Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (382)

Search Parameters:
Keywords = Ising spin glass

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 13695 KB  
Article
InGaN Laser Diode with Spin-on-Glass Isolation Fabricated by Planarization and Etch-Back Process
by Katarzyna Piotrowska-Wolińska, Szymon Grzanka, Łucja Marona, Krzysztof Gibasiewicz, Anna Kafar and Piotr Perlin
Micromachines 2026, 17(2), 142; https://doi.org/10.3390/mi17020142 - 23 Jan 2026
Viewed by 192
Abstract
We report on the fabrication and characterization of InGaN-based ridge-waveguide laser diodes employing spin-on-glass (SOG) as the insulation and planarization layer. In contrast to conventional silicon dioxide (SiO2) isolation deposited by PECVD, the SOG approach provides improved surface planarity, reduced processing [...] Read more.
We report on the fabrication and characterization of InGaN-based ridge-waveguide laser diodes employing spin-on-glass (SOG) as the insulation and planarization layer. In contrast to conventional silicon dioxide (SiO2) isolation deposited by PECVD, the SOG approach provides improved surface planarity, reduced processing complexity, and lower fabrication cost. The laser structures were grown on GaN substrates by MOCVD, with the active region consisting of In0.11Ga0.89N quantum wells. Following ridge formation and SOG deposition, an etch-back process was used to form the electrical contacts. We have demonstrated the formation of high-quality insulating surfaces with strong adhesion to the ridge sidewalls. When using a Ni protective layer, the fabricated devices exhibited favorable electrical and optical characteristics and achieved stable laser operation under both pulsed and continuous-wave conditions. These results indicate that the SOG-based insulation process represents a promising alternative for the scalable and cost-effective fabrication of InGaN laser diodes targeting advanced photonic applications. Full article
(This article belongs to the Section D1: Semiconductor Devices)
Show Figures

Figure 1

20 pages, 1534 KB  
Article
Low-Cost DLW Setup for Fabrication of Photonics-Integrated Circuits
by André Moreira, Alessandro Fantoni, Miguel Fernandes and Jorge Fidalgo
Micromachines 2026, 17(1), 125; https://doi.org/10.3390/mi17010125 - 19 Jan 2026
Viewed by 301
Abstract
The development of photonic-integrated circuits (PICs) for data communication, sensing, and quantum computing is hindered by the high complexity and cost of traditional fabrication methods, which rely on expensive equipment, limiting accessibility for research and prototyping. This study introduces a Direct Laser Writing [...] Read more.
The development of photonic-integrated circuits (PICs) for data communication, sensing, and quantum computing is hindered by the high complexity and cost of traditional fabrication methods, which rely on expensive equipment, limiting accessibility for research and prototyping. This study introduces a Direct Laser Writing (DLW) system designed as a low-cost alternative, utilizing an XY platform for precise substrate movement and an optical system comprising a collimator and lens to focus the laser beam. Operating on a single layer, the system employs SU-8 photoresist to fabricate polymer-based structures on substrates such as ITO-covered glass. Preparation involves thorough cleaning, spin coating with photoresist, and pre- and post-baking to ensure material stability. This approach reduces dependence on costly infrastructure, making it suitable for academic settings and enabling rapid prototyping. A user interface and custom slicer process standard .dxf files into executable commands, enhancing operational flexibility. Experimental results demonstrate a resolution of 10 µm, with successful patterning of structures, including diffraction grids, waveguides, and multimode interference devices. This system aims to transform PIC prototype fabrication into a cost-effective, accessible process. Full article
(This article belongs to the Special Issue Laser-Assisted Ultra-Precision Machining)
Show Figures

Figure 1

21 pages, 1259 KB  
Review
Transition Metal-Doped ZnO and ZrO2 Nanocrystals: Correlations Between Structure, Magnetism, and Vibrational Properties—A Review
by Izabela Kuryliszyn-Kudelska and Witold Daniel Dobrowolski
Appl. Sci. 2026, 16(2), 786; https://doi.org/10.3390/app16020786 - 12 Jan 2026
Viewed by 150
Abstract
Transition metal (TM)-doped zinc oxide (ZnO) and zirconium dioxide (ZrO2) nanocrystals exhibit complex correlations between crystal structure, defect chemistry, vibrational properties, and magnetic behavior that are strongly governed by synthesis route and dopant incorporation mechanisms. This review critically summarizes recent progress [...] Read more.
Transition metal (TM)-doped zinc oxide (ZnO) and zirconium dioxide (ZrO2) nanocrystals exhibit complex correlations between crystal structure, defect chemistry, vibrational properties, and magnetic behavior that are strongly governed by synthesis route and dopant incorporation mechanisms. This review critically summarizes recent progress on Fe-, Mn-, and Co-doped ZnO and ZrO2 nanocrystals synthesized by wet chemical, hydrothermal, and microwave-assisted hydrothermal methods, with emphasis on synthesis-driven phase evolution and apparent solubility limits. ZnO and ZrO2 are treated as complementary host lattices: ZnO is a semiconducting, piezoelectric oxide with narrow solubility limits for most 3d dopants, while ZrO2 is a dielectric, polymorphic oxide in which transition metal doping may stabilize tetragonal or cubic phases. Structural and microstructural studies using X-ray diffraction, electron microscopy, Raman spectroscopy, and Mössbauer spectroscopy demonstrate that at low dopant concentrations, TM ions may be partially incorporated into the host lattice, giving rise to diluted or defect-mediated magnetic behavior. When solubility limits are exceeded, nanoscopic secondary oxide phases emerge, leading to superparamagnetic, ferrimagnetic, or spin-glass-like responses. Magnetic measurements, including DC magnetization and AC susceptibility, reveal a continuous evolution from paramagnetism in lightly doped samples to dynamic magnetic states characteristic of nanoscale magnetic entities. Vibrational spectroscopy highlights phonon confinement, surface optical phonons, and disorder-activated modes that sensitively reflect nanocrystal size, lattice strain, and defect populations, and often correlate with magnetic dynamics. Rather than classifying these materials as diluted magnetic semiconductors, this review adopts a synthesis-driven and correlation-based framework that links dopant incorporation, local structural disorder, vibrational fingerprints, and magnetic response. By emphasizing multi-technique characterization strategies required to distinguish intrinsic from extrinsic magnetic contributions, this review provides practical guidelines for interpreting magnetism in TM-doped oxide nanocrystals and outlines implications for applications in photocatalysis, sensing, biomedicine, and electromagnetic interference (EMI) shielding. Full article
(This article belongs to the Section Applied Physics General)
Show Figures

Figure 1

22 pages, 5710 KB  
Article
Acetone Sensor Based on a Composite of Calcium Itaconate and Graphene Oxide
by Igor E. Uflyand, Anastasiya O. Zarubina, Aleksandr A. Shcherbatykh and Vladimir A. Zhinzhilo
Analytica 2026, 7(1), 8; https://doi.org/10.3390/analytica7010008 - 9 Jan 2026
Viewed by 276
Abstract
The present paper reports the preparation of a nanocomposite thin film consisting of calcium itaconate and graphene oxide (GO). The composite is a black powder consisting of individual shiny prismatic crystals at varying degrees of maturity. The crystal size distribution is quite narrow: [...] Read more.
The present paper reports the preparation of a nanocomposite thin film consisting of calcium itaconate and graphene oxide (GO). The composite is a black powder consisting of individual shiny prismatic crystals at varying degrees of maturity. The crystal size distribution is quite narrow: from 3.6 to 6.2 μm in length and from 0.7 to 1.1 μm in width. Thin-film-based acetone sensor made of a nanocomposite was fabricated by spin coating of calcium itaconate–GO nanoparticles on glass plates. The thin-film acetone sensor was characterized using FTIR, XRD, SEM, TEM, and the low-temperature nitrogen sorption–desorption method. The sensor response time is 7.66 ± 0.07 s (sr = 0.92%), and the relaxation time when blowing the surface with clean air or inert gas (nitrogen, argon) is 9.26 ± 0.12 s (sr = 1.28%). The sensing mechanism of the sensor for detecting acetone at room temperature was also is proposed based on phenomenological understanding due to the absence of direct electronic/charge-transport evidence. Full article
(This article belongs to the Section Sensors)
Show Figures

Figure 1

17 pages, 2958 KB  
Article
Thermally Stable and Energy Efficient Newly Synthesized Bipolar Emitters for Yellow and Green OLED Devices
by Anil Kumar, Sushanta Lenka, Kapil Patidar, Chih-An Tung, Ming Yu Luo, Raminta Beresneviciute, Gintare Krucaite, Daiva Tavgeniene, Dovydas Blazevicius, Bernadeta Blazeviciute, Jwo-Huei Jou and Saulius Grigalevicius
Molecules 2026, 31(1), 158; https://doi.org/10.3390/molecules31010158 - 1 Jan 2026
Viewed by 363
Abstract
Organic light-emitting diodes (OLEDs) have emerged as a leading high-resolution display and lighting technology, as well as for photo-therapeutic applications, due to their light weight, flexibility, and excellent color rendering. However, achieving long-term thermal stability and high energy efficiency remains a principal issue [...] Read more.
Organic light-emitting diodes (OLEDs) have emerged as a leading high-resolution display and lighting technology, as well as for photo-therapeutic applications, due to their light weight, flexibility, and excellent color rendering. However, achieving long-term thermal stability and high energy efficiency remains a principal issue for their widespread adoption. Strong thermal robustness in OLED emitter materials is a critical parameter for achieving long device lifetimes, stable film morphology, reliable high-temperature processing, and sustained interface integrity in high-performance hosts. Bipolar emitters RB14 (N-(9-ethylcarbazole-3-yl)-4-(diphenylamino)phenyl-9H-carbazole-9-yl-1,8-naphthalimide), RB18 (N-phenyl-4-(diphenylamino)phenyl-9H-carbazole-9-yl-1,8-naphthalimide), and RB22 (N-phenyl-3-(2-methoxypyridin-3-yl)-9H-carbazole-9-yl-1,8-naphthalimide) were newly synthesized. RB18 is a yellow bipolar OLED emitter that has a glass transition temperature (Tg) of 162 °C and thermal durability (Td) of 431 °C, which is the highest reported value for naphthalimide-based bipolar emitter derivatives for yellow OLEDs. Meanwhile, RB14 and RB22 are green OLED emitters that have glass transition temperatures (Tg) of 133 °C and 167 °C, and thermal durabilities (Td) of 336 °C and 400 °C, respectively. We have fabricated OLED devices using these bipolar emitters dispersed in CBP host matrix, and we have found that the maximum EQEs (%) for RB14, RB18, and RB22 emitter-based devices are 7.93%, 3.40%, and 4.02%, respectively. For confirmation of thermal stability, we also used UV-visible spectroscopy measurements at variable temperatures on annealed spin-coated glass films of these emitter materials and found that RB22 is the most thermally stable emitter among these materials. Full article
Show Figures

Figure 1

14 pages, 3782 KB  
Article
Strategies for Managing Charge in Electron-Beam Lithography on Glass
by Zhongyang Liu, Yue Chen, Leyang Dang, Wenwu Zhang, Luwei Wang and Junle Qu
Photonics 2026, 13(1), 43; https://doi.org/10.3390/photonics13010043 - 31 Dec 2025
Viewed by 449
Abstract
Optical metasurfaces fabricated via electron beam lithography (EBL) are increasingly pivotal for biosensing and bioimaging applications. However, charge accumulation on insulating glass substrates persists as a critical barrier, causing distortion of the incident electron beam and degradation of patterning fidelity manifested as pattern [...] Read more.
Optical metasurfaces fabricated via electron beam lithography (EBL) are increasingly pivotal for biosensing and bioimaging applications. However, charge accumulation on insulating glass substrates persists as a critical barrier, causing distortion of the incident electron beam and degradation of patterning fidelity manifested as pattern deflection, increased line-edge roughness (LER), and overlay inaccuracy. Here, we evaluate three charge-mitigation strategies: optimization of electron-beam resist (EBR) thickness, spin-coated conductive polymer layers, and thin metal capping layers. A reduction in EBR thickness from 800 nm to 150 nm led to a significant improvement in LER attributed to a shortened charge dissipation path. The introduction of a conductive polymer further enhanced pattern integrity, whereas the most substantial improvement was attained by depositing a 20 nm Au layer, which offers a highly conductive pathway for rapid charge dissipation and resulted in the lowest LER of 0.24. Our comparison establishes a clear hierarchy of effectiveness and identifies metal capping as the most reliable approach for high-fidelity nanofabrication on insulating substrates, thereby offering practical solutions for advancing glass-based photonic and meta-optical devices. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

15 pages, 3685 KB  
Article
Effect of MDI on the Mechanical Properties of Fibers in Poly(lactic acid)/Poly(butylene succinate) Blends During Melt Spinning
by Ye-dam Jeong, Hyun Je Cho, Min Jae Seo and Jongwon Kim
Polymers 2026, 18(1), 73; https://doi.org/10.3390/polym18010073 - 26 Dec 2025
Viewed by 287
Abstract
In this study, the properties of poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) blends were analyzed according to the PBS content during the manufacture of the blend. However, the inherent immiscibility between PLA and PBS often leads to phase separation and limited mechanical performance, particularly [...] Read more.
In this study, the properties of poly(lactic acid) (PLA)/poly(butylene succinate) (PBS) blends were analyzed according to the PBS content during the manufacture of the blend. However, the inherent immiscibility between PLA and PBS often leads to phase separation and limited mechanical performance, particularly in melt-spun fiber applications, which restrict their practical use. To increase the miscibility of the PLA/PBS blend, methylene diphenyl diisocyanate (MDI) was added up to 0.8 wt.%, and the characteristics were analyzed via thermogravimetric analysis, differential scanning calorimetry, viscosity measurements, dynamic mechanical analysis, and Fourier-transform infrared spectroscopy. As the PBS content in the blend increased, the thermal stability, viscosity, elastic properties, and glass transition temperature decreased. In contrast, as the MDI content in the PLA/PBS blend increased, the thermal stability, viscosity, elastic properties, and glass transition temperature increased. The results revealed that the miscibility of the PLA/PBS blend increased as the MDI content in the blend increased. Additionally, the tensile strength and elongation of the PLA/PBS blend fibers manufactured through melt spinning were analyzed. While the tensile strength decreased as the PBS content increased, the tensile strength and elongation considerably improved as the MDI content in the blend increased. Specifically, the tensile strength of the PLA/PBS blend fibers increased from 2.55 to 2.99 gf/de, corresponding to an improvement of approximately 17%, while the elongation at break increased from 22.48% to 41.64%, representing an enhancement of approximately 85% with increasing MDI content. Full article
(This article belongs to the Special Issue Environmentally Friendly Textiles, Fibers and Their Composites)
Show Figures

Figure 1

9 pages, 1802 KB  
Article
Magnetocaloric Response of an Eutectic Er69Ni31 Amorphous Alloy
by Tian-Ge Zhai, Jia-Meng Yuan, Zhan-Bo Li, Ding Ding and Lei Xia
Magnetochemistry 2025, 11(12), 106; https://doi.org/10.3390/magnetochemistry11120106 - 1 Dec 2025
Viewed by 355
Abstract
The magnetocaloric response of an amorphous Er69Ni31 alloy was studied in the present work. The eutectic Er69Ni31 alloy was successfully melt-spun into an amorphous ribbon. The formability and magnetocaloric performance of the Er69Ni31 amorphous [...] Read more.
The magnetocaloric response of an amorphous Er69Ni31 alloy was studied in the present work. The eutectic Er69Ni31 alloy was successfully melt-spun into an amorphous ribbon. The formability and magnetocaloric performance of the Er69Ni31 amorphous alloy were studied. The amorphous sample exhibits good glass formability and a remarkable magnetocaloric effect with a magnetic entropy change peak of ~16.65 J/(kg × K) near 10 K under 5 Tesla. The magnetization and magnetocaloric behaviors were investigated to reveal the effect of spin-glass-like behaviors on the magnetocaloric response of the binary amorphous sample. Full article
Show Figures

Figure 1

18 pages, 3308 KB  
Article
Optical, Electrical, and Structural Properties of NiO Thin Films, Derived by Sol–Gel Method
by Tatyana Ivanova, Antoaneta Harizanova and Nikolay Petkov
Gels 2025, 11(12), 944; https://doi.org/10.3390/gels11120944 - 24 Nov 2025
Viewed by 754
Abstract
NiO films were successfully deposited by sol–gel spin coating on Si, glass, and ITO-covered glass substrates. The impact of the film thickness (the different number of layers), annealing temperatures (from 300 to 500 °C), and the substrate type on the crystal structure, film [...] Read more.
NiO films were successfully deposited by sol–gel spin coating on Si, glass, and ITO-covered glass substrates. The impact of the film thickness (the different number of layers), annealing temperatures (from 300 to 500 °C), and the substrate type on the crystal structure, film morphology, optical, and vibrational properties was investigated. X-ray diffraction (XRD) revealed a polycrystalline structure and the appearance of the cubic NiO phase. Field Emission Scanning Electron Microscopy (FESEM) was applied to explore the surface morphology of NiO films, deposited on glass and ITO substrates. The oxidation states of Ni were determined by X-ray photoelectron spectroscopy (XPS). The presence of Ni2+ and Ni3+ states was supposed. UV–VIS–NIR spectroscopy revealed that NiO films possessed a high average transparency of up to 74.6% in the visible spectral range when they were deposited on glass substrates, and up to 76.9% for NiO films on ITO substrates. The thermal treatments and the film thickness slightly affected the film transparency in the spectral range of 450–700 nm. The work function (WF) of the samples was determined. This research showed that good properties of sol–gel NiO films can be compared to the properties of those films produced using complicated and expensive techniques. Full article
(This article belongs to the Special Issue Advances in Gel Films (2nd Edition))
Show Figures

Figure 1

19 pages, 930 KB  
Review
de Gennes–Suzuki–Kubo Quantum Ising Mean-Field Dynamics: Applications to Quantum Hysteresis, Heat Engines, and Annealing
by Soumyaditya Das, Soumyajyoti Biswas, Muktish Acharyya and Bikas K. Chakrabarti
Condens. Matter 2025, 10(4), 58; https://doi.org/10.3390/condmat10040058 - 20 Nov 2025
Viewed by 736
Abstract
We briefly review the early development of the mean-field dynamics for cooperatively interacting quantum many-body systems, mapped to pseudo-spin (Ising-like) systems. We start with (Anderson, 1958) pseudo-spin mapping the BCS (1957) Hamiltonian of superconductivity, reducing it to a mean-field Hamiltonian of the XY [...] Read more.
We briefly review the early development of the mean-field dynamics for cooperatively interacting quantum many-body systems, mapped to pseudo-spin (Ising-like) systems. We start with (Anderson, 1958) pseudo-spin mapping the BCS (1957) Hamiltonian of superconductivity, reducing it to a mean-field Hamiltonian of the XY (or effectively Ising) model in a transverse field. Then, we obtain the mean-field estimate for the equilibrium gap in the ground-state energy at different temperatures (gap disappearing at the transition temperature), which fits Landau’s (1949) phenomenological theory of superfluidity. We then present in detail a general dynamical extension (for non-equilibrium cases) of the mean-field theory of quantum Ising systems (in a transverse field), following de Gennes’ (1963) decomposition of the mean field into the orthogonal classical cooperative (longitudinal) component and the quantum (transverse) component, with each of the component following Suzuki–Kubo (1968) mean-field dynamics. Next, we discuss its applications to quantum hysteresis in Ising magnets (in the presence of an oscillating transverse field), to quantum heat engines (employing the transverse Ising model as a working fluid), and to the quantum annealing of the Sherrington–Kirkpatrick (1975) spin glass by tuning down (to zero) the transverse field, which provides us with a very fast computational algorithm, leading to ground-state energy values converging to the best-known analytic estimate for the model. Finally, we summarize the main results obtained and draw conclusions about the effectiveness of the de Gennes–Suzuki–Kubo mean-field equations for the study of various dynamical aspects of quantum condensed matter systems. Full article
Show Figures

Figure 1

23 pages, 4766 KB  
Article
Synergistic Integration of Graphene Nanoparticles in Colloidal TiO2 for Grätzel Cells (DSSC)
by Luigi Madeo, Anastasia Macario, Peppino Sapia and Pierantonio De Luca
J. Compos. Sci. 2025, 9(11), 612; https://doi.org/10.3390/jcs9110612 - 6 Nov 2025
Viewed by 1021
Abstract
This study presents the development and characterization of Grätzel cells (DSSCs), part of third-generation photovoltaic technologies, fabricated with and without the addition of graphene nanoparticles. A TiO2 paste was prepared by combining colloidal solutions of Polyethylene Glycol (PEG) and Titanium Tetrachloride (TiCl [...] Read more.
This study presents the development and characterization of Grätzel cells (DSSCs), part of third-generation photovoltaic technologies, fabricated with and without the addition of graphene nanoparticles. A TiO2 paste was prepared by combining colloidal solutions of Polyethylene Glycol (PEG) and Titanium Tetrachloride (TiCl4), and then deposited on FTO (Fluorine-doped Tin Oxide) glass substrates via spin coating and sensitized with N719 dye. Each cell was assembled using two FTO electrodes, a photoanode (TiO2/N719) and a platinum-coated counter electrode, separated by a liquid iodide/triiodide-based electrolyte to complete the redox cycle. The core objective was to optimize the graphene nanoparticle concentration within the TiO2 matrix to improve photovoltaic performance. Samples with 0.1%, 0.2%, and 0.5% graphene were tested under simulated illumination (AM 1.5G), evaluating photocurrent, efficiency, and Fill Factor (FF). Optical analysis included desorption of N719 using NaOH to quantify intrinsic light absorption. Graphene’s high transparency and charge transport properties positively affected light harvesting. Results showed that graphene dosage is critical; 0.1% yielded the best efficiency, while excess concentrations diminished electronic and optical behavior. Controlled integration of graphene nanoparticles enhances DSSC performance and supports the development of more efficient and sustainable solar cells. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Graphical abstract

18 pages, 1523 KB  
Article
The Effect of Zeolite Morphology and Loading on the Local Segmental Dynamics and Crystallisation Behaviour of PDMS–Zeolite Composites
by Tatjana Antonić Jelić, Damir Klepac, Leana Vratović, Dalibor Merunka, Jurica Jurec, Marin Tota, Kata Galić and Srećko Valić
Polymers 2025, 17(21), 2911; https://doi.org/10.3390/polym17212911 - 31 Oct 2025
Viewed by 514
Abstract
The local segmental mobility of polymer chains in polydimethylsiloxane (PDMS) plays a critical role in determining the material’s behaviour. Incorporation of zeolite particles can modify these local dynamics, which is crucial as they affect the overall performance of the resulting composite material with [...] Read more.
The local segmental mobility of polymer chains in polydimethylsiloxane (PDMS) plays a critical role in determining the material’s behaviour. Incorporation of zeolite particles can modify these local dynamics, which is crucial as they affect the overall performance of the resulting composite material with potential for various industrial applications. The aim of this study was to investigate the influence of zeolite addition on the local dynamic behaviour of PDMS chain segments in PDMS–zeolite composites. To investigate the effect of zeolite morphology and loading on the segmental dynamics and phase behaviour of PDMS, Zeolite A (with cubic and spherical morphologies) and Zeolite X were incorporated into the PDMS matrix at 20, 30, and 40 wt%. The electron spin resonance (ESR)-spin probe method was used to study molecular dynamics, while the thermal behaviour was analysed using differential scanning calorimetry (DSC). ESR results revealed that the presence of zeolites increases the isothermal crystallisation rate affecting segmental mobility in the amorphous phase below the crystallisation temperature. This effect was found to depend more strongly on zeolite morphology than on filler content. DSC measurements showed no change in glass transition temperature with the addition of zeolite; however, shifts in cold crystallisation and melting behaviour were observed, indicating changes in crystal structure and its degree of perfection. These findings suggest that zeolites act as heterogeneous nucleation agents, with their structural properties playing a critical role in the crystallisation behaviour of PDMS. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

18 pages, 3404 KB  
Article
Spin-Coating of Sizing on Glass Fibres
by James L. Thomason, Roya Akrami and Liu Yang
Micro 2025, 5(4), 47; https://doi.org/10.3390/micro5040047 - 25 Oct 2025
Viewed by 765
Abstract
Size is a surface coating applied to glass fibres during manufacture, and it is arguably the most important component in a glass-reinforced composite. Research and development on sizings and composite interfaces are severely limited, because conventional laboratory- scale glass fibre sizing analysis commonly [...] Read more.
Size is a surface coating applied to glass fibres during manufacture, and it is arguably the most important component in a glass-reinforced composite. Research and development on sizings and composite interfaces are severely limited, because conventional laboratory- scale glass fibre sizing analysis commonly involves sample preparation by dip coating, resulting in a size layer up to two orders of magnitude thicker than industrially produced glass fibre products. This makes it difficult to make useful comparisons between industrial and lab-scale-prepared samples when investigating size performance. This paper presents a novel, but simple, use of laboratory spin coating to apply a size layer to glass fibres that are similar to industrial-sized fibres. Thermogravimetric analysis and electron microscopy were used to investigate the size layers of glass fibres spin-coated with two chemically different sizing formulations, under a range of conditions. The average size layer thickness on spin-coated glass fibres could be easily and simply controlled in a range from 0.05 to 0.6 µm, compared to 0.4–1.3 µm on samples dip coated with the same size formulation and 0.06–0.10 µm on industrial reference samples. This novel application of the spin coating method offers the potential of improved research sample preparation, as it eliminates the need to alter the concentration of the sizing formulations to unacceptably low levels to obtain normal size layer thicknesses. Full article
Show Figures

Figure 1

14 pages, 4413 KB  
Article
The Impact of Centrifugation Devices and Collection Tubes on Fibrin Characteristics and Growth Factor Release Under High- and Low-Speed Protocols
by Oranit Bunyatratchata, Wutigri Nimlamool and Supatra Sangin
Dent. J. 2025, 13(10), 476; https://doi.org/10.3390/dj13100476 - 17 Oct 2025
Cited by 2 | Viewed by 1590
Abstract
Background: Platelet-rich fibrin (PRF) is an autologous platelet concentrate (APC) produced through blood centrifugation. Despite the development of various centrifugation systems, protocol variability continues to pose challenges in selecting the optimal method. This study investigated the effects of three different centrifuges and collection [...] Read more.
Background: Platelet-rich fibrin (PRF) is an autologous platelet concentrate (APC) produced through blood centrifugation. Despite the development of various centrifugation systems, protocol variability continues to pose challenges in selecting the optimal method. This study investigated the effects of three different centrifuges and collection tubes on the fibrin characteristics and growth factor release in leukocyte- and platelet-rich fibrin (L-PRF) and advanced platelet-rich fibrin plus (A-PRF+). Methods: Blood samples from six healthy female volunteers were processed using three centrifuges (Duo, IntraSpin, and LMC-3000) and three collection tubes (Pyrex, A-P, and silica-coated plastic) under high- (~700× g for 12 min) and low-speed (~200× g for 8 min) protocols. Fibrin clot weight and length were assessed. Growth factor release of platelet-derived growth factor-BB (PDGF-BB) and vascular endothelial growth factor (VEGF) was quantified using ELISA. Fibrin architecture was examined via scanning electron microscopy (SEM). Results: High-speed protocols tended to produce larger clots, whereas low-speed protocols generated smaller but more biologically active matrices. The IntraSpin and Duo centrifuges yielded greater clot dimensions and higher growth factor release than the LMC-3000. While tube type had no significant effect on growth factor levels, silica-coated tubes tended to produce the largest clots. The Pyrex tubes demonstrated comparable or superior growth factor release. Conclusions: PRF quality is influenced by centrifuge design, g-force, and tube material. Low-speed protocols with certified centrifuges are recommended, and FDA-approved glass tubes may provide a reliable alternative to reduce silica-related risks. Standardization and appropriate material selection are essential for consistent, safe, and effective regenerative outcomes. Full article
Show Figures

Figure 1

20 pages, 5964 KB  
Article
Synthesis and Characterization of Bioactive Coatings with Bone Regeneration Potential and Anti-Resorptive Effect
by Maxim V. Maximov, Lea Sleiman, Oana Cristina Maximov, Roxana Doina Trușcă, Ludmila Motelica, Angela Spoială, Denisa Ficai, Anton Ficai and Sorina Dinescu
Coatings 2025, 15(10), 1120; https://doi.org/10.3390/coatings15101120 - 26 Sep 2025
Viewed by 723
Abstract
Bioactive coatings are of great interest for orthopedic applications, as they combine mechanical stability with biological functionality. In this study, stainless steel discs were coated with 45S5 bioactive glass doped with 1.0 wt% samarium by spin coating, followed by surface functionalization with benfotiamine [...] Read more.
Bioactive coatings are of great interest for orthopedic applications, as they combine mechanical stability with biological functionality. In this study, stainless steel discs were coated with 45S5 bioactive glass doped with 1.0 wt% samarium by spin coating, followed by surface functionalization with benfotiamine through spraying. This strategy integrates three components: a metallic substrate as a stable and inexpensive support, a bioactive glass layer with well-known osteogenic potential, and a superficial organic layer of benfotiamine, a lipid-soluble analog of vitamin B1 with higher bioavailability. Samarium doping was selected based on previously reported antimicrobial potential against clinically relevant staphylococci, while the rationale for benfotiamine functionalization derives from literature describing vitamin B1 derivatives with anti-resorptive and osteogenic activity. The coatings were characterized by scanning electron microscopy (SEM) and Fourier-transform infrared (FTIR) microscopy. Bioactivity was assessed by immersion in simulated body fluid (SBF), where phosphate bands indicated the formation of calcium phosphate phases (CaPs). Wettability tests showed a reduced contact angle after benfotiamine functionalization. Cytocompatibility was evaluated by LDH and MTT assays with MC3T3-E1 cells, suggesting overall biocompatibility and enhanced cell viability after 7 days for the benfotiamine-functionalized coatings. The present findings support a simple and cost-effective route to multifunctional coatings with potential relevance for future orthopedic applications. Full article
(This article belongs to the Special Issue Films and Coatings with Biomedical Applications)
Show Figures

Figure 1

Back to TopTop