The Characteristics of the Second and Third Virtual Cathodes in an Axial Vircator for the Generation of High-Power Microwaves
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Phase Space of IREB and Formation of Multiple VCs
3.2. Influence of the Multiple VCs on the Axial and Radial Electric Fields
3.3. Estimation of the Emission Mode with Single and Multiple-VCs
3.4. Output Power and Efficiency Comparison of Axial VCO with Single-VC and Multiple-VCs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Vendik, I.B.; Vendik, O.G. Metamaterials and their application in microwaves: A review. Tech. Phys. 2013, 58, 1–24. [Google Scholar] [CrossRef]
- Benford, J.; Swegle, J.A.; Schamiloglu, E. High Power Microwaves, 3rd ed.; Taylor & Francis: New York, NY, USA, 2016. [Google Scholar]
- Gold, S.H.; Nusinovich, G.S. Review of high-power microwave source research. Rev. Sci. Instrum. 1997, 68, 3945–3974. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, U.; Singh, T.P.; Sinha, A.K. A Review on the Applications of High Power, High Frequency Microwave Source: Gyrotron. J. Fusion Energy 2011, 30, 257–276. [Google Scholar] [CrossRef]
- Dubinov, A.E.; Kornilova, I.Y.; Selemir, V.D. Collective ion acceleration in systems with a virtual cathode. Physics-Uspekhi 2002, 45, 1109–1129. [Google Scholar] [CrossRef]
- Benford, J. Space Applications of High-Power Microwaves. IEEE Trans. Plasma Sci. 2008, 36, 569–581. [Google Scholar] [CrossRef]
- Ramos, L.B.; Sánchez, R.J.; De Figueiredo, A.K.; Nolasco, S.M.; Fernández, M.B. Optimization of Microwave Pretreatment Variables for Canola Oil Extraction. J. Food Process Eng. 2017, 40, e12431. [Google Scholar] [CrossRef]
- Bakhshabadi, H.; Mirzaei, H.; Ghodsvali, A.; Jafari, S.M.; Ziaiifar, A.M.; Farzaneh, V. The effect of microwave pretreatment on some physico-chemical properties and bioactivity of Black cumin seeds’ oil. Ind. Crops Prod. 2017, 97, 1–9. [Google Scholar] [CrossRef]
- Grenier, K.; Dubuc, D.; Chen, T.; Artis, F.; Chretiennot, T.; Poupot, M.; Fournié, J. Recent Advances in Microwave-Based Dielectric Spectroscopy at the Cellular Level for Cancer Investigations. IEEE Trans. Microw. Theory Tech. 2013, 61, 2023–2030. [Google Scholar] [CrossRef] [Green Version]
- Tabuse, K. Basic knowledge of a microwave tissue coagulator and its clinical applications. J. Hepatobiliary Pancreat. Surg. 1998, 5, 165–172. [Google Scholar] [CrossRef]
- Vrba, J. Medical Applications of Microwaves. Electromagn. Biol. Med. 2005, 24, 441–448. [Google Scholar] [CrossRef]
- Han, I.; Mumtaz, S.; Ashokkumar, S.; Yadav, D.K.; Choi, E.H. Review of Developments in Combating COVID-19 by Vaccines, Inhibitors, Radiations, and Nonthermal Plasma. Curr. Issues Mol. Biol. 2022, 44, 384. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.H.; Mumtaz, S.; Lee, S.W.; Kim, D.-Y.; Lim, J.S.; Kaushik, N.K.; Choi, E.H. Focus of high-power microwaves with positive and negative zone plate to increase the receiving power in axial virtual cathode oscillator. Curr. Appl. Phys. 2021, 29, 89–96. [Google Scholar] [CrossRef]
- Mumtaz, S.; Rana, J.N.; Choi, E.H.; Han, I. Microwave Radiation and the Brain: Mechanisms, Current Status, and Future Prospects. Int. J. Mol. Sci. 2022, 23, 9288. [Google Scholar] [CrossRef] [PubMed]
- Mumtaz, S.; Bhartiya, P.; Kaushik, N.; Adhikari, M.; Lamichhane, P.; Lee, S.-J.; Kaushik, N.K.; Choi, E.H. Pulsed high-power microwaves do not impair the functions of skin normal and cancer cells in vitro: A short-term biological evaluation. J. Adv. Res. 2020, 22, 47–55. [Google Scholar] [CrossRef]
- Bhartiya, P.; Mumtaz, S.; Lim, J.S.; Kaushik, N.; Lamichhane, P.; Nguyen, L.N.; Jang, J.H.; Yoon, S.H.; Choi, J.J.; Kaushik, N.K.; et al. Pulsed 3.5 GHz high power microwaves irradiation on physiological solution and their biological evaluation on human cell lines. Sci. Rep. 2021, 11, 8475. [Google Scholar] [CrossRef]
- Shaw, P.; Kumar, N.; Mumtaz, S.; Lim, J.S.; Jang, J.H.; Kim, D.; Sahu, B.D.; Bogaerts, A.; Choi, E.H. Evaluation of non-thermal effect of microwave radiation and its mode of action in bacterial cell inactivation. Sci. Rep. 2021, 11, 14003. [Google Scholar] [CrossRef]
- Yoon, S.; Jeong, K.; Mumtaz, S.; Choi, E.H. Electromagnetic pulse shielding effectiveness of circular multi-waveguides for fluids. Results Phys. 2020, 16, 102946. [Google Scholar] [CrossRef]
- Jiang, W.; Masugata, K.; Yatsui, K. Mechanism of microwave generation by virtual cathode oscillation. Phys. Plasmas 1995, 2, 982–986. [Google Scholar] [CrossRef]
- Jiang, W.; Dickens, J.; Kristiansen, M. Efficiency enhancement of a coaxial virtual cathode oscillator. IEEE Trans. Plasma Sci. 1999, 27, 1543–1544. [Google Scholar] [CrossRef]
- Biswas, D.; Kumar, R. Efficiency Enhancement of the Axial VIRCATOR. IEEE Trans. Plasma Sci. 2007, 35, 369–378. [Google Scholar] [CrossRef]
- Sullivan, D.J. High Power Microwave Generation from a Virtual Cathode Oscillator (Vircator). IEEE Trans. Nucl. Sci. 1983, 30, 3426–3428. [Google Scholar] [CrossRef]
- Badarin, A.A.; Kurkin, S.A.; Andreev, A.V.; Koronovskii, A.A.; Frolov, N.S.; Hramov, A.E. Virtual cathode oscillator with elliptical resonator. In Proceedings of the 2017 Eighteenth International Vacuum Electronics Conference (IVEC), London, UK, 24–26 April 2017; pp. 1–2. [Google Scholar]
- Jiang, W.; Kitano, H.; Huang, L.; Masugata, K.; Yatsui, K. Effect of longitudinal magnetic field on microwave efficiency of virtual cathode oscillator. IEEE Trans. Plasma Sci. 1996, 24, 187–192. [Google Scholar] [CrossRef]
- Dang, F. A new compact self-coherent high power microwave source based on dual beams. Phys. Plasmas 2015, 22, 053301. [Google Scholar] [CrossRef]
- Gurnevich, E.; Molchanov, P. The Effect of the Electron-Beam Parameter Spread on Microwave Generation in a Three-Cavity Axial Vircator. IEEE Trans. Plasma Sci. 2015, 43, 1014–1017. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Chaturvedi, S. Particle-in-cell simulations for virtual cathode oscillator including foil ablation effects. Phys. Plasmas 2011, 18, 063104. [Google Scholar] [CrossRef]
- Chen, Y.; Mankowski, J.; Walter, J.; Kristiansen, M.; Gale, R. Cathode and Anode Optimization in a Virtual Cathode Oscillator. IEEE Trans. Dielectr. Electr. Insul. 2007, 14, 1037–1044. [Google Scholar] [CrossRef]
- Mumtaz, S.; Lim, J.S.; Ghimire, B.; Lee, S.W.; Choi, J.J.; Choi, E.H. Enhancing the power of high power microwaves by using zone plate and investigations for the position of virtual cathode inside the drift tube. Phys. Plasmas 2018, 25, 103113. [Google Scholar] [CrossRef]
- Mumtaz, S.; Munnaf, S.A.; Choi, E.H. Numerical study on the formation of second virtual cathode by using different material floating zone plate inside drift tube region. In Proceedings of the 2021 22nd International Vacuum Electronics Conference (IVEC), Virtual Conference, 27–30 April 2021; pp. 1–2. [Google Scholar]
- Kim, S.-H.; Lee, C.-J.; Kim, W.-I.; Ko, K.-C. Experimental Investigation into the Optimum Position of a Ring Reflector for an Axial Virtual Cathode Oscillator. Electronics 2021, 10, 1878. [Google Scholar] [CrossRef]
- Mohammadi Shirkolaei, M. A New Design Approach of Low-Noise Stable Broadband Microwave Amplifier Using Hybrid Optimization Method. IETE J. Res. 2020. [Google Scholar] [CrossRef]
- Molchanov, P.V.; Gurnevich, E.A.; Tikhomirov, V.V.; Siahlo, S.E. Simulation of an axial vircator with a three-cavity resonator. arXiv 2014, arXiv:1408.1824. [Google Scholar]
- Champeaux, S.; Gouard, P.; Cousin, R.; Larour, J. Improved design of a multistage axial vircator with reflectors for enhanced performances. IEEE Trans. Plasma Sci. 2016, 44, 31–38. [Google Scholar] [CrossRef]
- Dubinov, A.E.; Tarakanov, V.P. PIC Simulation of the Dynamics of Electrons in a Conical Vircator. IEEE Trans. Plasma Sci. 2016, 44, 1391–1395. [Google Scholar] [CrossRef]
- Kurkin, S.A.; Hramov, A.E.; Koronovskii, A.A. Microwave radiation power of relativistic electron beam with virtual cathode in the external magnetic field. Appl. Phys. Lett. 2013, 103, 43507. [Google Scholar] [CrossRef] [Green Version]
- Mumtaz, S.; Chandra Adhikari, B.; Minin, I.V.; Minin, O.V.; Lamichhane, P.; Paneru, R.; Ha Choi, E. Particle in cell simulation for the power enhancement by forming the second virtual cathode in an axial vircator. Results Phys. 2021, 24, 104126. [Google Scholar] [CrossRef]
- Mumtaz, S.; Nguyen, L.N.; Uhm, H.; Lamichhane, P.; Lee, S.W.; Choi, E.H. A novel approach to form second virtual cathode by installing a floating zone plate inside the drift tube. Results Phys. 2020, 17, 103052. [Google Scholar] [CrossRef]
- Dubinov, A.E.; Saikov, S.K.; Tarakanov, V.P. Multivircator as a New Highly Effective Microwave Generator With Multiple Virtual Cathodes: Concept and PIC-Simulation. IEEE Trans. Plasma Sci. 2020, 48, 141–145. [Google Scholar] [CrossRef]
- Mumtaz, S.; Uhm, H.; Lim, J.S.; Choi, E.H. Output-power enhancement of vircator based on second virtual cathode formed by wall charge on a dielectric reflector. IEEE Trans. Electron Devices 2022, 69, 2043–2050. [Google Scholar] [CrossRef]
- Mumtaz, S.; Choi, E.H. An Efficient Vircator with High Output Power and Less Drifting Electron Loss by Forming Multivirtual Cathodes. IEEE Electron Device Lett. 2022, 43, 1756–1759. [Google Scholar] [CrossRef]
- Mumtaz, S.; Lamichhane, P.; Sup Lim, J.; Ho Yoon, S.; Hyun Jang, J.; Doyoung, K.; Woo Lee, S.; Joo Choi, J.; Ha Choi, E. Enhancement in the power of microwaves by the interference with a cone-shaped reflector in an axial vircator. Results Phys. 2019, 15, 102611. [Google Scholar] [CrossRef]
- Shukla, R.; Sharma, S.K.; Banerjee, P.; Deb, P.; Prabaharan, T.; Das, R.; Kdas, B.; Adhikary, B.; Verma, R.; Shyam, A. Microwave emission from an AXIAL-Virtual Cathode Oscillator driven by a compact pulsed power source. J. Phys. Conf. Ser. 2012, 390, 012033. [Google Scholar] [CrossRef] [Green Version]
- Choi, E.-H.; Choi, M.-C.; Jung, Y.; Choug, M.-W.; Ko, J.-J.; Seo, Y.; Cho, G.; Uhm, H.S.; Suk, H. High-power microwave generation from an axially extracted virtual cathode oscillator. IEEE Trans. Plasma Sci. 2000, 28, 2128–2134. [Google Scholar] [CrossRef]
- Dubinov, A.E.; Tarakanov, V.P. Simulated Formation of a Virtual Cathode Chain in a Conical Drift Tube. Tech. Phys. Lett. 2019, 45, 754–756. [Google Scholar] [CrossRef]
- Champeaux, S.; Gouard, P.; Cousin, R.; Larour, J. 3-D PIC Numerical Investigations of a Novel Concept of Multistage Axial Vircator for Enhanced Microwave Generation. IEEE Trans. Plasma Sci. 2015, 43, 3841–3855. [Google Scholar] [CrossRef]
- Tanaka, R.; Fukada, Y.; Ito, H. Electrode shape dependence of output microwave characteristics in reflex triode virtual cathode oscillator. Phys. Plasmas 2021, 28, 33103. [Google Scholar] [CrossRef]
- Kalinin, Y.A.; Starodubov, A.V.; Fokin, A.S. Hybrid Vircator Microwave Oscillator with a Nonlaminar Electron Beam and an Electrodynamic Section. Plasma Phys. Rep. 2019, 45, 770–776. [Google Scholar] [CrossRef]
- Badarin, A.A.; Andreev, A.V.; Kurkin, S.A. Photonic Crystal as a Section of Modulation and Interaction With a Virtual Cathode in Two-Section Vircator. IEEE Trans. Electron Devices 2020. [Google Scholar] [CrossRef]
- Tuan, S.; Chung, S.S.M. The Eeffects of Anode Foil Transmission Ratio on the Performance of Vircator. In Proceedings of the 2018 12th International Symposium on Antennas, Propagation and EM Theory (ISAPE), Hangzhou, China, 3–6 December 2018; pp. 1–4. [Google Scholar]
- Davis, H.A.; Fulton, R.D.; Sherwood, E.G.; Kwan, T.J.T. Enhanced-efficiency, narrow-band gigawatt microwave output of the reditron oscillator. IEEE Trans. Plasma Sci. 1990, 18, 611–617. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mumtaz, S.; Choi, E.-H. The Characteristics of the Second and Third Virtual Cathodes in an Axial Vircator for the Generation of High-Power Microwaves. Electronics 2022, 11, 3973. https://doi.org/10.3390/electronics11233973
Mumtaz S, Choi E-H. The Characteristics of the Second and Third Virtual Cathodes in an Axial Vircator for the Generation of High-Power Microwaves. Electronics. 2022; 11(23):3973. https://doi.org/10.3390/electronics11233973
Chicago/Turabian StyleMumtaz, Sohail, and Eun-Ha Choi. 2022. "The Characteristics of the Second and Third Virtual Cathodes in an Axial Vircator for the Generation of High-Power Microwaves" Electronics 11, no. 23: 3973. https://doi.org/10.3390/electronics11233973