Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Ireb2

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2663 KiB  
Article
BUB1 Inhibition Induces Ferroptosis in Triple-Negative Breast Cancer Cell Lines
by Sushmitha Sriramulu, Shivani Thoidingjam, Stephen L. Brown, Farzan Siddiqui, Benjamin Movsas and Shyam Nyati
DNA 2025, 5(1), 16; https://doi.org/10.3390/dna5010016 - 12 Mar 2025
Viewed by 1281
Abstract
Background: Triple-negative breast cancer (TNBC) is a highly aggressive subtype with limited effective treatments available, including targeted therapies, often leading to poor prognosis. Mitotic checkpoint kinase BUB1 is frequently overexpressed in TNBC and correlates with poor survival outcomes suggesting its potential as [...] Read more.
Background: Triple-negative breast cancer (TNBC) is a highly aggressive subtype with limited effective treatments available, including targeted therapies, often leading to poor prognosis. Mitotic checkpoint kinase BUB1 is frequently overexpressed in TNBC and correlates with poor survival outcomes suggesting its potential as a therapeutic target. This study explores the cytotoxicity of TNBC cells to BUB1 inhibition, alone or in combination with radiation and demonstrates that ferroptosis, an iron-dependent form of programmed cell death, has a role. Methods: TNBC cell lines (SUM159, MDA-MB-231, and BT-549) were treated with a BUB1 inhibitor BAY1816032 (BUB1i) alone or in combination with the ferroptosis activator RSL3 with or without 4 Gy irradiation. Cell viability assays were conducted to assess treatment effects, qPCR analyses measured expression of key ferroptosis markers including ACSL4, GPX4, PTGS2, SLC7A11, NCOA4, IREB2, NFS1, and TFRC expression, and TBARS assay measured the lipid peroxidation levels. Ferroptosis specificity was confirmed through co-treatment with the ferroptosis inhibitor Ferrostatin-1 (F-1). Results: In all TNBC cell lines studied, BUB1 inhibition significantly induced ferroptosis, marked by increased expression of ACSL4 and PTGS2, decreased expression of GPX4 and SLC7A11, and increased lipid peroxidation levels. The combination of BUB1i with RSL3 further amplified these ferroptotic markers, suggesting at least an additive effect, which was not present with the combination of BUB1i and radiation. Co-treatment with Ferrostatin-1 reversed the expression of ferroptosis markers, suggesting that BUB1i-mediated cell death may involve ferroptotic signaling in TNBC cell lines. Conclusions: This study demonstrates that BUB1 inhibition may independently induce ferroptosis in TNBC cell lines, which is enhanced when combined with a ferroptosis activator. Further research is warranted to delineate the molecular mechanism of BUB1-mediated ferroptosis in TNBC. Full article
Show Figures

Figure 1

16 pages, 8149 KiB  
Article
Interaction Network Characterization of Infectious Bronchitis Virus Nsp2 with Host Proteins
by Mengmeng Wang, Zongyi Bo, Chengcheng Zhang, Mengjiao Guo, Yantao Wu and Xiaorong Zhang
Vet. Sci. 2024, 11(11), 531; https://doi.org/10.3390/vetsci11110531 - 31 Oct 2024
Cited by 1 | Viewed by 1497
Abstract
Infectious bronchitis (IB) is a highly contagious acute viral disease that leads to substantial economic losses in the poultry industry. Previous research conducted in our laboratory has indicated that Nsp2 may serve as a key virulence factor within the IBV genome, as evidenced [...] Read more.
Infectious bronchitis (IB) is a highly contagious acute viral disease that leads to substantial economic losses in the poultry industry. Previous research conducted in our laboratory has indicated that Nsp2 may serve as a key virulence factor within the IBV genome, as evidenced by its pronounced divergence between the field strain and its attenuated counterpart. Understanding the interaction between Nsp2 and host proteins is crucial to elucidating the role of the Nsp2 protein in the pathogenesis and proliferation of IBV. Currently, much remains to be uncovered regarding the host proteins that interact with the IBV Nsp2 protein. In this study, 10 host proteins, including COX1, COX3, NFIA, ITGA1, ATP1B1, ATP1B3, ABCB1, ISCA1, DNAJA1, and IREB2, were screened to interact with IBV Nsp2 through yeast two-hybrid experiments and molecular docking simulations. Furthermore, the interaction of Nsp2 with ATP1B3, DNAJA1, and ISCA1 proteins was further validated through co-immunoprecipitation and confocal experiments. The GO, KEGG, and PPI databases revealed that the host proteins interacting with Nsp2 are primarily associated with ATPase activation, Fe-S cluster binding, ion homeostasis, and innate immune regulation. The examination of the expression levels of these Nsp2-interacting host proteins during IBV infection demonstrated the significant downregulation of COX3, COX1, ATP1B1, and ATP1B3, while NFIA, DNAJA1, and IREB2 showed significant upregulation. Moreover, our study identified that IBV enhances viral replication by upregulating DNAJA1 expression, although the underlying mechanism requires further investigation. These findings provide valuable insights into the potential role of the Nsp2 protein in the pathogenesis of IBV. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

21 pages, 2005 KiB  
Review
Regulatory and Sensing Iron–Sulfur Clusters: New Insights and Unanswered Questions
by Anna M. SantaMaria and Tracey A. Rouault
Inorganics 2024, 12(4), 101; https://doi.org/10.3390/inorganics12040101 - 30 Mar 2024
Cited by 5 | Viewed by 3459
Abstract
Iron is an essential nutrient and necessary for biological functions from DNA replication and repair to transcriptional regulation, mitochondrial respiration, electron transfer, oxygen transport, photosynthesis, enzymatic catalysis, and nitrogen fixation. However, due to iron’s propensity to generate toxic radicals which can cause damage [...] Read more.
Iron is an essential nutrient and necessary for biological functions from DNA replication and repair to transcriptional regulation, mitochondrial respiration, electron transfer, oxygen transport, photosynthesis, enzymatic catalysis, and nitrogen fixation. However, due to iron’s propensity to generate toxic radicals which can cause damage to DNA, proteins, and lipids, multiple processes regulate the uptake and distribution of iron in living systems. Understanding how intracellular iron metabolism is optimized and how iron is utilized to regulate other intracellular processes is important to our overall understanding of a multitude of biological processes. One of the tools that the cell utilizes to regulate a multitude of functions is the ligation of the iron–sulfur (Fe-S) cluster cofactor. Fe-S clusters comprised of iron and inorganic sulfur are ancient components of living matter on earth that are integral for physiological function in all domains of life. FeS clusters that function as biological sensors have been implicated in a diverse group of life from mammals to bacteria, fungi, plants, and archaea. Here, we will explore the ways in which cells and organisms utilize Fe-S clusters to sense changes in their intracellular environment and restore equilibrium. Full article
(This article belongs to the Special Issue Iron-Sulfur Clusters: Assembly and Biological Roles)
Show Figures

Figure 1

18 pages, 2657 KiB  
Article
Impact of miR-29c-3p in the Nucleus Accumbens on Methamphetamine-Induced Behavioral Sensitization and Neuroplasticity-Related Proteins
by Hang Su, Li Zhu, Linlan Su, Min Li, Rui Wang, Jie Zhu, Yanjiong Chen and Teng Chen
Int. J. Mol. Sci. 2024, 25(2), 942; https://doi.org/10.3390/ijms25020942 - 11 Jan 2024
Cited by 1 | Viewed by 1875
Abstract
Methamphetamine (METH) abuse inflicts both physical and psychological harm. While our previous research has established the regulatory role of miR-29c-3p in behavior sensitization, the underlying mechanisms and target genes remain incompletely understood. In this study, we employed the isobaric tags for relative and [...] Read more.
Methamphetamine (METH) abuse inflicts both physical and psychological harm. While our previous research has established the regulatory role of miR-29c-3p in behavior sensitization, the underlying mechanisms and target genes remain incompletely understood. In this study, we employed the isobaric tags for relative and absolute quantitation (iTRAQ) technique in conjunction with Ingenuity pathway analysis (IPA) to probe the putative molecular mechanisms of METH sensitization through miR-29c-3p inhibition. Through a microinjection of AAV-anti-miR-29c-3p into the nucleus accumbens (NAc) of mice, we observed the attenuation of METH-induced locomotor effects. Subsequent iTRAQ analysis identified 70 differentially expressed proteins (DEPs), with 22 up-regulated potential target proteins identified through miR-29c-3p target gene prediction and IPA analysis. Our focus extended to the number of neuronal branches, the excitatory synapse count, and locomotion-related pathways. Notably, GPR37, NPC1, and IREB2 emerged as potential target molecules for miR-29c-3p regulation, suggesting their involvement in the modulation of METH sensitization. Quantitative PCR confirmed the METH-induced aberrant expression of Gpr37, Npc1, and Ireb2 in the NAc of mice. Specifically, the over-expression of miR-29c-3p led to a significant reduction in the mRNA level of Gpr37, while the inhibition of miR-29c-3p resulted in a significant increase in the mRNA level of Gpr37, consistent with the regulatory principle of miRNAs modulating target gene expression. This suggests that miR-29c-3p potentially influences METH sensitization through its regulation of neuroplasticity. Our research indicates that miR-29c-3p plays a crucial role in regulating METH-induced sensitization, and it identified the potential molecular of miR-29c-3p in regulating METH-induced sensitization. Full article
Show Figures

Figure 1

16 pages, 6340 KiB  
Article
Effects of Curcumin on Oxidative Stress and Ferroptosis in Acute Ammonia Stress-Induced Liver Injury in Gibel Carp (Carassius gibelio)
by Liyun Wu, Bo Dong, Qiaozhen Chen, Yu Wang, Dong Han, Xiaoming Zhu, Haokun Liu, Zhimin Zhang, Yunxia Yang, Shouqi Xie and Junyan Jin
Int. J. Mol. Sci. 2023, 24(7), 6441; https://doi.org/10.3390/ijms24076441 - 29 Mar 2023
Cited by 35 | Viewed by 3881
Abstract
This study investigated the potential role of curcumin (CUR) in preventing oxidative stress and ferroptosis induced by ammonia exposure in gibel carp. Experimental fish (initial weight: 11.22 ± 0.10 g, n = 150) were fed diets supplemented with or without 0.5% CUR for [...] Read more.
This study investigated the potential role of curcumin (CUR) in preventing oxidative stress and ferroptosis induced by ammonia exposure in gibel carp. Experimental fish (initial weight: 11.22 ± 0.10 g, n = 150) were fed diets supplemented with or without 0.5% CUR for 56 days, followed by a 24 h ammonia (32.5 mg/L) exposure. Liver damages (aspartate aminotransferase (AST), alanine aminotransferase (ALT), adenosine deaminase (ADA), and alkaline phosphatase (ALP)) and oxidative stress enzyme activities (reactive oxygen species (ROS), malondialdehyde (MDA); and the content of antioxidant capacity (T-AOC), superoxide dismutase (SOD), and glutathione peroxidase (GPx)) were induced by ammonia stress. The antioxidant capacity was decreased, as indicated by inhibited gene expression of nuclear factor erythroid 2-related factor 2 (nrf2), heme oxygenase-1 (ho-1), catalase (cat), and sod. Ferroptosis was induced by ammonia stress, as suggested by upregulated mRNA levels of nuclear receptor coactivator 4 (ncoa4), transferrin receptor 1 (tfr1), and iron-responsive element-binding protein 2 (ireb2), and downregulated expression of glutathione peroxidase 4 (gpx4), ferroportin (fpn), and ferritin heavy chain 1 (fth1). In addition, both mRNA and protein levels of ferroptosis markers acyl-CoA synthetase long-chain family member 4 (ACSL4) and prostaglandin-endoperoxide synthase 2 (PTGS2) were upregulated, while cystine/glutamate antiporter (SLC7A11) was downregulated. However, liver injury and ferroptosis in fish induced by ammonia could be attenuated by CUR. Collectively, these findings demonstrate that CUR ameliorates oxidative stress and attenuates ammonia stress-induced ferroptosis. This study provides a new perspective on potential preventive strategies against ammonia stress in gibel carp by dietary CUR. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

17 pages, 2065 KiB  
Review
Pleiotropic Roles of a KEAP1-Associated Deubiquitinase, OTUD1
by Daisuke Oikawa, Kouhei Shimizu and Fuminori Tokunaga
Antioxidants 2023, 12(2), 350; https://doi.org/10.3390/antiox12020350 - 1 Feb 2023
Cited by 18 | Viewed by 5174
Abstract
Protein ubiquitination, which is catalyzed by ubiquitin-activating enzymes, ubiquitin-conjugating enzymes, and ubiquitin ligases, is a crucial post-translational modification to regulate numerous cellular functions in a spatio–temporal-specific manner. The human genome encodes ~100 deubiquitinating enzymes (DUBs), which antagonistically regulate the ubiquitin system. OTUD1, an [...] Read more.
Protein ubiquitination, which is catalyzed by ubiquitin-activating enzymes, ubiquitin-conjugating enzymes, and ubiquitin ligases, is a crucial post-translational modification to regulate numerous cellular functions in a spatio–temporal-specific manner. The human genome encodes ~100 deubiquitinating enzymes (DUBs), which antagonistically regulate the ubiquitin system. OTUD1, an ovarian tumor protease (OTU) family DUB, has an N-terminal-disordered alanine-, proline-, glycine-rich region (APGR), a catalytic OTU domain, and a ubiquitin-interacting motif (UIM). OTUD1 preferentially hydrolyzes lysine-63-linked ubiquitin chains in vitro; however, recent studies indicate that OTUD1 cleaves various ubiquitin linkages, and is involved in the regulation of multiple cellular functions. Thus, OTUD1 predominantly functions as a tumor suppressor by targeting p53, SMAD7, PTEN, AKT, IREB2, YAP, MCL1, and AIF. Furthermore, OTUD1 regulates antiviral signaling, innate and acquired immune responses, and cell death pathways. Similar to Nrf2, OTUD1 contains a KEAP1-binding ETGE motif in its APGR and regulates the reactive oxygen species (ROS)-mediated oxidative stress response and cell death. Importantly, in addition to its association with various cancers, including multiple myeloma, OTUD1 is involved in acute graft-versus-host disease and autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, and ulcerative colitis. Thus, OTUD1 is an important DUB as a therapeutic target for a variety of diseases. Full article
(This article belongs to the Special Issue 10th Anniversary of Antioxidants—Review Collection)
Show Figures

Graphical abstract

11 pages, 4318 KiB  
Article
The Characteristics of the Second and Third Virtual Cathodes in an Axial Vircator for the Generation of High-Power Microwaves
by Sohail Mumtaz and Eun-Ha Choi
Electronics 2022, 11(23), 3973; https://doi.org/10.3390/electronics11233973 - 30 Nov 2022
Cited by 7 | Viewed by 2820
Abstract
A virtual cathode oscillator or vircator is a vacuum tube for producing high-power microwaves (HPM). The efficiency of the vircator has been a difficult task for decades. The main reasons for low efficiency are intense relativistic electron beam (IREB) loss and few or [...] Read more.
A virtual cathode oscillator or vircator is a vacuum tube for producing high-power microwaves (HPM). The efficiency of the vircator has been a difficult task for decades. The main reasons for low efficiency are intense relativistic electron beam (IREB) loss and few or no interactions between IREB and HPM. In this case, forming multiple virtual cathodes may be beneficial in overcoming these constraints. By reusing the axially propagating leaked electrons (LE), we could confine them and form multiple virtual cathodes (VCs). This article discussed the characteristics of newly formed VCs based on simulation results. The formation time of new VCs was discovered to be highly dependent on the reflector position and the density of LE approaching their surfaces. Furthermore, multiple VC formation in the waveguide region does not affect conventional VCs’ position or forming time. The emission mode of the generated HPM was TM01 with single and multiple VCs and remained unaffected. The formation of multiple VCs positively influenced the axial and radial electric fields. When compared to a single VC, the axial and radial electric field increased 25.5 and 18 times with multiple VCs. The findings suggested that forming multiple VCs could be a future hope for achieving high vircator efficiency. Full article
(This article belongs to the Special Issue Advanced RF, Microwave Engineering, and High-Power Microwave Sources)
Show Figures

Figure 1

15 pages, 5461 KiB  
Article
TMT Quantitative Proteomics Analysis Reveals the Effects of Transport Stress on Iron Metabolism in the Liver of Chicken
by Jun Liu, Dunhua Liu, Xun Wu, Cuili Pan, Shuzhe Wang and Lu Ma
Animals 2022, 12(1), 52; https://doi.org/10.3390/ani12010052 - 28 Dec 2021
Cited by 18 | Viewed by 3086
Abstract
Abnormal iron metabolism can cause oxidative stress in broilers, and transport stress (TS) may potentially influence iron metabolism. However, the mechanisms by which TS affects iron metabolism are unclear. This study used quantitative proteome analysis based on tandem mass tag (TMT) to investigate [...] Read more.
Abnormal iron metabolism can cause oxidative stress in broilers, and transport stress (TS) may potentially influence iron metabolism. However, the mechanisms by which TS affects iron metabolism are unclear. This study used quantitative proteome analysis based on tandem mass tag (TMT) to investigate the effects of TS on liver iron metabolism in broilers. Broilers (n = 24) reared under the same conditions were selected randomly into the transported group for 4 h (T2) and non-transported group (T1). Results showed that the serum iron level and total iron-binding capacity of broilers in the T2 were significantly higher than those in the T1 (p < 0.05). The liver iron content of broilers in the T2 (0.498 ± 0.058 mg·gprot−1) was significantly higher than that in the T1 (0.357 ± 0.035 mg·gprot−1), and the iron-stained sections showed that TS caused the enrichment of iron in the liver. We identified 1139 differentially expressed proteins (DEPs). Twelve DEPs associated with iron metabolism were identified, of which eight were up-regulated, and four were down-regulated in T2 compared with T1. Prediction of the protein interaction network for DEPs showed that FTH1, IREB2, and HEPH play vital roles in this network. The results provide new insights into the effects of TS on broilers’ liver iron metabolism. Full article
Show Figures

Figure 1

46 pages, 5049 KiB  
Article
Systematic Surveys of Iron Homeostasis Mechanisms Reveal Ferritin Superfamily and Nucleotide Surveillance Regulation to be Modified by PINK1 Absence
by Jana Key, Nesli Ece Sen, Aleksandar Arsović, Stella Krämer, Robert Hülse, Natasha Nadeem Khan, David Meierhofer, Suzana Gispert, Gabriele Koepf and Georg Auburger
Cells 2020, 9(10), 2229; https://doi.org/10.3390/cells9102229 - 2 Oct 2020
Cited by 16 | Viewed by 5875
Abstract
Iron deprivation activates mitophagy and extends lifespan in nematodes. In patients suffering from Parkinson’s disease (PD), PINK1-PRKN mutations via deficient mitophagy trigger iron accumulation and reduce lifespan. To evaluate molecular effects of iron chelator drugs as a potential PD therapy, we assessed fibroblasts [...] Read more.
Iron deprivation activates mitophagy and extends lifespan in nematodes. In patients suffering from Parkinson’s disease (PD), PINK1-PRKN mutations via deficient mitophagy trigger iron accumulation and reduce lifespan. To evaluate molecular effects of iron chelator drugs as a potential PD therapy, we assessed fibroblasts by global proteome profiles and targeted transcript analyses. In mouse cells, iron shortage decreased protein abundance for iron-binding nucleotide metabolism enzymes (prominently XDH and ferritin homolog RRM2). It also decreased the expression of factors with a role for nucleotide surveillance, which associate with iron-sulfur-clusters (ISC), and are important for growth and survival. This widespread effect included prominently Nthl1-Ppat-Bdh2, but also mitochondrial Glrx5-Nfu1-Bola1, cytosolic Aco1-Abce1-Tyw5, and nuclear Dna2-Elp3-Pold1-Prim2. Incidentally, upregulated Pink1-Prkn levels explained mitophagy induction, the downregulated expression of Slc25a28 suggested it to function in iron export. The impact of PINK1 mutations in mouse and patient cells was pronounced only after iron overload, causing hyperreactive expression of ribosomal surveillance factor Abce1 and of ferritin, despite ferritin translation being repressed by IRP1. This misregulation might be explained by the deficiency of the ISC-biogenesis factor GLRX5. Our systematic survey suggests mitochondrial ISC-biogenesis and post-transcriptional iron regulation to be important in the decision, whether organisms undergo PD pathogenesis or healthy aging. Full article
Show Figures

Graphical abstract

15 pages, 688 KiB  
Article
The time of Calcium Feeding Affects the Productive Performance of Sows
by Lumin Gao, Xue Lin, Chunyan Xie, Tianyong Zhang, Xin Wu and Yulong Yin
Animals 2019, 9(6), 337; https://doi.org/10.3390/ani9060337 - 10 Jun 2019
Cited by 14 | Viewed by 3862
Abstract
This study aims to investigate the effect of Calcium (Ca) feeding time on a sow’s productive performance and the profiles of serum mineral elements during late pregnancy and lactation. A total of 75 pregnant sows were assigned to three groups: The control (C), [...] Read more.
This study aims to investigate the effect of Calcium (Ca) feeding time on a sow’s productive performance and the profiles of serum mineral elements during late pregnancy and lactation. A total of 75 pregnant sows were assigned to three groups: The control (C), earlier-later (E-L), and later-earlier (L-E) groups. During late pregnancy, the C group was fed an extra 4.5 g Ca (in the form of CaCO3) at both 06:00 and 15:00, the E-L group was fed an extra 9 g Ca at 06:00, and the L-E group was fed an extra 9 g Ca at 15:00. Similar treatments with double the amount of Ca were applied during lactation. The results show that, compared with the C group, L-E feeding decreased the number of stillbirths and the duration of farrowing and placenta expulsion (FARPLA) and increased the average daily weight gain (ADG) of piglets. Similarly, E-L feeding increased the ADG of piglets (p < 0.05). Furthermore, both E-L and L-E feeding increased the Ca levels in sow serum and umbilical serum, and the Fe levels in umbilical serum, but decreased the Ca levels in the placenta and colostrum (p < 0.05). Experiments on the genes involved in mineral element transport showed that E-L feeding activated the mRNA expression of TRPV5, S100G, SLC30A7, SLC39A4, and Ferroportin1, while it inhibited the mRNA expression of ATP7A in the placenta (p < 0.05). Moreover, L-E feeding up-regulated the mRNA expression of ATP2B and IREB2, while it down-regulated the mRNA expression of ATP7B in the placenta (p < 0.05). In conclusion, the present study demonstrated that maternal Ca feeding at 15:00 h during late pregnancy and lactation decreased FARPLA and stillbirths and improved the growth performance of suckling piglets by altering the mineral element of the metabolism in the umbilical serum and milk, compared to conventional feeding regimes. Full article
(This article belongs to the Section Animal Nutrition)
Show Figures

Figure 1

Back to TopTop