Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = JmjC gene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4558 KiB  
Article
Genome-Wide Characterization and Expression Profile of the Jumonji-C Family Genes in Populus alba × Populus glandulosa Reveal Their Potential Roles in Wood Formation
by Zhenghao Geng, Rui Liu and Xiaojing Yan
Int. J. Mol. Sci. 2025, 26(12), 5666; https://doi.org/10.3390/ijms26125666 - 13 Jun 2025
Viewed by 461
Abstract
The Jumonji C (JMJ-C) domain-containing gene family regulates epigenetic and developmental processes in plants. We identified 55 JMJ-C genes in Populus alba × Populus glandulosa using HMM and BLASTp analyses. Chromosomal mapping revealed an asymmetric distribution with conserved synteny. Phylogenetic reconstruction revealed that [...] Read more.
The Jumonji C (JMJ-C) domain-containing gene family regulates epigenetic and developmental processes in plants. We identified 55 JMJ-C genes in Populus alba × Populus glandulosa using HMM and BLASTp analyses. Chromosomal mapping revealed an asymmetric distribution with conserved synteny. Phylogenetic reconstruction revealed that PagJMJ genes segregate into five evolutionarily conserved subfamilies, exhibiting classification patterns identical to those of Arabidopsis thaliana and Populus trichocarpa. Synteny analysis indicated a closer relationship with P. trichocarpa than with A. thaliana. Motif and promoter analyses highlighted subfamily-specific features and diverse cis-elements, particularly light-responsive motifs. Expression profiling revealed tissue-specific patterns, with key genes enriched in roots, vascular tissues, and leaves. Developmental analysis in cambium and xylem identified four expression clusters related to wood formation. Co-expression analysis identified six key PagJMJ genes (PagJMJ6, 29, 34, 39, 53, and 55) strongly associated with wood formation-related transcription factors. ChIP-qPCR analysis revealed that key genes co-expressed with PagJMJ genes were marked by H3K4me3 and H3K9me2 modifications. These findings provide insights into the evolutionary and functional roles of PagJMJ genes in poplar vascular development and wood formation. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

18 pages, 15475 KiB  
Article
Identification of Quantitative Trait Nucleotides and Development of Diagnostic Markers for Nine Fatty Acids in the Peanut
by Juan Wang, Haoning Chen, Yuan Li, Dachuan Shi, Wenjiao Wang, Caixia Yan, Mei Yuan, Quanxi Sun, Jing Chen, Yifei Mou, Chunjuan Qu and Shihua Shan
Plants 2024, 13(1), 16; https://doi.org/10.3390/plants13010016 - 20 Dec 2023
Cited by 4 | Viewed by 1509
Abstract
The cultivated peanut (Arachis hypogaea L.) is an important oilseed crop worldwide, and fatty acid composition is a major determinant of peanut oil quality. In the present study, we conducted a genome-wide association study (GWAS) for nine fatty acid traits using the [...] Read more.
The cultivated peanut (Arachis hypogaea L.) is an important oilseed crop worldwide, and fatty acid composition is a major determinant of peanut oil quality. In the present study, we conducted a genome-wide association study (GWAS) for nine fatty acid traits using the whole genome sequences of 160 representative Chinese peanut landraces and identified 6-1195 significant SNPs for different fatty acid contents. Particularly for oleic acid and linoleic acid, two peak SNP clusters on Arahy.09 and Arahy.19 were found to contain the majority of the significant SNPs associated with these two fatty acids. Additionally, a significant proportion of the candidate genes identified on Arahy.09 overlap with those identified in early studies, among which three candidate genes are of special interest. One possesses a significant missense SNP and encodes a known candidate gene FAD2A. The second gene is the gene closest to the most significant SNP for linoleic acid. It codes for an MYB protein that has been demonstrated to impact fatty acid biosynthesis in Arabidopsis. The third gene harbors a missense SNP and encodes a JmjC domain-containing protein. The significant phenotypic difference in the oleic acid/linoleic acid between the genotypes at the first and third candidate genes was further confirmed with PARMS analysis. In addition, we have also identified different candidate genes (i.e., Arahy.ZV39IJ, Arahy.F9E3EA, Arahy.X9ZZC1, and Arahy.Z0ELT9) for the remaining fatty acids. Our findings can help us gain a better understanding of the genetic foundation of peanut fatty acid contents and may hold great potential for enhancing peanut quality in the future. Full article
(This article belongs to the Special Issue Genetic Analysis of Quantitative Traits in Plants)
Show Figures

Figure 1

15 pages, 1947 KiB  
Article
The Effects of Larval Cryopreservation on the Epigenetics of the Pacific Oyster Crassostrea gigas
by Yibing Liu, Lisui Bao, Sarah R. Catalano, Xiaochen Zhu and Xiaoxu Li
Int. J. Mol. Sci. 2023, 24(24), 17262; https://doi.org/10.3390/ijms242417262 - 8 Dec 2023
Viewed by 1492
Abstract
High mortalities and highly variable results during the subsequent development of post-thaw larvae have been widely considered as key issues restricting the application of cryopreservation techniques to support genetic improvement programs and hatchery production in farmed marine bivalve species. To date, few studies [...] Read more.
High mortalities and highly variable results during the subsequent development of post-thaw larvae have been widely considered as key issues restricting the application of cryopreservation techniques to support genetic improvement programs and hatchery production in farmed marine bivalve species. To date, few studies have been undertaken to investigate the effects of cryodamage at the molecular level in bivalves. This study is the first to evaluate the effect of larval cryopreservation on the epigenetics of the resultant progenies of the Pacific oyster Crassostrea gigas. The results show that the level of DNA methylation was significantly (p < 0.05) higher and lower than that of the control when the trochophore larvae were revived and when they developed to D-stage larvae (day 1 post-fertilization), respectively, but the level returned to the control level from day 8 post-fertilization onwards. The expression of the epigenetic regulator genes DNMT3b, MeCP2, JmjCA, KDM2 and OSA changed significantly (p < 0.05) when the trochophore larvae were thawed, and then they reverted to the control levels at the D- and later larval developmental stages. However, the expression of other epigenetic regulator genes, namely, MBD2, DNMT1, CXXC1 and JmjD6, did not change at any post-thaw larval developmental stage. For the newly thawed trochophore larvae, the amount of methylated H3K4Me1 and H3K27Me1 significantly changed, and the expression of all Jumonji orthologs, except that of Jumonji5, significantly (p < 0.05) decreased. These epigenetic results agree with the data collected on larval performances (e.g., survival rate), suggesting that the effect period of the published cryopreservation technique on post-thaw larvae is short in C. gigas. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

19 pages, 2473 KiB  
Article
Functional Characterization of a Phf8 Processed Pseudogene in the Mouse Genome
by Joannie St-Germain, Muhammad Riaz Khan, Viktoriia Bavykina, Rebecka Desmarais, Micah Scott, Guylain Boissonneault, Marie A. Brunet and Benoit Laurent
Genes 2023, 14(1), 172; https://doi.org/10.3390/genes14010172 - 8 Jan 2023
Cited by 4 | Viewed by 2925
Abstract
Most pseudogenes are generated when an RNA transcript is reverse-transcribed and integrated into the genome at a new location. Pseudogenes are often considered as an imperfect and silent copy of a functional gene because of the accumulation of numerous mutations in their sequence. [...] Read more.
Most pseudogenes are generated when an RNA transcript is reverse-transcribed and integrated into the genome at a new location. Pseudogenes are often considered as an imperfect and silent copy of a functional gene because of the accumulation of numerous mutations in their sequence. Here we report the presence of Pfh8-ps, a Phf8 retrotransposed pseudogene in the mouse genome, which has no disruptions in its coding sequence. We show that this pseudogene is mainly transcribed in testis and can produce a PHF8-PS protein in vivo. As the PHF8-PS protein has a well-conserved JmjC domain, we characterized its enzymatic activity and show that PHF8-PS does not have the intrinsic capability to demethylate H3K9me2 in vitro compared to the parental PHF8 protein. Surprisingly, PHF8-PS does not localize in the nucleus like PHF8, but rather is mostly located at the cytoplasm. Finally, our proteomic analysis of PHF8-PS-associated proteins revealed that PHF8-PS interacts not only with mitochondrial proteins, but also with prefoldin subunits (PFDN proteins) that deliver unfolded proteins to the cytosolic chaperonin complex implicated in the folding of cytosolic proteins. Together, our findings highlighted PHF8-PS as a new pseudogene-derived protein with distinct molecular functions from PHF8. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Graphical abstract

15 pages, 3514 KiB  
Article
JmjC Family of Histone Demethylases Form Nuclear Condensates
by Marta Vicioso-Mantis, Samuel Aguirre and Marian A. Martínez-Balbás
Int. J. Mol. Sci. 2022, 23(14), 7664; https://doi.org/10.3390/ijms23147664 - 11 Jul 2022
Cited by 12 | Viewed by 3739
Abstract
The Jumonji-C (JmjC) family of lysine demethylases (KDMs) (JMJC-KDMs) plays an essential role in controlling gene expression and chromatin structure. In most cases, their function has been attributed to the demethylase activity. However, accumulating evidence demonstrates that these proteins play roles distinct from [...] Read more.
The Jumonji-C (JmjC) family of lysine demethylases (KDMs) (JMJC-KDMs) plays an essential role in controlling gene expression and chromatin structure. In most cases, their function has been attributed to the demethylase activity. However, accumulating evidence demonstrates that these proteins play roles distinct from histone demethylation. This raises the possibility that they might share domains that contribute to their functional outcome. Here, we show that the JMJC-KDMs contain low-complexity domains and intrinsically disordered regions (IDR), which in some cases reached 70% of the protein. Our data revealed that plant homeodomain finger protein (PHF2), KDM2A, and KDM4B cluster by phase separation. Moreover, our molecular analysis implies that PHF2 IDR contributes to transcription regulation. These data suggest that clustering via phase separation is a common feature that JMJC-KDMs utilize to facilitate their functional responses. Our study uncovers a novel potential function for the JMJC-KDM family that sheds light on the mechanisms to achieve the competent concentration of molecules in time and space within the cell nucleus. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Graphical abstract

16 pages, 4427 KiB  
Article
The Chromatin Modifier Protein FfJMHY Plays an Important Role in Regulating the Rate of Mycelial Growth and Stipe Elongation in Flammulina filiformis
by Jian Li, Yanping Shao, Yayong Yang, Chang Xu, Zhuohan Jing, Hui Li, Baogui Xie and Yongxin Tao
J. Fungi 2022, 8(5), 477; https://doi.org/10.3390/jof8050477 - 3 May 2022
Cited by 14 | Viewed by 2808
Abstract
Stipe elongation is an important process in the development of the fruiting body and is associated with the commodity quality of agaric fungi. In this study, F. filiformis was used as a model agaric fungus to reveal the function of the chromatin modifier [...] Read more.
Stipe elongation is an important process in the development of the fruiting body and is associated with the commodity quality of agaric fungi. In this study, F. filiformis was used as a model agaric fungus to reveal the function of the chromatin modifier gene containing the JmjC domain in stipe elongation. First, we identified a JmjC domain family gene (FfJmhy) with a 3684 bp length open reading frame (ORF) in F. filiformis. FfJmhy was predicted to have a histone H3K9 demethylation function, and was specifically upregulated during stipe rapid elongation. Further investigation revealed that the silencing of FfJmhy inhibited the mycelial growth, while overexpression of this gene had no effect on the mycelial growth. Comparative analysis revealed that the stipe elongation rate in FfJmhy overexpression strains was significantly increased, while it was largely reduced when FfJmhy was silenced. Taken together, these results suggest that FfJmhy positively regulates the mycelial growth and controls the elongation speed and the length of the stipe. Moreover, cell wall-related enzymes genes, including three exo-β-1,3-glucanases, one β-1,6-glucan synthase, four chitinases, and two expansin proteins, were found to be regulated by FfJmhy. Based on the putative functions of FfJmhy, we propose that this gene enhances the transcription of cell wall-related enzymes genes by demethylating histone H3K9 sites to regulate remodeling of the cell wall in rapid stipe elongation. This study provides new insight into the mechanism of rapid stipe elongation, and it is important to regulate the commodity quality of agaric fungi. Full article
(This article belongs to the Section Fungal Genomics, Genetics and Molecular Biology)
Show Figures

Figure 1

15 pages, 3053 KiB  
Article
Evolutionary History and Functional Diversification of the JmjC Domain-Containing Histone Demethylase Gene Family in Plants
by Shifeng Ma, Zhiqiang Zhang, Yingqiang Long, Wenqi Huo, Yuzhi Zhang, Xiaoqing Yang, Jie Zhang, Xinyang Li, Qiying Du, Wei Liu, Daigang Yang and Xiongfeng Ma
Plants 2022, 11(8), 1041; https://doi.org/10.3390/plants11081041 - 12 Apr 2022
Cited by 11 | Viewed by 3804
Abstract
Histone demethylases containing JumonjiC (JmjC) domains regulate gene transcription and chromatin structure by changing the methylation status of lysine residues and play an important role in plant growth and development. In this study, a total of 332 JmjC family genes were [...] Read more.
Histone demethylases containing JumonjiC (JmjC) domains regulate gene transcription and chromatin structure by changing the methylation status of lysine residues and play an important role in plant growth and development. In this study, a total of 332 JmjC family genes were identified from 21 different plant species. The evolutionary analysis results showed that the JmjC gene was detected in each species, that is, the gene has already appeared in algae. The phylogenetic analysis showed that the KDM3/JHDM2 subfamily genes may have appeared when plants transitioned from water to land, but were lost in lycophytes (Selaginella moellendorffii). During the evolutionary process, some subfamily genes may have been lost in individual species. According to the analysis of the conserved domains, all of the plant JmjC genes contained a typical JmjC domain, which was highly conserved during plant evolution. The analysis of cis-acting elements showed that the promoter region of the JmjC gene was rich in phytohormones and biotic and abiotic stress-related elements. The transcriptome data analysis and protein interaction analyses showed that JmjC genes play an important role in plant growth and development. The results clarified the evolutionary history of JmjC family genes in plants and lay the foundation for the analysis of the biological functions of JmjC family genes. Full article
(This article belongs to the Topic Plant Breeding, Genetics and Genomics)
Show Figures

Figure 1

13 pages, 4032 KiB  
Article
Comprehensive Analysis of Jumonji Domain C Family from Citrus grandis and Expression Profilings in the Exocarps of “Huajuhong” (Citrus grandis “Tomentosa”) during Various Development Stages
by Yuzhen Tian, Ruiyi Fan and Jiwu Zeng
Horticulturae 2021, 7(12), 592; https://doi.org/10.3390/horticulturae7120592 - 20 Dec 2021
Cited by 6 | Viewed by 3472
Abstract
Citrus grandis “Tomentosa” (“Huajuhong”) is a famous Traditional Chinese Medicine. In this study, a total of 18 jumonji C (JMJC) domain-containing proteins were identified from C. grandis. The 18 CgJMJCs were unevenly located on six chromosomes of C. grandis. Phylogenetic [...] Read more.
Citrus grandis “Tomentosa” (“Huajuhong”) is a famous Traditional Chinese Medicine. In this study, a total of 18 jumonji C (JMJC) domain-containing proteins were identified from C. grandis. The 18 CgJMJCs were unevenly located on six chromosomes of C. grandis. Phylogenetic analysis revealed that they could be classified into five groups, namely KDM3, KDM4, KDM5, JMJC, and JMJD6. The domain structures and motif architectures in the five groups were diversified. Cis-acting elements on the promoters of 18 CgJMJC genes were also investigated, and the abscisic acid-responsive element (ABRE) was distributed on 15 CgJMJC genes. Furthermore, the expression profiles of 18 CgJMJCs members in the exocarps of three varieties of “Huajuhong”, for different developmental stages, were examined. The results were validated by quantitative real-time PCR (qRT-PCR). The present study provides a comprehensive characterization of JMJC domain-containing proteins in C. grandis and their expression patterns in the exocarps of C. grandis “Tomentosa” for three varieties with various development stages. Full article
Show Figures

Figure 1

16 pages, 1481 KiB  
Article
Prenatal Iron Deficiency and Choline Supplementation Interact to Epigenetically Regulate Jarid1b and Bdnf in the Rat Hippocampus into Adulthood
by Shirelle X. Liu, Amanda K. Barks, Scott Lunos, Jonathan C. Gewirtz, Michael K. Georgieff and Phu V. Tran
Nutrients 2021, 13(12), 4527; https://doi.org/10.3390/nu13124527 - 17 Dec 2021
Cited by 8 | Viewed by 3666
Abstract
Early-life iron deficiency (ID) causes long-term neurocognitive impairments and gene dysregulation that can be partially mitigated by prenatal choline supplementation. The long-term gene dysregulation is hypothesized to underlie cognitive dysfunction. However, mechanisms by which iron and choline mediate long-term gene dysregulation remain unknown. [...] Read more.
Early-life iron deficiency (ID) causes long-term neurocognitive impairments and gene dysregulation that can be partially mitigated by prenatal choline supplementation. The long-term gene dysregulation is hypothesized to underlie cognitive dysfunction. However, mechanisms by which iron and choline mediate long-term gene dysregulation remain unknown. In the present study, using a well-established rat model of fetal-neonatal ID, we demonstrated that ID downregulated hippocampal expression of the gene encoding JmjC-ARID domain-containing protein 1B (JARID1B), an iron-dependent histone H3K4 demethylase, associated with a higher histone deacetylase 1 (HDAC1) enrichment and a lower enrichment of acetylated histone H3K9 (H3K9ac) and phosphorylated cAMP response element-binding protein (pCREB). Likewise, ID reduced transcriptional capacity of the gene encoding brain-derived neurotrophic factor (BDNF), a target of JARID1B, associated with repressive histone modifications such as lower H3K9ac and pCREB enrichments at the Bdnf promoters in the adult rat hippocampus. Prenatal choline supplementation did not prevent the ID-induced chromatin modifications at these loci but induced long-lasting repressive chromatin modifications in the iron-sufficient adult rats. Collectively, these findings demonstrated that the iron-dependent epigenetic mechanism mediated by JARID1B accounted for long-term Bdnf dysregulation by early-life ID. Choline supplementation utilized a separate mechanism to rescue the effect of ID on neural gene regulation. The negative epigenetic effects of choline supplementation in the iron-sufficient rat hippocampus necessitate additional investigations prior to its use as an adjunctive therapeutic agent. Full article
(This article belongs to the Special Issue Iron and Infant Development)
Show Figures

Graphical abstract

13 pages, 2234 KiB  
Article
JMJ Histone Demethylases Balance H3K27me3 and H3K4me3 Levels at the HSP21 Locus during Heat Acclimation in Arabidopsis
by Nobutoshi Yamaguchi and Toshiro Ito
Biomolecules 2021, 11(6), 852; https://doi.org/10.3390/biom11060852 - 7 Jun 2021
Cited by 23 | Viewed by 5019
Abstract
Exposure to moderately high temperature enables plants to acquire thermotolerance to high temperatures that might otherwise be lethal. In Arabidopsis thaliana, histone H3 lysine 27 trimethylation (H3K27me3) at the heat shock protein 17.6C (HSP17.6C) and HSP22 loci is removed by [...] Read more.
Exposure to moderately high temperature enables plants to acquire thermotolerance to high temperatures that might otherwise be lethal. In Arabidopsis thaliana, histone H3 lysine 27 trimethylation (H3K27me3) at the heat shock protein 17.6C (HSP17.6C) and HSP22 loci is removed by Jumonji C domain-containing protein (JMJ) histone demethylases, thus allowing the plant to ‘remember’ the heat experience. Other heat memory genes, such as HSP21, are downregulated in acclimatized jmj quadruple mutants compared to the wild type, but how those genes are regulated remains uncharacterized. Here, we show that histone H3 lysine 4 trimethylation (H3K4me3) at HSP21 was maintained at high levels for at least three days in response to heat. This heat-dependent H3K4me3 accumulation was compromised in the acclimatized jmj quadruple mutant as compared to the acclimatized wild type. JMJ30 directly bound to the HSP21 locus in response to heat and coordinated H3K27me3 and H3K4me3 levels under standard and fluctuating conditions. Our results suggest that JMJs mediate the balance between H3K27me3 and H3K4me3 at the HSP21 locus through proper maintenance of H3K27me3 removal during heat acclimation. Full article
Show Figures

Figure 1

15 pages, 1392 KiB  
Article
The Arabidopsis JMJ29 Protein Controls Circadian Oscillation through Diurnal Histone Demethylation at the CCA1 and PRR9 Loci
by Hong Gil Lee and Pil Joon Seo
Genes 2021, 12(4), 529; https://doi.org/10.3390/genes12040529 - 5 Apr 2021
Cited by 6 | Viewed by 3355
Abstract
The circadian clock matches various biological processes to diurnal environmental cycles, such as light and temperature. Accumulating evidence shows that chromatin modification is crucial for robust circadian oscillation in plants, although chromatin modifiers involved in regulating core clock gene expression have been limitedly [...] Read more.
The circadian clock matches various biological processes to diurnal environmental cycles, such as light and temperature. Accumulating evidence shows that chromatin modification is crucial for robust circadian oscillation in plants, although chromatin modifiers involved in regulating core clock gene expression have been limitedly investigated. Here, we report that the Jumonji C domain-containing histone demethylase JMJ29, which belongs to the JHDM2/KDM3 group, shapes rhythmic changes in H3K4me3 histone marks at core clock loci in Arabidopsis. The evening-expressed JMJ29 protein interacts with the Evening Complex (EC) component EARLY FLOWERING 3 (ELF3). The EC recruits JMJ29 to the CCA1 and PRR9 promoters to catalyze the H3K4me3 demethylation at the cognate loci, maintaining a low-level expression during the evening time. Together, our findings demonstrate that interaction of circadian components with chromatin-related proteins underlies diurnal fluctuation of chromatin structures to maintain circadian waveforms in plants. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Circadian Clock Function in Plants)
Show Figures

Figure 1

18 pages, 3938 KiB  
Article
Characterization and Stress Response of the JmjC Domain-Containing Histone Demethylase Gene Family in the Allotetraploid Cotton Species Gossypium hirsutum
by Jie Zhang, Junping Feng, Wei Liu, Zhongying Ren, Junjie Zhao, Xiaoyu Pei, Yangai Liu, Daigang Yang and Xiongfeng Ma
Plants 2020, 9(11), 1617; https://doi.org/10.3390/plants9111617 - 20 Nov 2020
Cited by 11 | Viewed by 3852
Abstract
Histone modification is an important epigenetic modification that controls gene transcriptional regulation in eukaryotes. Histone methylation is accomplished by histone methyltransferase and can occur on two amino acid residues, arginine and lysine. JumonjiC (JmjC) domain-containing histone demethylase regulates gene transcription and chromatin structure [...] Read more.
Histone modification is an important epigenetic modification that controls gene transcriptional regulation in eukaryotes. Histone methylation is accomplished by histone methyltransferase and can occur on two amino acid residues, arginine and lysine. JumonjiC (JmjC) domain-containing histone demethylase regulates gene transcription and chromatin structure by changing the methylation state of the lysine residue site and plays an important role in plant growth and development. In this study, we carried out genome-wide identification and comprehensive analysis of JmjC genes in the allotetraploid cotton species Gossypium hirsutum. In total, 50 JmjC genes were identified and in G. hirsutum, and 25 JmjC genes were identified in its two diploid progenitors, G. arboreum and G. raimondii, respectively. Phylogenetic analysis divided these JmjC genes into five subfamilies. A collinearity analysis of the two subgenomes of G. hirsutum and the genomes of G. arboreum and G. raimondii uncovered a one-to-one relationship between homologous genes of the JmjC gene family. Most homologs in the JmjC gene family between A and D subgenomes of G. hirsutum have similar exon-intron structures, which indicated that JmjC family genes were conserved after the polyploidization. All G. hirsutumJmjC genes were found to have a typical JmjC domain, and some genes also possess other special domains important for their function. Analysis of promoter regions revealed that cis-acting elements, such as those related to hormone and abiotic stress response, were enriched in G. hirsutum JmjC genes. According to a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis, most G. hirsutumJmjC genes had high abundance expression at developmental stages of fibers, suggesting that they might participate in cotton fiber development. In addition, some G. hirsutumJmjC genes were found to have different degrees of response to cold or osmotic stress, thus indicating their potential role in these types of abiotic stress response. Our results provide useful information for understanding the evolutionary history and biological function of JmjC genes in cotton. Full article
(This article belongs to the Special Issue Polyploidy and Evolution in Plants)
Show Figures

Figure 1

24 pages, 1532 KiB  
Review
Hypoxia and Oxygen-Sensing Signaling in Gene Regulation and Cancer Progression
by Guang Yang, Rachel Shi and Qing Zhang
Int. J. Mol. Sci. 2020, 21(21), 8162; https://doi.org/10.3390/ijms21218162 - 31 Oct 2020
Cited by 54 | Viewed by 5849
Abstract
Oxygen homeostasis regulation is the most fundamental cellular process for adjusting physiological oxygen variations, and its irregularity leads to various human diseases, including cancer. Hypoxia is closely associated with cancer development, and hypoxia/oxygen-sensing signaling plays critical roles in the modulation of cancer progression. [...] Read more.
Oxygen homeostasis regulation is the most fundamental cellular process for adjusting physiological oxygen variations, and its irregularity leads to various human diseases, including cancer. Hypoxia is closely associated with cancer development, and hypoxia/oxygen-sensing signaling plays critical roles in the modulation of cancer progression. The key molecules of the hypoxia/oxygen-sensing signaling include the transcriptional regulator hypoxia-inducible factor (HIF) which widely controls oxygen responsive genes, the central members of the 2-oxoglutarate (2-OG)-dependent dioxygenases, such as prolyl hydroxylase (PHD or EglN), and an E3 ubiquitin ligase component for HIF degeneration called von Hippel–Lindau (encoding protein pVHL). In this review, we summarize the current knowledge about the canonical hypoxia signaling, HIF transcription factors, and pVHL. In addition, the role of 2-OG-dependent enzymes, such as DNA/RNA-modifying enzymes, JmjC domain-containing enzymes, and prolyl hydroxylases, in gene regulation of cancer progression, is specifically reviewed. We also discuss the therapeutic advancement of targeting hypoxia and oxygen sensing pathways in cancer. Full article
Show Figures

Figure 1

18 pages, 1422 KiB  
Review
Advances in Histone Demethylase KDM3A as a Cancer Therapeutic Target
by Jung Yoo, Yu Hyun Jeon, Ha Young Cho, Sang Wu Lee, Go Woon Kim, Dong Hoon Lee and So Hee Kwon
Cancers 2020, 12(5), 1098; https://doi.org/10.3390/cancers12051098 - 28 Apr 2020
Cited by 57 | Viewed by 6378
Abstract
Lysine-specific histone demethylase 3 (KDM3) subfamily proteins are H3K9me2/me1 histone demethylases that promote gene expression. The KDM3 subfamily primarily consists of four proteins (KDM3A−D). All four proteins contain the catalytic Jumonji C domain (JmjC) at their C-termini, but whether KDM3C has demethylase activity [...] Read more.
Lysine-specific histone demethylase 3 (KDM3) subfamily proteins are H3K9me2/me1 histone demethylases that promote gene expression. The KDM3 subfamily primarily consists of four proteins (KDM3A−D). All four proteins contain the catalytic Jumonji C domain (JmjC) at their C-termini, but whether KDM3C has demethylase activity is under debate. In addition, KDM3 proteins contain a zinc-finger domain for DNA binding and an LXXLL motif for interacting with nuclear receptors. Of the KDM3 proteins, KDM3A is especially deregulated or overexpressed in multiple cancers, making it a potential cancer therapeutic target. However, no KDM3A-selective inhibitors have been identified to date because of the lack of structural information. Uncovering the distinct physiological and pathological functions of KDM3A and their structure will give insight into the development of novel selective inhibitors. In this review, we focus on recent studies highlighting the oncogenic functions of KDM3A in cancer. We also discuss existing KDM3A-related inhibitors and review their potential as therapeutic agents for overcoming cancer. Full article
(This article belongs to the Special Issue Epigenetic Therapy: The State of Play in Highly Aggressive Diseases)
Show Figures

Figure 1

24 pages, 3331 KiB  
Article
Heme, A Metabolic Sensor, Directly Regulates the Activity of the KDM4 Histone Demethylase Family and Their Interactions with Partner Proteins
by Purna Chaitanya Konduri, Tianyuan Wang, Narges Salamat and Li Zhang
Cells 2020, 9(3), 773; https://doi.org/10.3390/cells9030773 - 22 Mar 2020
Cited by 3 | Viewed by 5459
Abstract
The KDM4 histone demethylase subfamily is constituted of yeast JmjC domain-containing proteins, such as Gis1, and human Gis1 orthologues, such as KDM4A/B/C. KDM4 proteins have important functions in regulating chromatin structure and gene expression in response to metabolic and nutritional stimuli. Heme acts [...] Read more.
The KDM4 histone demethylase subfamily is constituted of yeast JmjC domain-containing proteins, such as Gis1, and human Gis1 orthologues, such as KDM4A/B/C. KDM4 proteins have important functions in regulating chromatin structure and gene expression in response to metabolic and nutritional stimuli. Heme acts as a versatile signaling molecule to regulate important cellular functions in diverse organisms ranging from bacteria to humans. Here, using purified KDM4 proteins containing the JmjN/C domain, we showed that heme stimulates the histone demethylase activity of the JmjN/C domains of KDM4A and Cas well as full-length Gis1. Furthermore, we found that the C-terminal regions of KDM4 proteins, like that of Gis1, can confer heme regulation when fused to an unrelated transcriptional activator. Interestingly, biochemical pull-down of Gis1-interacting proteins followed by mass spectrometry identified 147 unique proteins associated with Gis1 under heme-sufficient and/or heme-deficient conditions. These 147 proteins included a significant number of heterocyclic compound-binding proteins, Ubl-conjugated proteins, metabolic enzymes/proteins, and acetylated proteins. These results suggested that KDM4s interact with diverse cellular proteins to form a complex network to sense metabolic and nutritional conditions like heme levels and respond by altering their interactions with other proteins and functional activities, such as histone demethylation. Full article
(This article belongs to the Section Cell Signaling)
Show Figures

Figure 1

Back to TopTop