mutations occur in 5% of de novo AML and 30% of core-binding factor (CBF) AML, leading to worse clinical outcomes. Posttranslational modifications, particularly with myristic [...] Read more.
Background/Objectives: Acute myeloid leukemia (AML) is a rare hematological malignancy with a poor prognosis. Activating c-Kit (CD117) mutations occur in 5% of de novo AML and 30% of core-binding factor (CBF) AML, leading to worse clinical outcomes. Posttranslational modifications, particularly with myristic and palmitic acid, are crucial for various cellular processes, including membrane organization, signal transduction, and apoptosis regulation. However, most research has focused on solid tumors, with limited understanding of these mechanisms in AML. Fatty acid synthase (FASN), a key palmitoyl-acyltransferase, regulates the subcellular localization, trafficking, and degradation of target proteins, such as H-Ras, N-Ras, and FLT3-ITDmut receptors in AML. Methods: In this study, we investigated the role of FASN in two c-Kit-N822K-mutated AML cell lines using FASN knockdown via shRNA and the FASN inhibitor TVB-3166. Functional implications, including cell proliferation, were assessed through Western blotting, mass spectrometry, and PamGene. Results: FASN inhibition led to an increased phosphorylation of c-Kit (p-c-Kit), Lyn kinase (pLyn), MAP kinase (pMAPK), and S6 kinase (pS6). Furthermore, we observed sustained high expression of Gli1 in Kasumi1 cells following FASN inhibition, which is well known to be mediated by the upregulation of pS6. Conclusions: The combination of TVB-3166 and the Gli inhibitor GANT61 resulted in a significant reduction in the survival of Kasumi1 cells. Full article
Show Figures

Figure 1

16 pages, 1764 KB  
Article
Utility of Clinical Next Generation Sequencing Tests in KIT/PDGFRA/SDH Wild-Type Gastrointestinal Stromal Tumors
by Ryan A. Denu, Cissimol P. Joseph, Elizabeth S. Urquiola, Precious S. Byrd, Richard K. Yang, Ravin Ratan, Maria Alejandra Zarzour, Anthony P. Conley, Dejka M. Araujo, Vinod Ravi, Elise F. Nassif Haddad, Michael S. Nakazawa, Shreyaskumar Patel, Wei-Lien Wang, Alexander J. Lazar and Neeta Somaiah
Cancers 2024, 16(9), 1707; https://doi.org/10.3390/cancers16091707 - 27 Apr 2024
Cited by 6 | Viewed by 4485
Abstract
Objective: The vast majority of gastrointestinal stromal tumors (GISTs) are driven by activating mutations in KIT, PDGFRA, or components of the succinate dehydrogenase (SDH) complex (SDHA, SDHB, SDHC, and SDHD genes). A small fraction of GISTs lack [...] Read more.
Objective: The vast majority of gastrointestinal stromal tumors (GISTs) are driven by activating mutations in KIT, PDGFRA, or components of the succinate dehydrogenase (SDH) complex (SDHA, SDHB, SDHC, and SDHD genes). A small fraction of GISTs lack alterations in KIT, PDGFRA, and SDH. We aimed to further characterize the clinical and genomic characteristics of these so-called “triple-negative” GISTs. Methods: We extracted clinical and genomic data from patients seen at MD Anderson Cancer Center with a diagnosis of GIST and available clinical next generation sequencing data to identify “triple-negative” patients. Results: Of the 20 patients identified, 11 (55.0%) had gastric, 8 (40.0%) had small intestinal, and 1 (5.0%) had rectal primary sites. In total, 18 patients (90.0%) eventually developed recurrent or metastatic disease, and 8 of these presented with de novo metastatic disease. For the 13 patients with evaluable response to imatinib (e.g., neoadjuvant treatment or for recurrent/metastatic disease), the median PFS with imatinib was 4.4 months (range 0.5–191.8 months). Outcomes varied widely, as some patients rapidly developed progressive disease while others had more indolent disease. Regarding potential genomic drivers, four patients were found to have alterations in the RAS/RAF/MAPK pathway: two with a BRAF V600E mutation and two with NF1 loss-of-function (LOF) mutations (one deletion and one splice site mutation). In addition, we identified two with TP53 LOF mutations, one with NTRK3 fusion (ETV6-NTRK3), one with PTEN deletion, one with FGFR1 gain-of-function (GOF) mutation (K654E), one with CHEK2 LOF mutation (T367fs*), one with Aurora kinase A fusion (AURKA-CSTF1), and one with FANCA deletion. Patients had better responses with molecularly targeted therapies than with imatinib. Conclusions: Triple-negative GISTs comprise a diverse cohort with different driver mutations. Compared to KIT/PDGFRA-mutant GIST, limited benefit was observed with imatinib in triple-negative GIST. In depth molecular profiling can be helpful in identifying driver mutations and guiding therapy. Full article
Show Figures

Figure 1

14 pages, 6839 KB  
Article
Anti-Inflammatory Effect of Chamaecyparis obtusa (Siebold & Zucc.) Endl. Leaf Essential Oil
by Sung-Hee Kim, Young-Ah Jang and Yong-Jin Kwon
Molecules 2024, 29(5), 1117; https://doi.org/10.3390/molecules29051117 - 1 Mar 2024
Cited by 5 | Viewed by 2667
Abstract
Chamaecyparis obtusa (Siebold & Zucc.) Endl. (C. obtusa) belongs to the Cupressaceae family and is native to East Asian regions. Essential oils extracted from the leaves, bark, branches, and roots of C. obtusa have both aesthetic and medicinal properties and are [...] Read more.
Chamaecyparis obtusa (Siebold & Zucc.) Endl. (C. obtusa) belongs to the Cupressaceae family and is native to East Asian regions. Essential oils extracted from the leaves, bark, branches, and roots of C. obtusa have both aesthetic and medicinal properties and are thus widely used. However, detailed analyses of the active ingredients of C. obtusa extract are lacking. In this study, the sabinene content in the hydro-distillation of C. obtusa leaf essential oil (COD) was analyzed using GC-MS, and the anti-inflammatory effect of COD was compared with that of pure sabinene. Cell viability was evaluated by MTT assay, and nitric oxide (NO) production was measured using Griess reagent. Relative mRNA and protein levels were analyzed using RT-qPCR and western blot, and secreted cytokines were analyzed using a cytokine array kit. The results showed that both COD and sabinene inhibited the expression of inducible nitric oxide synthase (iNOS) and the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 in lipopolysaccharide (LPS)-induced RAW 264.7 cells. COD and sabinene also reduced the production of pro-inflammatory cytokines interleukin (IL)-1β, IL-6, IL-27, IL-1 receptor antagonist (IL-1ra), and granulocyte-macrophage colony-stimulating factor (GM-CSF). The anti-inflammatory mechanisms of COD and sabinene partially overlap, as COD was shown to inhibit MAPKs and the JAK/STAT axis, and sabinene inhibited MAPKs, thereby preventing LPS-induced macrophage activation. Full article
Show Figures

Figure 1

14 pages, 969 KB  
Review
RAS/Mitogen-Activated Protein Kinase Signaling Pathway in Testicular Germ Cell Tumors
by Angelo Onorato, Eugenia Guida, Ambra Colopi, Susanna Dolci and Paola Grimaldi
Life 2024, 14(3), 327; https://doi.org/10.3390/life14030327 - 29 Feb 2024
Cited by 6 | Viewed by 2323
Abstract
Germ cell tumors (GCTs) are relatively rare tumors. However, they are the most diagnosed malignancies occurring in the testis among men aged between 15 and 40 years. Despite high aneuploidy and a paucity of somatic mutations, several genomic and transcriptomic assays have identified [...] Read more.
Germ cell tumors (GCTs) are relatively rare tumors. However, they are the most diagnosed malignancies occurring in the testis among men aged between 15 and 40 years. Despite high aneuploidy and a paucity of somatic mutations, several genomic and transcriptomic assays have identified a few significantly mutated somatic genes, primarily KIT and K-RAS. The receptor Tyrosine Kinase (RTK) pathway and the downstream related Mitogen-Activated Protein Kinase (MAPK) cascades are crucial signal transduction pathways that preside over various cellular processes, including proliferation, differentiation, apoptosis, and responses to stressors. They are well described in solid malignancies, where many of the involved factors are used as prognostic molecular markers or targets for precision therapy. This narrative review focused, in the first part, on PGCs’ survival/proliferation and differentiation and on the genetic and epigenetic factors involved in the pathogenesis of testicular germ cell tumors (TGCTs) and, in the second part, on the most recent investigations about the KIT-RAS pathway in TGCTs and in other cancers, highlighting the efforts that are being made to identify targetable markers for precision medicine approaches. Full article
(This article belongs to the Section Reproductive and Developmental Biology)
Show Figures

Figure 1

18 pages, 1160 KB  
Article
Targeted Next-Generation Sequencing of Thymic Epithelial Tumours Revealed Pathogenic Variants in KIT, ERBB2, KRAS, and TP53 in 30% of Thymic Carcinomas
by Adam Szpechcinski, Malgorzata Szolkowska, Sebastian Winiarski, Urszula Lechowicz, Piotr Wisniewski and Magdalena Knetki-Wroblewska
Cancers 2022, 14(14), 3388; https://doi.org/10.3390/cancers14143388 - 12 Jul 2022
Cited by 11 | Viewed by 3959
Abstract
A better understanding of the molecular pathogenesis of thymic epithelial tumours (TETs) could revolutionise their treatment. We evaluated thymomas and thymic carcinomas by next-generation sequencing (NGS) of somatic or germline single nucleotide variants (SNVs) in genes commonly mutated in solid tumours. In total, [...] Read more.
A better understanding of the molecular pathogenesis of thymic epithelial tumours (TETs) could revolutionise their treatment. We evaluated thymomas and thymic carcinomas by next-generation sequencing (NGS) of somatic or germline single nucleotide variants (SNVs) in genes commonly mutated in solid tumours. In total, 19 thymomas and 34 thymic carcinomas were analysed for nonsynonymous SNVs in 15 genes by targeted NGS (reference genome: hg19/GRCh37). Ten SNVs in TP53 (G154V, R158P, L194H, R267fs, R273C, R306 *, Q317 *), ERBB2 (V773M), KIT (L576P), and KRAS (Q61L) considered somatic and pathogenic/likely pathogenic were detected in 10 of 34 (29.4%) thymic carcinomas. No somatic SNVs confirmed as pathogenic/likely pathogenic were found in thymomas. Rare SNVs of uncertain or unknown functional and clinical significance, to our knowledge not reported previously in TETs, were found in ERBB2 (S703R), KIT (I690V), and FOXL2 (P157S) in 3 of 19 (16%) thymomas. The most frequent germline SNVs were TP53 P72R (94% TETs), ERBB2 I655V (40% TETs), and KIT M541L (9% TETs). No significant difference in median disease-free survival (DFS) was found between thymic carcinoma patients with and without pathogenic SNVs (p = 0.190); however, a trend toward a longer DFS was observed in the latter (16.0 vs. 30.0 months, respectively). In summary, NGS analysis of TETs revealed several SNVs in genes related to the p53, AKT, MAPK, and K-Ras signalling pathways. Thymic carcinomas showed greater genetic dysregulation than thymomas. The germline and rare SNVs of uncertain clinical significance reported in this study add to the number of known genetic alterations in TETs, thus extending our molecular understanding of these neoplasms. Druggable KIT alterations in thymic carcinomas have potential as therapeutic targets. Full article
(This article belongs to the Special Issue Advances in Thymic Tumors)
Show Figures

Figure 1

14 pages, 4684 KB  
Article
Structural Protein Analysis of Driver Gene Mutations in Conjunctival Melanoma
by Mak B. Djulbegovic, Vladimir N. Uversky, J. William Harbour, Anat Galor and Carol L. Karp
Genes 2021, 12(10), 1625; https://doi.org/10.3390/genes12101625 - 15 Oct 2021
Cited by 11 | Viewed by 2915
Abstract
In recent years, there has been tremendous enthusiasm with respect to detailing the genetic basis of many neoplasms, including conjunctival melanoma (CM). We aim to analyze five proteins associated with CM, namely BRAF, NRAS, c-KIT, NF1, and PTEN. We evaluated each protein for [...] Read more.
In recent years, there has been tremendous enthusiasm with respect to detailing the genetic basis of many neoplasms, including conjunctival melanoma (CM). We aim to analyze five proteins associated with CM, namely BRAF, NRAS, c-KIT, NF1, and PTEN. We evaluated each protein for its intrinsically disordered protein regions (IDPRs) and its protein-protein interactions (PPI) with the Predictor of Natural Disordered Protein Regions (PONDR®) and the Search Tool for the Retrieval of Interacting Genes (STRING®). Our PONDR® analysis found high levels of IDPRs in all five proteins with mutations linked to CM. The highest levels of IDPRs were in BRAF (45.95%), followed by PTEN (31.76%), NF1 (22.19%), c-KIT (21.82%), and NRAS (14.81%). Our STRING analysis found that each of these five proteins had more predicted interactions then expected (p-value < 1.0 × 10−16). Our analysis demonstrates that the mutations linked to CM likely affected IDPRs and possibly altered their highly complex PPIs. Quantifying IDPRs in BRAF, NRAS, c-KIT, NF1, and PTEN and understanding these protein regions are important processes as IDPRs can be possible drug targets for novel targeted therapies for treating CM. Full article
(This article belongs to the Special Issue Genetics and Genomics of Melanoma)
Show Figures

Figure 1

39 pages, 4029 KB  
Review
Molecular Pathology and Targeted Therapies for Personalized Management of Central Nervous System Germinoma
by Cristina Ilcus, Horatiu Silaghi, Carmen Emanuela Georgescu, Carmen Georgiu, Anca Ileana Ciurea, Simona Delia Nicoara and Cristina Alina Silaghi
J. Pers. Med. 2021, 11(7), 661; https://doi.org/10.3390/jpm11070661 - 14 Jul 2021
Cited by 14 | Viewed by 5466
Abstract
Intracranial germinomas are rare tumours, usually affecting male paediatric patients. They frequently develop in the pineal and suprasellar regions, causing endocrinological disturbances, visual deficits, and increased intracranial pressure. The diagnosis is established on magnetic resonance imaging (MRI), serum and cerebrospinal fluid (CSF) markers, [...] Read more.
Intracranial germinomas are rare tumours, usually affecting male paediatric patients. They frequently develop in the pineal and suprasellar regions, causing endocrinological disturbances, visual deficits, and increased intracranial pressure. The diagnosis is established on magnetic resonance imaging (MRI), serum and cerebrospinal fluid (CSF) markers, and tumour stereotactic biopsy. Imaging techniques, such as susceptibility-weighted imaging (SWI), T2* (T2-star) gradient echo (GRE) or arterial spin labelling based perfusion-weighted MRI (ASL-PWI) facilitate the diagnosis. Germinomas are highly radiosensitive tumours, with survival rates >90% in the context of chemoradiotherapy. However, patients with resistant disease have limited therapeutic options and poor survival. The aim of this review is to highlight the genetic, epigenetic, and immunologic features, which could provide the basis for targeted therapy. Intracranial germinomas present genetic and epigenetic alterations (chromosomal aberrations, KIT, MAPK and PI3K pathways mutations, DNA hypomethylation, miRNA dysregulation) that may represent targets for therapy. Tyrosine kinase and mTOR inhibitors warrant further investigation in these cases. Immune markers, PD-1 (programmed cell death protein 1) and PD-L1 (programmed death-ligand 1), are expressed in germinomas, representing potential targets for immune checkpoint inhibitors. Resistant cases should benefit from a personalized management: genetic and immunological testing and enrolment in trials evaluating targeted therapies in intracranial germinomas. Full article
Show Figures

Figure 1

19 pages, 6825 KB  
Article
The Role of miRNAs in Zearalenone-Promotion of TM3 Cell Proliferation
by Wanglong Zheng, Wentong Fan, Nannan Feng, Nanyan Lu, Hui Zou, Jianhong Gu, Yan Yuan, Xuezhong Liu, Jianfa Bai, Jianchun Bian and Zongping Liu
Int. J. Environ. Res. Public Health 2019, 16(9), 1517; https://doi.org/10.3390/ijerph16091517 - 29 Apr 2019
Cited by 15 | Viewed by 3845
Abstract
Zearalenone (ZEA) is a non-steroidal estrogen mycotoxin produced by several Gibberella and Fusarium species. Accumulating evidence has indicated that ZEA strongly stimulates cell proliferation. However the detailed molecular and cellular mechanisms of ZEA-mediated induction of cell proliferation have not yet been completely explained. [...] Read more.
Zearalenone (ZEA) is a non-steroidal estrogen mycotoxin produced by several Gibberella and Fusarium species. Accumulating evidence has indicated that ZEA strongly stimulates cell proliferation. However the detailed molecular and cellular mechanisms of ZEA-mediated induction of cell proliferation have not yet been completely explained. The aim of this study was to detect the role of miRNAs in ZEA-mediated induction of cell proliferation. The effects of ZEA on cell proliferation were assessed using a cell counting kit assay and xCELLigence system. Micro-RNA sequencing was performed after treatment of TM3 cells with ZEA (0.01 μmol/L) for different time periods (0, 2, 6 and 18 h). Cell function and pathway analysis of the miRNA target genes were performed by Ingenuity Pathway Analysis (IPA). We found that ZEA promotes TM3 cell proliferation at low concentrations. miRNA sequenceing revealed 66 differentially expressed miRNAs in ZEA-treated cells in comparison to the untreated control (p < 0.05). The miRNA sequencing indicated that compared to control group, there were 66 miRNAs significant change (p < 0.05) in ZEA-treated groups. IPA analysis showed that the predicated miRNAs target gene involved in cell Bio-functions including cell cycle, growth and proliferation, and in signaling pathways including MAPK and RAS-RAF-MEK-ERK pathways. Results from flow cytometry and Western Blot analysis validated the predictions that ZEA can affect cell cycle, and the MAPK signaling pathway. Taking these together, the cell proliferation induced ZEA is regulated by miRNAs. The results shed light on the molecular and cellular mechanisms for the mediation of ZEA to induce proliferation. Full article
Show Figures

Figure 1

16 pages, 6983 KB  
Article
In Vivo and In Vitro Anti-Arthritic Effects of Cardenolide-Rich and Caffeoylquinic Acid-Rich Fractions of Periploca forrestii
by Ting Liu, Xia Wang, Yan-Ling He, Yang Wang, Li Dong, Xue Ma, Lin Zheng, Chun-Hua Liu, Guang-Cheng Wang, Jiang Zheng, Yan-Yu Lan and Yong-Jun Li
Molecules 2018, 23(8), 1988; https://doi.org/10.3390/molecules23081988 - 9 Aug 2018
Cited by 19 | Viewed by 4791
Abstract
Periploca forrestii Schltr. (P. forrestii) is a species used in Traditional Chinese Medicine (TCM) known as “Miao medicine”, and has a long history of use in the treatment of rheumatism, rheumatoid arthritis (RA), and joint pain. The present study aimed to [...] Read more.
Periploca forrestii Schltr. (P. forrestii) is a species used in Traditional Chinese Medicine (TCM) known as “Miao medicine”, and has a long history of use in the treatment of rheumatism, rheumatoid arthritis (RA), and joint pain. The present study aimed to evaluate the anti-arthritis effects of the cardenolide-rich and caffeoylquinic acid-rich fractions (CDLFs and CQAFs) of P. forrestii in collagen-induced arthritic (CIA) rats, and defined the mechanisms of therapeutic action in MH7A cells treated with TNF-α. Serum rheumatoid factor (RF), TNF-α, IL-6, IL-1β, PGE2, NO, SOD, and MDA were determined by ELISA or other commercially assay kits. Histopathological changes in ankle joint tissues were examined. The mRNA expressions of IL-1β, IL-6, COX-2, and iNOS in MH7A cells were measured by qRT-PCR assays. In addition, the expressions of iNOS, COX-2, and p65 proteins, and the phosphorylation of IκBα, p38, ERK1/2, and JNK proteins in MH7A cells were analyzed by Western blot. The results showed that CDLF and CQAF could suppress the paw swelling in CIA rats at different doses (125 mg/kg, 250 mg/kg, and 500 mg/kg). Histopathological examination suggests that the CDLF and CQAF significantly relieved the damage of the structure of the ankle joint in CIA rats. In addition, serum RF, TNF-α, IL-6, IL-1β, PGE2, NO, and MDA were decreased, along with increased activity of serum SOD. Furthermore, CDLF and CQAF downregulated the expressions of IL-1β, IL-6, COX-2, iNOS, and p65, and inhibited the phosphorylation of IκBα, p38, ERK1/2, and JNK in MH7A cells treated with TNF-α. These findings demonstrated that both CDLF and CQAF exhibited anti-arthritic activity, which might be associated with their inhibitory effects on the NF-κB and MAPK signaling pathways. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

Back to TopTop