Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = K-Ras G12V protein

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6470 KiB  
Article
Mapping the Interactome of KRAS and Its G12C/D/V Mutants by Integrating TurboID Proximity Labeling with Quantitative Proteomics
by Jiangwei Song, Busong Wang, Mingjie Zou, Haiyuan Zhou, Yibing Ding, Wei Ren, Lei Fang and Jingzi Zhang
Biology 2025, 14(5), 477; https://doi.org/10.3390/biology14050477 - 26 Apr 2025
Viewed by 1159
Abstract
KRAS mutations are major drivers of human cancers, yet how distinct mutations rewire protein interactions and metabolic pathways to promote tumorigenesis remains poorly understood. To address this, we systematically mapped the protein interaction networks of wild-type KRAS and three high-frequency oncogenic mutants (G12C, [...] Read more.
KRAS mutations are major drivers of human cancers, yet how distinct mutations rewire protein interactions and metabolic pathways to promote tumorigenesis remains poorly understood. To address this, we systematically mapped the protein interaction networks of wild-type KRAS and three high-frequency oncogenic mutants (G12C, G12D, and G12V) using TurboID proximity labeling coupled with quantitative proteomics. Bioinformatic analysis revealed mutant-specific binding partners and metabolic pathway alterations, including significant enrichment in insulin signaling, reactive oxygen species regulation, and glucose/lipid metabolism. These changes collectively drive tumor proliferation and immune evasion. Comparative analysis identified shared interactome shifts across all mutants: reduced binding to LZTR1, an adaptor for KRAS degradation, and enhanced recruitment of LAMTOR1, a regulator of mTORC1-mediated growth signaling. Our multi-dimensional profiling establishes the first comprehensive map of KRAS-mutant interactomes and links specific mutations to metabolic reprogramming. These findings provide mechanistic insights into KRAS-driven malignancy and highlight LZTR1 and LAMTOR1 as potential therapeutic targets. The study further lays a foundation for developing mutation-specific strategies to counteract KRAS oncogenic signaling. Full article
(This article belongs to the Special Issue Proteomics and Human Diseases)
Show Figures

Figure 1

22 pages, 5075 KiB  
Article
Evaluation of the Inhibitory Potential of Apigenin and Related Flavonoids on Various Proteins Associated with Human Diseases Using AutoDock
by Tanat Peanlikhit, Uma Aryal, James S. Welsh, Kenneth R. Shroyer and Kanokporn Noy Rithidech
Int. J. Mol. Sci. 2025, 26(6), 2548; https://doi.org/10.3390/ijms26062548 - 12 Mar 2025
Viewed by 1261
Abstract
We used molecular docking to determine the binding energy and interactions of apigenin and 16 related flavonoids, with 24 distinct proteins having diverse biological functions. We aimed to identify potential inhibitors of these proteins and understand the structural configurations of flavonoids impacting their [...] Read more.
We used molecular docking to determine the binding energy and interactions of apigenin and 16 related flavonoids, with 24 distinct proteins having diverse biological functions. We aimed to identify potential inhibitors of these proteins and understand the structural configurations of flavonoids impacting their binding energy. Our results demonstrate that apigenin exhibits high binding energies (a surrogate for binding affinity or inhibitory potential) to all tested proteins. The strongest binding energy was −8.21 kcal/mol for p38 mitogen-activated protein kinases, while the weakest was −5.34 kcal/mol for cyclin-dependent kinase 4. Apigenin and many other flavonoids showed high binding energies on xanthine oxidase (1.1–1.5 fold of febuxostat) and DNA methyltransferases (1.1–1.2 fold of azacytidine). We uncovered high binding energies of apigenin and certain flavonoids with mutated Kirsten rat sarcoma viral oncogene homolog at G12D (KRAS G12D), G12V, and G12C. Consequently, apigenin and certain flavonoids have the potential to effectively inhibit pan-KRAS oncogenic activity, not just on specific KRAS mutations. Apigenin and certain flavonoids also have high binding energies with aromatase (involved in estrogen production) and bacterial infections, i.e., DNA gyrase B and 3R-hydroxy acyl-ACP dehydratase (FABZ). Our findings are pivotal in identifying specific flavonoids that can effectively inhibit targeted proteins, paving the way for the development of innovative flavonoid-based drugs. Full article
(This article belongs to the Special Issue Drug Discovery Based on Natural Products)
Show Figures

Figure 1

15 pages, 2988 KiB  
Article
Thermostability Improvement of the Chitinase from Bacillus circulans for Efficient Chitin Oligosaccharide Production via Computational Design
by Jingwei Liu, Jie Xie, Si Wang, Hong Feng and Ganggang Wang
Biomolecules 2025, 15(3), 330; https://doi.org/10.3390/biom15030330 - 24 Feb 2025
Viewed by 1024
Abstract
The chitinase A1 from Bacillus circulans WL-12 (BcChiA1) exhibits promising potential for producing chitin oligosaccharides (CHOs), while its application is limited by its poor thermal stability. In this study, a set of thermostable variants were obtained by modifying BcChiA1 using a comprehensive strategy [...] Read more.
The chitinase A1 from Bacillus circulans WL-12 (BcChiA1) exhibits promising potential for producing chitin oligosaccharides (CHOs), while its application is limited by its poor thermal stability. In this study, a set of thermostable variants were obtained by modifying BcChiA1 using a comprehensive strategy based on a computer-aided design. A combination of five beneficial single-point mutations (S67G/K177R/A220V/N257Y/N271E) to BcChiA1 generated a markedly improved variant, Mu5. Mu5 exhibited a half-life of 295 min at 60 °C, which was 59 times higher than that of BcChiA1. Furthermore, Mu5 was reused for chitin conversion, releasing 86.14 ± 3.73 mM of CHOs after five reaction cycles. Molecular dynamics simulation and structural analysis revealed that these enhancements were driven by increased structural rigidity and compactness, resulting in a protein conformation that was less prone to thermal denaturation. This combined approach through computational design yielded a thermostable BcChiA1 variant, potentially facilitating CHOs production in economical way. Full article
Show Figures

Figure 1

22 pages, 7069 KiB  
Article
APOL1 Modulates Renin–Angiotensin System
by Vinod Kumar, Prabhjot Kaur, Kameshwar Ayasolla, Alok Jha, Amen Wiqas, Himanshu Vashistha, Moin A. Saleem, Waldemar Popik, Ashwani Malhotra, Christoph A. Gebeshuber, Karl Skorecki and Pravin C. Singhal
Biomolecules 2024, 14(12), 1575; https://doi.org/10.3390/biom14121575 - 10 Dec 2024
Cited by 1 | Viewed by 1791
Abstract
Patients carrying APOL1 risk alleles (G1 and G2) have a higher risk of developing Focal Segmental Glomerulosclerosis (FSGS); we hypothesized that escalated levels of miR193a contribute to kidney injury by activating renin–angiotensin system (RAS) in the APOL1 milieus. Differentiated podocytes (DPDs) stably expressing [...] Read more.
Patients carrying APOL1 risk alleles (G1 and G2) have a higher risk of developing Focal Segmental Glomerulosclerosis (FSGS); we hypothesized that escalated levels of miR193a contribute to kidney injury by activating renin–angiotensin system (RAS) in the APOL1 milieus. Differentiated podocytes (DPDs) stably expressing vector (V/DPD), G0 (G0/DPDs), G1 (G1/DPDs), and G2 (G2/DPDs) were evaluated for renin, Vitamin D receptor (VDR), and podocyte molecular markers (PDMMs, including WT1, Podocalyxin, Nephrin, and Cluster of Differentiation [CD]2 associated protein [AP]). G0/DPDs displayed attenuated renin but an enhanced expression of VDR and Wilms Tumor [WT]1, including other PDMMs; in contrast, G1/DPDs and G2/DPDs exhibited enhanced expression of renin but decreased expression of VDR and WT1, as well as other PDMMs (at both the protein and mRNA levels). G1/DPDs and G2/DPDs also showed increased mRNA expression for Angiotensinogen and Angiotensin II Type 1 (AT1R) and 2 (AT2R) receptors. Protein concentrations of Brain Acid-Soluble Protein [BASP]1, Enhancer of Zeste Homolog [EZH]2, Histone Deacetylase [HDAC]1, and Histone 3 Lysine27 trimethylated [H3K27me3] in WT1-IP (immunoprecipitated proteins with WT1 antibody) fractions were significantly higher in G0/DPDs vs. G1/DPD and G2/DPDs. Moreover, DPD-silenced BASP1 displayed an increased expression of renin. Notably, VDR agonist-treated DPDs showed escalated levels of VDR and a higher expression of PDMMs, but an attenuated expression of renin. Human Embryonic Kidney (HEK) cells transfected with increasing APOL1(G0) plasmid concentrations showed a corresponding reduction in renin mRNA expression. Bioinformatics studies predicted the miR193a target sites in the VDR 3′UTR (untranslated region), and the luciferase assay confirmed the predicted sites. As expected, podocytes transfected with miR193a plasmid displayed a reduced VDR and an enhanced expression of renin. Renal cortical section immunolabeling in miR193a transgenic (Tr) mice showed renin-expressing podocytes. Kidney tissue extracts from miR193aTr mice also showed reduced expression of VDR and PDMMs, but enhanced expression of Renin. Blood Ang II levels were higher in miR193aTr, APOLG1, and APOL1G1/G2 mice when compared to control mice. Based on these findings, miR193a regulates the activation of RAS and podocyte molecular markers through modulation of VDR and WT1 in the APOL1 milieu. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

17 pages, 3166 KiB  
Article
A First-Class Degrader Candidate Targeting Both KRAS G12D and G12V Mediated by CANDDY Technology Independent of Ubiquitination
by Etsuko Miyamoto-Sato, Satoshi Imanishi, Lijuan Huang, Shoko Itakura, Yoichi Iwasaki and Masamichi Ishizaka
Molecules 2023, 28(14), 5600; https://doi.org/10.3390/molecules28145600 - 24 Jul 2023
Cited by 6 | Viewed by 5389
Abstract
“Undruggable” targets such as KRAS are particularly challenging in the development of drugs. We devised a novel chemical knockdown strategy, CANDDY (Chemical knockdown with Affinity aNd Degradation DYnamics) technology, which promotes protein degradation using small molecules (CANDDY molecules) that are conjugated to a [...] Read more.
“Undruggable” targets such as KRAS are particularly challenging in the development of drugs. We devised a novel chemical knockdown strategy, CANDDY (Chemical knockdown with Affinity aNd Degradation DYnamics) technology, which promotes protein degradation using small molecules (CANDDY molecules) that are conjugated to a degradation tag (CANDDY tag) modified from proteasome inhibitors. We demonstrated that CANDDY tags allowed for direct proteasomal target degradation independent of ubiquitination. We synthesized a KRAS-degrading CANDDY molecule, TUS-007, which induced degradation in KRAS mutants (G12D and G12V) and wild-type KRAS. We confirmed the tumor suppression effect of TUS-007 in subcutaneous xenograft models of human colon cells (KRAS G12V) with intraperitoneal administrations and in orthotopic xenograft models of human pancreatic cells (KRAS G12D) with oral administrations. Thus, CANDDY technology has the potential to therapeutically target previously undruggable proteins, providing a simpler and more practical drug targeting approach and avoiding the difficulties in matchmaking between the E3 enzyme and the target. Full article
Show Figures

Graphical abstract

19 pages, 2639 KiB  
Article
K-Ras Binds Calmodulin-Related Centrin1 with Potential Implications for K-Ras Driven Cancer Cell Stemness
by Ganesh babu Manoharan, Christina Laurini, Sara Bottone, Nesrine Ben Fredj and Daniel Kwaku Abankwa
Cancers 2023, 15(12), 3087; https://doi.org/10.3390/cancers15123087 - 7 Jun 2023
Cited by 7 | Viewed by 2176
Abstract
Recent data suggest that K-Ras4B (hereafter K-Ras) can drive cancer cell stemness via calmodulin (CaM)-dependent, non-canonical Wnt-signalling. Here we examined whether another Ca2+-binding protein, the CaM-related centrin1, binds to K-Ras and could mediate some K-Ras functions that were previously ascribed to [...] Read more.
Recent data suggest that K-Ras4B (hereafter K-Ras) can drive cancer cell stemness via calmodulin (CaM)-dependent, non-canonical Wnt-signalling. Here we examined whether another Ca2+-binding protein, the CaM-related centrin1, binds to K-Ras and could mediate some K-Ras functions that were previously ascribed to CaM. While CaM and centrin1 appear to distinguish between peptides that were derived from their classical targets, they both bind to K-Ras in cells. Cellular BRET- and immunoprecipitation data suggest that CaM engages more with K-Ras than centrin1 and that the interaction with the C-terminal membrane anchor of K-Ras is sufficient for this. Surprisingly, binding of neither K-Ras nor its membrane anchor alone to CaM or centrin1 is sensitive to inhibition of prenylation. In support of an involvement of the G-domain of K-Ras in cellular complexes with these Ca2+-binding proteins, we find that oncogenic K-RasG12V displays increased engagement with both CaM and centrin1. This is abrogated by addition of the D38A effector-site mutation, suggesting that K-RasG12V is held together with CaM or centrin1 in complexes with effectors. When treated with CaM inhibitors, the BRET-interaction of K-RasG12V with centrin1 was also disrupted in the low micromolar range, comparable to that with CaM. While CaM predominates in regulating functional membrane anchorage of K-Ras, it has a very similar co-distribution with centrin1 on mitotic organelles. Given these results, a significant overlap of the CaM- and centrin1-dependent functions of K-Ras is suggested. Full article
(This article belongs to the Special Issue RAS Signaling Pathway in Cancer Therapy)
Show Figures

Figure 1

21 pages, 3455 KiB  
Article
Mutation in the Common Docking Domain Affects MAP Kinase ERK2 Catalysis and Stability
by Leonore Novak, Maria Petrosino, Alessandra Pasquo, Apirat Chaikuad, Roberta Chiaraluce, Stefan Knapp and Valerio Consalvi
Cancers 2023, 15(11), 2938; https://doi.org/10.3390/cancers15112938 - 26 May 2023
Cited by 4 | Viewed by 2435
Abstract
The extracellular-signal-regulated kinase 2 (ERK2), a mitogen-activated protein kinase (MAPK) located downstream of the Ras-Raf-MEK-ERK signal transduction cascade, is involved in the regulation of a large variety of cellular processes. The ERK2, activated by phosphorylation, is the principal effector of a central signaling [...] Read more.
The extracellular-signal-regulated kinase 2 (ERK2), a mitogen-activated protein kinase (MAPK) located downstream of the Ras-Raf-MEK-ERK signal transduction cascade, is involved in the regulation of a large variety of cellular processes. The ERK2, activated by phosphorylation, is the principal effector of a central signaling cascade that converts extracellular stimuli into cells. Deregulation of the ERK2 signaling pathway is related to many human diseases, including cancer. This study reports a comprehensive biophysical analysis of structural, function, and stability data of pure, recombinant human non-phosphorylated (NP-) and phosphorylated (P-) ERK2 wild-type and missense variants in the common docking site (CD-site) found in cancer tissues. Because the CD-site is involved in interaction with protein substrates and regulators, a biophysical characterization of missense variants adds information about the impact of point mutations on the ERK2 structure–function relationship. Most of the P-ERK2 variants in the CD-site display a reduced catalytic efficiency, and for the P-ERK2 D321E, D321N, D321V and E322K, changes in thermodynamic stability are observed. The thermal stability of NP-ERK2 and P-ERK2 D321E, D321G, and E322K is decreased with respect to the wild-type. In general, a single residue mutation in the CD-site may lead to structural local changes that reflects in alterations in the global ERK2 stability and catalysis. Full article
(This article belongs to the Special Issue Protein Structure and Cancer)
Show Figures

Figure 1

15 pages, 2782 KiB  
Review
Multiple Strategies to Develop Small Molecular KRAS Directly Bound Inhibitors
by Xile Zhou, Yang Ji and Jinming Zhou
Molecules 2023, 28(8), 3615; https://doi.org/10.3390/molecules28083615 - 21 Apr 2023
Cited by 13 | Viewed by 8342
Abstract
KRAS gene mutation is widespread in tumors and plays an important role in various malignancies. Targeting KRAS mutations is regarded as the “holy grail” of targeted cancer therapies. Recently, multiple strategies, including covalent binding strategy, targeted protein degradation strategy, targeting protein and protein [...] Read more.
KRAS gene mutation is widespread in tumors and plays an important role in various malignancies. Targeting KRAS mutations is regarded as the “holy grail” of targeted cancer therapies. Recently, multiple strategies, including covalent binding strategy, targeted protein degradation strategy, targeting protein and protein interaction strategy, salt bridge strategy, and multivalent strategy, have been adopted to develop KRAS direct inhibitors for anti-cancer therapy. Various KRAS-directed inhibitors have been developed, including the FDA-approved drugs sotorasib and adagrasib, KRAS-G12D inhibitor MRTX1133, and KRAS-G12V inhibitor JAB-23000, etc. The different strategies greatly promote the development of KRAS inhibitors. Herein, the strategies are summarized, which would shed light on the drug discovery for both KRAS and other “undruggable” targets. Full article
Show Figures

Figure 1

11 pages, 1858 KiB  
Case Report
Efficacy of Dabrafenib and Trametinib in a Patient with Squamous-Cell Carcinoma, with Mutation p.D594G in BRAF and p.R461* in NF1 Genes—A Case Report with Literature Review
by Anna Grenda, Pawel Krawczyk, Katarzyna M. Targowska-Duda, Robert Kieszko, Iwona Paśnik and Janusz Milanowski
Int. J. Mol. Sci. 2023, 24(2), 1195; https://doi.org/10.3390/ijms24021195 - 7 Jan 2023
Cited by 4 | Viewed by 4705
Abstract
The 3rd class of BRAF (B-Raf Proto-Oncogene, Serine/Threonine Kinase) variants including G466, D594, and A581 mutations cause kinase death or impaired kinase activity. It is unlikely that RAF (Raf Proto-Oncogene, Serine/Threonine Kinase) inhibitors suppress ERK (Extracellular Signal-Regulated Kinase) signaling in class 3 mutant-driven [...] Read more.
The 3rd class of BRAF (B-Raf Proto-Oncogene, Serine/Threonine Kinase) variants including G466, D594, and A581 mutations cause kinase death or impaired kinase activity. It is unlikely that RAF (Raf Proto-Oncogene, Serine/Threonine Kinase) inhibitors suppress ERK (Extracellular Signal-Regulated Kinase) signaling in class 3 mutant-driven tumors due to the fact that they preferentially inhibit activated BRAF V600 mutants. However, there are suggestions that class 3 mutations are still associated with enhanced RAS/MAPK (RAS Proto-Oncogene, GTPase/Mitogen-Activated Protein Kinase) activation, potentially due to other mechanisms such as the activation of growth factor signaling or concurrent MAPK pathway mutations, e.g., RAS or NF1 (Neurofibromin 1). A 75-year-old male patient with squamous-cell cancer (SqCC) of the lung and with metastases to the kidney and mediastinal lymph nodes received chemoimmunotherapy (expression of Programmed Cell Death 1 Ligand 1 (PD-L1) on 2% of tumor cells). The chemotherapy was limited due to the accompanying myelodysplastic syndrome (MDS), and pembrolizumab monotherapy was continued for up to seven cycles. At the time of progression, next-generation sequencing was performed and a c.1781A>G (p.Asp594Gly) mutation in the BRAF gene, a c.1381C>T (p.Arg461Ter) mutation in the NF1 gene, and a c.37C>T (p.Gln13Ter) mutation in the FANCC gene were identified. Combined therapy with BRAF (dabrafenib) and MEK (trametinib) inhibitors was used, which resulted in the achievement of partial remission of the primary lesion and lung nodules and the stabilization of metastatic lesions in the kidney and bones. The therapy was discontinued after five months due to myelosuppression associated with MDS. The molecular background was decisive for the patient’s fate. NSCLC patients with non-V600 mutations in the BRAF gene rarely respond to anti-BRAF and anti-MEK therapy. The achieved effectiveness of the treatment could be related to a mutation in the NF1 tumor suppressor gene. The loss of NF1 function causes the excessive activation of KRAS and overactivity of the signaling pathway containing BRAF and MEK, which were the targets of the therapy. Moreover, the mutation in the FANCC gene was probably related to MDS development. The NGS technique was crucial for the qualification to treatment and the prediction of the NSCLC course in our patient. The mutations in two genes—the BRAF oncogene and the NF1 tumor suppressor gene—were the reason for the use of dabrafenib and trametinib treatment. The patients achieved short-term disease stabilization. This proved that coexisting mutations in these genes affect the disease course and treatment efficacy. Full article
(This article belongs to the Special Issue Molecular Basis and Advances of Targeted Immunotherapy for Cancer)
Show Figures

Figure 1

15 pages, 2149 KiB  
Article
In Silico Strategies for Designing of Peptide Inhibitors of Oncogenic K-Ras G12V Mutant: Inhibiting Cancer Growth and Proliferation
by Mehreen Ghufran, Haider Ali Khan, Mehran Ullah, Sabreen Ghufran, Muhammad Ayaz, Muhammad Siddiq, Syed Shams ul Hassan and Simona Bungau
Cancers 2022, 14(19), 4884; https://doi.org/10.3390/cancers14194884 - 6 Oct 2022
Cited by 29 | Viewed by 3800
Abstract
Ras plays a pivotal function in cell proliferation and is an important protein in signal transduction pathways. Mutations in genes encoding the Ras protein drive the signaling cascades essential for malignant transformation, tumour angiogenesis, and metastasis and are responsible for above 30% of [...] Read more.
Ras plays a pivotal function in cell proliferation and is an important protein in signal transduction pathways. Mutations in genes encoding the Ras protein drive the signaling cascades essential for malignant transformation, tumour angiogenesis, and metastasis and are responsible for above 30% of all human cancers. There is evidence that N-Ras, K-Ras, and H-Ras play significant roles in human cancer. The mutated K-Ras protein is typically observed in malignant growths. Mutant K-Ras is the most common in lung, colon, and pancreatic cancers. The purpose of this research was to create peptides that inhibit K-Ras G12V. The crystal structure of the mutant K-Ras G12V-H-REV107 complex was obtained from a protein data bank. Further, we used a residue scan approach to create unique peptides from the reference peptide (H-REV107). AMBER molecular dynamics simulations were used to test the stability of the top four proposed peptides (based on binding free energies). Our findings showed that the top four selected peptides had stronger interactions with K-Ras than the reference peptide and have the ability to block the activation function of K-Ras. Our extensive analyses of binding affinities showed that our designed peptide possesses the potential to inhibit K-Ras and to reduce the progression of cancer. Full article
Show Figures

Figure 1

15 pages, 3359 KiB  
Article
Methuosis Contributes to Jaspine-B-Induced Cell Death
by Núria Bielsa, Mireia Casasampere, Jose Luis Abad, Carlos Enrich, Antonio Delgado, Gemma Fabriàs, Jose M. Lizcano and Josefina Casas
Int. J. Mol. Sci. 2022, 23(13), 7257; https://doi.org/10.3390/ijms23137257 - 29 Jun 2022
Cited by 16 | Viewed by 4471
Abstract
Methuosis is a type of programmed cell death in which the cytoplasm is occupied by fluid-filled vacuoles that originate from macropinosomes (cytoplasmic vacuolation). A few molecules have been reported to behave as methuosis inducers in cancer cell lines. Jaspine B (JB) is a [...] Read more.
Methuosis is a type of programmed cell death in which the cytoplasm is occupied by fluid-filled vacuoles that originate from macropinosomes (cytoplasmic vacuolation). A few molecules have been reported to behave as methuosis inducers in cancer cell lines. Jaspine B (JB) is a natural anhydrous sphingolipid (SL) derivative reported to induce cytoplasmic vacuolation and cytotoxicity in several cancer cell lines. Here, we have investigated the mechanism and signalling pathways involved in the cytotoxicity induced by the natural sphingolipid Jaspine B (JB) in lung adenocarcinoma A549 cells, which harbor the G12S K-Ras mutant. The effect of JB on inducing cytoplasmic vacuolation and modifying cell viability was determined in A549 cells, as well as in mouse embryonic fibroblasts (MEF) lacking either the autophagy-related gene ATG5 or BAX/BAK genes. Apoptosis was analyzed by flow cytometry after annexin V/propidium iodide staining, in the presence and absence of z-VAD. Autophagy was monitored by LC3-II/GFP-LC3-II analysis, and autophagic flux experiments using protease inhibitors. Phase contrast, confocal, and transmission electron microscopy were used to monitor cytoplasmic vacuolation and the uptake of Lucifer yellow to assess macropinocyosis. We present evidence that cytoplasmic vacuolation and methuosis are involved in Jaspine B cytotoxicity over A549 cells and that activation of 5′ AMP-activated protein kinase (AMPK) could be involved in Jaspine-B-induced vacuolation, independently of the phosphatidylinositol 3-kinase/protein kinase B/mechanistic target of rapamycin complex 1 (PI3K/Akt/mTORC1) axis. Full article
(This article belongs to the Special Issue Sphingolipid Metabolism and Signaling in Diseases 2.0)
Show Figures

Figure 1

23 pages, 2508 KiB  
Review
The COVID-19 Cell Signalling Problem: Spike, RAGE, PKC, p38, NFκB & IL-6 Hyper-Expression and the Human Ezrin Peptide, VIP, PKA-CREB Solution
by Rupert Donald Holms
Immuno 2022, 2(2), 260-282; https://doi.org/10.3390/immuno2020017 - 23 Mar 2022
Cited by 4 | Viewed by 6107
Abstract
SARS-CoV-2 infection inhibits interferon expression, while hyper-activating innate-immune signalling and expression of pro-inflammatory cytokines. SARS-CoV-2 proteins: Spike, M and nsp6, nsp12 and nsp13 inhibit IFR3-mediated Type-1-interferon defence, but hyper-activate intracellular signalling, which leads to dysfunctional expression of pro-inflammatory cytokines, particularly IL-1β IL-6, IL-8, [...] Read more.
SARS-CoV-2 infection inhibits interferon expression, while hyper-activating innate-immune signalling and expression of pro-inflammatory cytokines. SARS-CoV-2 proteins: Spike, M and nsp6, nsp12 and nsp13 inhibit IFR3-mediated Type-1-interferon defence, but hyper-activate intracellular signalling, which leads to dysfunctional expression of pro-inflammatory cytokines, particularly IL-1β IL-6, IL-8, and TNFα. Ezrin, a sub-membrane adaptor-protein, organises multi-protein-complexes such as ezrin+NHERF1+NHE+CFTR, which control the density and location of ACE2 receptor expression on the luminal surface of airway-epithelial-cells, as well as determining susceptibility to SARS-CoV-2 infection. This protein complex is vital for lung-surfactant production for efficient gas-exchange. Ezrin also forms multi-protein-complexes that regulate signalling kinases; Ras, PKC, PI3K, and PKA. m-RAGE is a pattern-recognition-receptor of the innate immune system that is triggered by AGEs, which are chemically modified proteins common in the elderly and obese. m-RAGE forms multi-protein complexes with ezrin and TIRAP, a toll-like-receptor adaptor-protein. The main cause of COVID-19 is not viral infection but pro-inflammatory p38MAPK signalling mediated by TLRs and RAGE. In contrast, it appears that activated ezrin+PKA signalling results in the activation of transcription-factor CREB, which suppresses NFκB mediated pro-inflammatory cytokine expression. In addition, competition between ezrin and TIRAP to form multi-protein-complexes on membrane PIP2-lipid-rafts is a macromolecular-switch that changes the priority from innate immune activation programs to adaptive immune activation programs. Human Vasoactive Intestinal Peptide (VIP), and Human Ezrin Peptides (HEP-1 and RepG3) probably inhibit COVID-19 by activating the ezrin+PKA and ras>Raf>MEK>ERK>RSK>CREB>IL-10 signalling, which favours activation of adaptive immunity programs and inhibition of the dysfunctional innate-inflammation, the cause of COVID-19. HEP-1, RepG3, and VIP in individual human volunteers and in small clinical studies have been shown to be effective COVID-19 therapies, and seem to have a closely related mechanism of action. Full article
(This article belongs to the Section Infectious Immunology and Vaccines)
Show Figures

Figure 1

23 pages, 7241 KiB  
Article
c-Myc Protein Level Affected by Unsymmetrical Bisacridines Influences Apoptosis and Senescence Induced in HCT116 Colorectal and H460 Lung Cancer Cells
by Monika Pawłowska, Jolanta Kulesza and Ewa Augustin
Int. J. Mol. Sci. 2022, 23(6), 3061; https://doi.org/10.3390/ijms23063061 - 11 Mar 2022
Cited by 10 | Viewed by 3274
Abstract
Unsymmetrical bisacridines (UAs) are highly active antitumor compounds. They contain in their structure the drugs previously synthesized in our Department: C-1311 and C-1748. UAs exhibit different properties than their monomer components. They do not intercalate to dsDNA but stabilize the G-quadruplex structures, particularly [...] Read more.
Unsymmetrical bisacridines (UAs) are highly active antitumor compounds. They contain in their structure the drugs previously synthesized in our Department: C-1311 and C-1748. UAs exhibit different properties than their monomer components. They do not intercalate to dsDNA but stabilize the G-quadruplex structures, particularly those of the MYC and KRAS genes. Since MYC and KRAS are often mutated and constitutively expressed in cancer cells, they can be used as therapeutic targets. Herein, we investigate whether UAs can affect the expression and protein level of c-Myc and K-Ras in HCT116 and H460 cancer cells, and if so, what are the consequences for the UAs-induced cellular response. UAs did not affect K-Ras, but they strongly influenced the expression and translation of the c-Myc protein, and in H460 cells, they caused its full inhibition. UAs treatment resulted in apoptosis, as confirmed by the morphological changes, the presence of sub-G1 population and active caspase-3, cleaved PARP, annexin-V/PI staining and a decrease in mitochondrial potential. Importantly, apoptosis was induced earlier and to a greater extent in H460 compared to HCT116 cells. Moreover, accelerated senescence occurred only in H460 cells. In conclusion, the strong inhibition of c-Myc by UAs in H460 cells may participate in the final cellular response (apoptosis, senescence). Full article
(This article belongs to the Special Issue Quo Vadis Cancer Research? On Molecular Mechanisms and Drug Discovery)
Show Figures

Figure 1

12 pages, 3312 KiB  
Review
A Breakthrough Brought about by Targeting KRASG12C: Nonconformity Is Punished
by Wenjuan Ning, Zhang Yang, Gregor J. Kocher, Patrick Dorn and Ren-Wang Peng
Cancers 2022, 14(2), 390; https://doi.org/10.3390/cancers14020390 - 13 Jan 2022
Cited by 14 | Viewed by 5020
Abstract
KRAS is the most frequently mutated oncogene in lung carcinomas, accounting for 25% of total incidence, with half of them being KRASG12C mutations. In past decades, KRAS enjoyed the notorious reputation of being untargetable—that is, until the advent of G12C inhibitors, which [...] Read more.
KRAS is the most frequently mutated oncogene in lung carcinomas, accounting for 25% of total incidence, with half of them being KRASG12C mutations. In past decades, KRAS enjoyed the notorious reputation of being untargetable—that is, until the advent of G12C inhibitors, which put an end to this legend by covalently targeting the G12C (glycine to cysteine) substitution in the switch-II pocket of the protein, inhibiting the affinity of the mutant KRAS with GTP and subsequently the downstream signaling pathways, such as Raf/MEK/ERK. KRASG12C-selective inhibitors, e.g., the FDA-approved AMG510 and MRTX849, have demonstrated potent clinical efficacy and selectivity in patients with KRASG12C-driven cancers only, which spares other driver KRAS mutations (e.g., G12D/V/S, G13D, and Q61H) and has ushered in an unprecedented breakthrough in the field in recent decades. However, accumulating evidence from preclinical and clinical studies has shown that G12C-targeted therapeutics as single agents are inevitably thwarted by drug resistance, a persistent problem associated with targeted therapies. A promising strategy to optimize G12C inhibitor therapy is combination treatments with other therapeutic agents, the identification of which is empowered by the insightful appreciation of compensatory signaling pathways or evasive mechanisms, such as those that attenuate immune responses. Here, we review recent advances in targeting KRASG12C and discuss the challenges of KRASG12C inhibitor therapy, as well as future directions. Full article
(This article belongs to the Special Issue Targeting KRAS: Elucidating Mechanisms of Sensitivity and Resistance)
Show Figures

Figure 1

15 pages, 2192 KiB  
Communication
NRAS Mutations May Be Involved in the Pathogenesis of Cutaneous Rosai Dorfman Disease: A Pilot Study
by Kuan-Jou Wu, Shu-Hao Li, Jia-Bin Liao, Chien-Chun Chiou, Chieh-Shan Wu and Chien-Chin Chen
Biology 2021, 10(5), 396; https://doi.org/10.3390/biology10050396 - 2 May 2021
Cited by 15 | Viewed by 4211
Abstract
Background: Purely cutaneous Rosai-Dorfman disease (RDD) is a rare histiocytic proliferative disorder limited to the skin. To date, its pathogenesis remains unclear. Owing to recent findings of specific mutations in the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway in histiocytic proliferative disorders, it [...] Read more.
Background: Purely cutaneous Rosai-Dorfman disease (RDD) is a rare histiocytic proliferative disorder limited to the skin. To date, its pathogenesis remains unclear. Owing to recent findings of specific mutations in the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway in histiocytic proliferative disorders, it provides a novel perspective on the pathomechanism of cutaneous RDD. We aim to investigate the genomic mutations in MAPK/ERK pathway in cutaneous RDD. Methods: We retrospectively recruited all cases of cutaneous RDD from two hospitals in Taiwan from January 2010 to March 2020 with the clinicopathologic features, immunohistochemistry, and treatment. Mutations of neuroblastoma RAS viral oncogene homolog (NRAS), Kirsten rat sarcoma 2 viral oncogene homolog (KRAS), and v-raf murine sarcoma viral oncogene homolog B1 (BRAF) in MAPK/ERK pathway were investigated by the highly sensitive polymerase chain reaction with Sanger sequencing. Results: Seven patients with cutaneous RDD were recruited with nine biopsy specimens. The median age was 46 years (range: 17–62 years). Four of seven patients (57.1%) received tumor excision, while the other three chose oral and/or topical or intralesional steroids. NRAS mutation was detected in 4 of 7 cases (4/7; 51.7%), and NRAS A146T was the most common mutant point (n = 4/7), followed by NRAS G13S (n = 2/7). There is no KRAS or BRAF mutation detected. Conclusions: We report the NRAS mutation is common in cutaneous RDD, and NRAS A146T was the most frequent mutation in this cohort. Mutations in the NRAS gene can activate the RAS/MAPK signaling and have been reported to be associated with various cancers. It indicates that NRAS mutation in MAPK/ERK pathway may involve the pathogenesis of cutaneous RDD. Full article
(This article belongs to the Special Issue Cutaneous Neoplasms with Uncertain Biological Potential)
Show Figures

Figure 1

Back to TopTop