Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (561)

Search Parameters:
Keywords = IoT healthcare systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 3002 KiB  
Article
A Refined Fuzzy MARCOS Approach with Quasi-D-Overlap Functions for Intuitive, Consistent, and Flexible Sensor Selection in IoT-Based Healthcare Systems
by Mahmut Baydaş, Safiye Turgay, Mert Kadem Ömeroğlu, Abdulkadir Aydin, Gıyasettin Baydaş, Željko Stević, Enes Emre Başar, Murat İnci and Mehmet Selçuk
Mathematics 2025, 13(15), 2530; https://doi.org/10.3390/math13152530 - 6 Aug 2025
Abstract
Sensor selection in IoT-based smart healthcare systems is a complex fuzzy decision-making problem due to the presence of numerous uncertain and interdependent evaluation criteria. Traditional fuzzy multi-criteria decision-making (MCDM) approaches often assume independence among criteria and rely on aggregation operators that impose sharp [...] Read more.
Sensor selection in IoT-based smart healthcare systems is a complex fuzzy decision-making problem due to the presence of numerous uncertain and interdependent evaluation criteria. Traditional fuzzy multi-criteria decision-making (MCDM) approaches often assume independence among criteria and rely on aggregation operators that impose sharp transitions between preference levels. These assumptions can lead to decision outcomes with insufficient differentiation, limited discriminatory capacity, and potential issues in consistency and sensitivity. To overcome these limitations, this study proposes a novel fuzzy decision-making framework by integrating Quasi-D-Overlap functions into the fuzzy MARCOS (Measurement of Alternatives and Ranking According to Compromise Solution) method. Quasi-D-Overlap functions represent a generalized extension of classical overlap operators, capable of capturing partial overlaps and interdependencies among criteria while preserving essential mathematical properties such as associativity and boundedness. This integration enables a more intuitive, flexible, and semantically rich modeling of real-world fuzzy decision problems. In the context of real-time health monitoring, a case study is conducted using a hybrid edge–cloud architecture, involving sensor tasks such as heartrate monitoring and glucose level estimation. The results demonstrate that the proposed method provides greater stability, enhanced discrimination, and improved responsiveness to weight variations compared to traditional fuzzy MCDM techniques. Furthermore, it effectively supports decision-makers in identifying optimal sensor alternatives by balancing critical factors such as accuracy, energy consumption, latency, and error tolerance. Overall, the study fills a significant methodological gap in fuzzy MCDM literature and introduces a robust fuzzy aggregation strategy that facilitates interpretable, consistent, and reliable decision making in dynamic and uncertain healthcare environments. Full article
Show Figures

Figure 1

23 pages, 3472 KiB  
Article
Resampling Multi-Resolution Signals Using the Bag of Functions Framework: Addressing Variable Sampling Rates in Time Series Data
by David Orlando Salazar Torres, Diyar Altinses and Andreas Schwung
Sensors 2025, 25(15), 4759; https://doi.org/10.3390/s25154759 - 1 Aug 2025
Viewed by 132
Abstract
In time series analysis, the ability to effectively handle data with varying sampling rates is crucial for accurate modeling and analysis. This paper presents the MR-BoF (Multi-Resolution Bag of Functions) framework, which leverages sampling-rate-independent techniques to decompose time series data while accommodating signals [...] Read more.
In time series analysis, the ability to effectively handle data with varying sampling rates is crucial for accurate modeling and analysis. This paper presents the MR-BoF (Multi-Resolution Bag of Functions) framework, which leverages sampling-rate-independent techniques to decompose time series data while accommodating signals with differing resolutions. Unlike traditional methods that require uniform sampling frequencies, the BoF framework employs a flexible encoding approach, allowing for the integration of multi-resolution time series. Through a series of experiments, we demonstrate that the BoF framework ensures the precise reconstruction of the original data while enhancing resampling capabilities by utilizing decomposed components. The results show that this method offers significant advantages in scenarios involving irregular sampling rates and heterogeneous acquisition systems, making it a valuable tool for applications in fields such as finance, healthcare, industrial monitoring, IoT networks, and sensor networks. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Graphical abstract

28 pages, 1328 KiB  
Review
Security Issues in IoT-Based Wireless Sensor Networks: Classifications and Solutions
by Dung T. Nguyen, Mien L. Trinh, Minh T. Nguyen, Thang C. Vu, Tao V. Nguyen, Long Q. Dinh and Mui D. Nguyen
Future Internet 2025, 17(8), 350; https://doi.org/10.3390/fi17080350 - 1 Aug 2025
Viewed by 205
Abstract
In recent years, the Internet of Things (IoT) has experienced considerable developments and has played an important role in various domains such as industry, agriculture, healthcare, transportation, and environment, especially for smart cities. Along with that, wireless sensor networks (WSNs) are considered to [...] Read more.
In recent years, the Internet of Things (IoT) has experienced considerable developments and has played an important role in various domains such as industry, agriculture, healthcare, transportation, and environment, especially for smart cities. Along with that, wireless sensor networks (WSNs) are considered to be important components of the IoT system (WSN-IoT) to create smart applications and automate processes. As the number of connected IoT devices increases, privacy and security issues become more complicated due to their external working environments and limited resources. Hence, solutions need to be updated to ensure that data and user privacy are protected from threats and attacks. To support the safety and reliability of such systems, in this paper, security issues in the WSN-IoT are addressed and classified as identifying security challenges and requirements for different kinds of attacks in either WSNs or IoT systems. In addition, security solutions corresponding to different types of attacks are provided, analyzed, and evaluated. We provide different comparisons and classifications based on specific goals and applications that hopefully can suggest suitable solutions for specific purposes in practical. We also suggest some research directions to support new security mechanisms. Full article
Show Figures

Figure 1

36 pages, 2671 KiB  
Article
DIKWP-Driven Artificial Consciousness for IoT-Enabled Smart Healthcare Systems
by Yucong Duan and Zhendong Guo
Appl. Sci. 2025, 15(15), 8508; https://doi.org/10.3390/app15158508 (registering DOI) - 31 Jul 2025
Viewed by 197
Abstract
This study presents a DIKWP-driven artificial consciousness framework for IoT-enabled smart healthcare, integrating a Data–Information–Knowledge–Wisdom–Purpose (DIKWP) cognitive architecture with a software-defined IoT infrastructure. The proposed system deploys DIKWP agents at edge and cloud nodes to transform raw sensor data into high-level knowledge and [...] Read more.
This study presents a DIKWP-driven artificial consciousness framework for IoT-enabled smart healthcare, integrating a Data–Information–Knowledge–Wisdom–Purpose (DIKWP) cognitive architecture with a software-defined IoT infrastructure. The proposed system deploys DIKWP agents at edge and cloud nodes to transform raw sensor data into high-level knowledge and purpose-driven actions. This is achieved through a structured DIKWP pipeline—from data acquisition and information processing to knowledge extraction, wisdom inference, and purpose-driven decision-making—that enables semantic reasoning, adaptive goal-driven responses, and privacy-preserving decision-making in healthcare environments. The architecture integrates wearable sensors, edge computing nodes, and cloud services to enable dynamic task orchestration and secure data fusion. For evaluation, a smart healthcare scenario for early anomaly detection (e.g., arrhythmia and fever) was implemented using wearable devices with coordinated edge–cloud analytics. Simulated experiments on synthetic vital sign datasets achieved approximately 98% anomaly detection accuracy and up to 90% reduction in communication overhead compared to cloud-centric solutions. Results also demonstrate enhanced explainability via traceable decisions across DIKWP layers and robust performance under intermittent connectivity. These findings indicate that the DIKWP-driven approach can significantly advance IoT-based healthcare by providing secure, explainable, and adaptive services aligned with clinical objectives and patient-centric care. Full article
(This article belongs to the Special Issue IoT in Smart Cities and Homes, 2nd Edition)
Show Figures

Figure 1

24 pages, 1537 KiB  
Article
Privacy-Aware Hierarchical Federated Learning in Healthcare: Integrating Differential Privacy and Secure Multi-Party Computation
by Jatinder Pal Singh, Aqsa Aqsa, Imran Ghani, Raj Sonani and Vijay Govindarajan
Future Internet 2025, 17(8), 345; https://doi.org/10.3390/fi17080345 - 31 Jul 2025
Viewed by 235
Abstract
The development of big data analytics in healthcare has created a demand for privacy-conscious and scalable machine learning algorithms that can allow the use of patient information across different healthcare organizations. In this study, the difficulties that come with traditional federated learning frameworks [...] Read more.
The development of big data analytics in healthcare has created a demand for privacy-conscious and scalable machine learning algorithms that can allow the use of patient information across different healthcare organizations. In this study, the difficulties that come with traditional federated learning frameworks in healthcare sectors, such as scalability, computational effectiveness, and preserving patient privacy for numerous healthcare systems, are discussed. In this work, a new conceptual model known as Hierarchical Federated Learning (HFL) for large, integrated healthcare organizations that include several institutions is proposed. The first level of aggregation forms regional centers where local updates are first collected and then sent to the second level of aggregation to form the global update, thus reducing the message-passing traffic and improving the scalability of the HFL architecture. Furthermore, the HFL framework leveraged more robust privacy characteristics such as Local Differential Privacy (LDP), Gaussian Differential Privacy (GDP), Secure Multi-Party Computation (SMPC) and Homomorphic Encryption (HE). In addition, a Novel Aggregated Gradient Perturbation Mechanism is presented to alleviate noise in model updates and maintain privacy and utility. The performance of the proposed HFL framework is evaluated on real-life healthcare datasets and an artificial dataset created using Generative Adversarial Networks (GANs), showing that the proposed HFL framework is better than other methods. Our approach provided an accuracy of around 97% and 30% less privacy leakage compared to the existing models of FLBM-IoT and PPFLB. The proposed HFL approach can help to find the optimal balance between privacy and model performance, which is crucial for healthcare applications and scalable and secure solutions. Full article
(This article belongs to the Special Issue Security and Privacy in AI-Powered Systems)
Show Figures

Graphical abstract

24 pages, 1806 KiB  
Article
Optimization of Cleaning and Hygiene Processes in Healthcare Using Digital Technologies and Ensuring Quality Assurance with Blockchain
by Semra Tebrizcik, Süleyman Ersöz, Elvan Duman, Adnan Aktepe and Ahmet Kürşad Türker
Appl. Sci. 2025, 15(15), 8460; https://doi.org/10.3390/app15158460 - 30 Jul 2025
Viewed by 175
Abstract
Many hospitals still lack digital traceability in hygiene and cleaning management, leading to operational inefficiencies and inconsistent quality control. This study aims to establish cleaning and hygiene processes in healthcare services that are planned in accordance with standards, as well as to enhance [...] Read more.
Many hospitals still lack digital traceability in hygiene and cleaning management, leading to operational inefficiencies and inconsistent quality control. This study aims to establish cleaning and hygiene processes in healthcare services that are planned in accordance with standards, as well as to enhance the traceability and sustainability of these processes through digitalization. This study proposes a Hyperledger Fabric-based blockchain architecture to establish a reliable and transparent quality assurance system in process management. The proposed Quality Assurance Model utilizes digital technologies and IoT-based RFID devices to ensure the transparent and reliable monitoring of cleaning processes. Operational data related to cleaning processes are automatically recorded and secured using a decentralized blockchain infrastructure. The permissioned nature of Hyperledger Fabric provides a more secure solution compared to traditional data management systems in the healthcare sector while preserving data privacy. Additionally, the execute–order–validate mechanism supports effective data sharing among stakeholders, and consensus algorithms along with chaincode rules enhance the reliability of processes. A working prototype was implemented and validated using Hyperledger Caliper under resource-constrained cloud environments, confirming the system’s feasibility through over 100 TPS throughput and zero transaction failures. Through the proposed system, cleaning/hygiene processes in patient rooms are conducted securely, contributing to the improvement of quality standards in healthcare services. Full article
Show Figures

Figure 1

22 pages, 1386 KiB  
Article
A Scalable Approach to IoT Interoperability: The Share Pattern
by Riccardo Petracci and Rosario Culmone
Sensors 2025, 25(15), 4701; https://doi.org/10.3390/s25154701 - 30 Jul 2025
Viewed by 181
Abstract
The Internet of Things (IoT) is transforming how devices communicate, with more than 30 billion connected units today and projections exceeding 40 billion by 2025. Despite this growth, the integration of heterogeneous systems remains a significant challenge, particularly in sensitive domains like healthcare, [...] Read more.
The Internet of Things (IoT) is transforming how devices communicate, with more than 30 billion connected units today and projections exceeding 40 billion by 2025. Despite this growth, the integration of heterogeneous systems remains a significant challenge, particularly in sensitive domains like healthcare, where proprietary standards and isolated ecosystems hinder interoperability. This paper presents an extended version of the Share design pattern, a lightweight and contract-based mechanism for dynamic service composition, tailored for resource-constrained IoT devices. Share enables decentralized, peer-to-peer integration by exchanging executable code in our examples written in the LUA programming language. This approach avoids reliance on centralized infrastructures and allows services to discover and interact with each other dynamically through pattern-matching and contract validation. To assess its suitability, we developed an emulator that directly implements the system under test in LUA, allowing us to verify both the structural and behavioral constraints of service interactions. Our results demonstrate that Share is scalable and effective, even in constrained environments, and supports formal correctness via design-by-contract principles. This makes it a promising solution for lightweight, interoperable IoT systems that require flexibility, dynamic configuration, and resilience without centralized control. Full article
(This article belongs to the Special Issue Secure and Decentralised IoT Systems)
Show Figures

Figure 1

18 pages, 2539 KiB  
Article
Empowering End-Users with Cybersecurity Situational Awareness: Findings from IoT-Health Table-Top Exercises
by Fariha Tasmin Jaigirdar, Carsten Rudolph, Misita Anwar and Boyu Tan
J. Cybersecur. Priv. 2025, 5(3), 49; https://doi.org/10.3390/jcp5030049 - 25 Jul 2025
Viewed by 309
Abstract
End-users in a decision-oriented Internet of Things (IoT) healthcare system are often left in the dark regarding critical security information necessary for making informed decisions about potential risks. This is partly due to the lack of transparency and system security awareness end-users have [...] Read more.
End-users in a decision-oriented Internet of Things (IoT) healthcare system are often left in the dark regarding critical security information necessary for making informed decisions about potential risks. This is partly due to the lack of transparency and system security awareness end-users have in such systems. To empower end-users and enhance their cybersecurity situational awareness, it is imperative to thoroughly document and report the runtime security controls in place, as well as the security-relevant aspects of the devices they rely on, while the need for better transparency is obvious, it remains uncertain whether current systems offer adequate security metadata for end-users and how future designs can be improved to ensure better visibility into the security measures implemented. To address this gap, we conducted table-top exercises with ten security and ICT experts to evaluate a typical IoT-Health scenario. These exercises revealed the critical role of security metadata, identified the available ones to be presented to users, and suggested potential enhancements that could be integrated into system design. We present our observations from the exercises, highlighting experts’ valuable suggestions, concerns, and views, backed by our in-depth analysis. Moreover, as a proof-of-concept of our study, we simulated three relevant use cases to detect cyber risks. This comprehensive analysis underscores critical considerations that can significantly improve future system protocols, ensuring end-users are better equipped to navigate and mitigate security risks effectively. Full article
Show Figures

Figure 1

24 pages, 2173 KiB  
Article
A Novel Ensemble of Deep Learning Approach for Cybersecurity Intrusion Detection with Explainable Artificial Intelligence
by Abdullah Alabdulatif
Appl. Sci. 2025, 15(14), 7984; https://doi.org/10.3390/app15147984 - 17 Jul 2025
Viewed by 581
Abstract
In today’s increasingly interconnected digital world, cyber threats have grown in frequency and sophistication, making intrusion detection systems a critical component of modern cybersecurity frameworks. Traditional IDS methods, often based on static signatures and rule-based systems, are no longer sufficient to detect and [...] Read more.
In today’s increasingly interconnected digital world, cyber threats have grown in frequency and sophistication, making intrusion detection systems a critical component of modern cybersecurity frameworks. Traditional IDS methods, often based on static signatures and rule-based systems, are no longer sufficient to detect and respond to complex and evolving attacks. To address these challenges, Artificial Intelligence and machine learning have emerged as powerful tools for enhancing the accuracy, adaptability, and automation of IDS solutions. This study presents a novel, hybrid ensemble learning-based intrusion detection framework that integrates deep learning and traditional ML algorithms with explainable artificial intelligence for real-time cybersecurity applications. The proposed model combines an Artificial Neural Network and Support Vector Machine as base classifiers and employs a Random Forest as a meta-classifier to fuse predictions, improving detection performance. Recursive Feature Elimination is utilized for optimal feature selection, while SHapley Additive exPlanations (SHAP) provide both global and local interpretability of the model’s decisions. The framework is deployed using a Flask-based web interface in the Amazon Elastic Compute Cloud environment, capturing live network traffic and offering sub-second inference with visual alerts. Experimental evaluations using the NSL-KDD dataset demonstrate that the ensemble model outperforms individual classifiers, achieving a high accuracy of 99.40%, along with excellent precision, recall, and F1-score metrics. This research not only enhances detection capabilities but also bridges the trust gap in AI-powered security systems through transparency. The solution shows strong potential for application in critical domains such as finance, healthcare, industrial IoT, and government networks, where real-time and interpretable threat detection is vital. Full article
Show Figures

Figure 1

18 pages, 533 KiB  
Article
Comparative Analysis of Deep Learning Models for Intrusion Detection in IoT Networks
by Abdullah Waqas, Sultan Daud Khan, Zaib Ullah, Mohib Ullah and Habib Ullah
Computers 2025, 14(7), 283; https://doi.org/10.3390/computers14070283 - 17 Jul 2025
Viewed by 302
Abstract
The Internet of Things (IoT) holds transformative potential in fields such as power grid optimization, defense networks, and healthcare. However, the constrained processing capacities and resource limitations of IoT networks make them especially susceptible to cyber threats. This study addresses the problem of [...] Read more.
The Internet of Things (IoT) holds transformative potential in fields such as power grid optimization, defense networks, and healthcare. However, the constrained processing capacities and resource limitations of IoT networks make them especially susceptible to cyber threats. This study addresses the problem of detecting intrusions in IoT environments by evaluating the performance of deep learning (DL) models under different data and algorithmic conditions. We conducted a comparative analysis of three widely used DL models—Convolutional Neural Networks (CNNs), Long Short-Term Memory (LSTM), and Bidirectional LSTM (biLSTM)—across four benchmark IoT intrusion detection datasets: BoTIoT, CiCIoT, ToNIoT, and WUSTL-IIoT-2021. Each model was assessed under balanced and imbalanced dataset configurations and evaluated using three loss functions (cross-entropy, focal loss, and dual focal loss). By analyzing model efficacy across these datasets, we highlight the importance of generalizability and adaptability to varied data characteristics that are essential for real-world applications. The results demonstrate that the CNN trained using the cross-entropy loss function consistently outperforms the other models, particularly on balanced datasets. On the other hand, LSTM and biLSTM show strong potential in temporal modeling, but their performance is highly dependent on the characteristics of the dataset. By analyzing the performance of multiple DL models under diverse datasets, this research provides actionable insights for developing secure, interpretable IoT systems that can meet the challenges of designing a secure IoT system. Full article
(This article belongs to the Special Issue Application of Deep Learning to Internet of Things Systems)
Show Figures

Figure 1

40 pages, 17591 KiB  
Article
Research and Education in Robotics: A Comprehensive Review, Trends, Challenges, and Future Directions
by Mutaz Ryalat, Natheer Almtireen, Ghaith Al-refai, Hisham Elmoaqet and Nathir Rawashdeh
J. Sens. Actuator Netw. 2025, 14(4), 76; https://doi.org/10.3390/jsan14040076 - 16 Jul 2025
Viewed by 1107
Abstract
Robotics has emerged as a transformative discipline at the intersection of the engineering, computer science, and cognitive sciences. This state-of-the-art review explores the current trends, methodologies, and challenges in both robotics research and education. This paper presents a comprehensive review of the evolution [...] Read more.
Robotics has emerged as a transformative discipline at the intersection of the engineering, computer science, and cognitive sciences. This state-of-the-art review explores the current trends, methodologies, and challenges in both robotics research and education. This paper presents a comprehensive review of the evolution of robotics, tracing its development from early automation to intelligent, autonomous systems. Key enabling technologies, such as Artificial Intelligence (AI), soft robotics, the Internet of Things (IoT), and swarm intelligence, are examined along with real-world applications in healthcare, manufacturing, agriculture, and sustainable smart cities. A central focus is placed on robotics education, where hands-on, interdisciplinary learning is reshaping curricula from K–12 to postgraduate levels. This paper analyzes instructional models including project-based learning, laboratory work, capstone design courses, and robotics competitions, highlighting their effectiveness in developing both technical and creative competencies. Widely adopted platforms such as the Robot Operating System (ROS) are briefly discussed in the context of their educational value and real-world alignment. Through case studies, institutional insights, and synthesis of academic and industry practices, this review underscores the vital role of robotics education in fostering innovation, systems thinking, and workforce readiness. The paper concludes by identifying the key challenges and future directions to guide researchers, educators, industry stakeholders, and policymakers in advancing robotics as both technological and educational frontiers. Full article
Show Figures

Figure 1

18 pages, 9571 KiB  
Article
TCN-MAML: A TCN-Based Model with Model-Agnostic Meta-Learning for Cross-Subject Human Activity Recognition
by Chih-Yang Lin, Chia-Yu Lin, Yu-Tso Liu, Yi-Wei Chen, Hui-Fuang Ng and Timothy K. Shih
Sensors 2025, 25(13), 4216; https://doi.org/10.3390/s25134216 - 6 Jul 2025
Viewed by 338
Abstract
Human activity recognition (HAR) using Wi-Fi-based sensing has emerged as a powerful, non-intrusive solution for monitoring human behavior in smart environments. Unlike wearable sensor systems that require user compliance, Wi-Fi channel state information (CSI) enables device-free recognition by capturing variations in signal propagation [...] Read more.
Human activity recognition (HAR) using Wi-Fi-based sensing has emerged as a powerful, non-intrusive solution for monitoring human behavior in smart environments. Unlike wearable sensor systems that require user compliance, Wi-Fi channel state information (CSI) enables device-free recognition by capturing variations in signal propagation caused by human motion. This makes Wi-Fi sensing highly attractive for ambient healthcare, security, and elderly care applications. However, real-world deployment faces two major challenges: (1) significant cross-subject signal variability due to physical and behavioral differences among individuals, and (2) limited labeled data, which restricts model generalization. To address these sensor-related challenges, we propose TCN-MAML, a novel framework that integrates temporal convolutional networks (TCN) with model-agnostic meta-learning (MAML) for efficient cross-subject adaptation in data-scarce conditions. We evaluate our approach on a public Wi-Fi CSI dataset using a strict cross-subject protocol, where training and testing subjects do not overlap. The proposed TCN-MAML achieves 99.6% accuracy, demonstrating superior generalization and efficiency over baseline methods. Experimental results confirm the framework’s suitability for low-power, real-time HAR systems embedded in IoT sensor networks. Full article
(This article belongs to the Special Issue Sensors and Sensing Technologies for Object Detection and Recognition)
Show Figures

Figure 1

22 pages, 557 KiB  
Article
Using Blockchain Ledgers to Record AI Decisions in IoT
by Vikram Kulothungan
IoT 2025, 6(3), 37; https://doi.org/10.3390/iot6030037 - 3 Jul 2025
Viewed by 850
Abstract
The rapid integration of AI into IoT systems has outpaced the ability to explain and audit automated decisions, resulting in a serious transparency gap. We address this challenge by proposing a blockchain-based framework to create immutable audit trails of AI-driven IoT decisions. In [...] Read more.
The rapid integration of AI into IoT systems has outpaced the ability to explain and audit automated decisions, resulting in a serious transparency gap. We address this challenge by proposing a blockchain-based framework to create immutable audit trails of AI-driven IoT decisions. In our approach, each AI inference comprising key inputs, model ID, and output is logged to a permissioned blockchain ledger, ensuring that every decision is traceable and auditable. IoT devices and edge gateways submit cryptographically signed decision records via smart contracts, resulting in an immutable, timestamped log that is tamper-resistant. This decentralized approach guarantees non-repudiation and data integrity while balancing transparency with privacy (e.g., hashing personal data on-chain) to meet data protection norms. Our design aligns with emerging regulations, such as the EU AI Act’s logging mandate and GDPR’s transparency requirements. We demonstrate the framework’s applicability in two domains: healthcare IoT (logging diagnostic AI alerts for accountability) and industrial IoT (tracking autonomous control actions), showing its generalizability to high-stakes environments. Our contributions include the following: (1) a novel architecture for AI decision provenance in IoT, (2) a blockchain-based design to securely record AI decision-making processes, and (3) a simulation informed performance assessment based on projected metrics (throughput, latency, and storage) to assess the approach’s feasibility. By providing a reliable immutable audit trail for AI in IoT, our framework enhances transparency and trust in autonomous systems and offers a much-needed mechanism for auditable AI under increasing regulatory scrutiny. Full article
(This article belongs to the Special Issue Blockchain-Based Trusted IoT)
Show Figures

Figure 1

8 pages, 162 KiB  
Proceeding Paper
The Evolution and Challenges of Real-Time Big Data: A Review
by Ikram Lefhal Lalaoui, Essaid El Haji and Mohamed Kounaidi
Comput. Sci. Math. Forum 2025, 10(1), 11; https://doi.org/10.3390/cmsf2025010011 - 1 Jul 2025
Viewed by 283
Abstract
The importance of real-time big data has become crucial in the digital revolution of modern society, in the context of increasing data flows from multiple sources, including social media, internet connected devices (IOT) and financial systems, real-time analysis and processing is becoming a [...] Read more.
The importance of real-time big data has become crucial in the digital revolution of modern society, in the context of increasing data flows from multiple sources, including social media, internet connected devices (IOT) and financial systems, real-time analysis and processing is becoming a strategic tool for fast and accurate decision making, we find applications in different domains such as healthcare, finance, and digital marketing, which is revolutionizing traditional business models. In this article, we explore the recent advances and future prospects of real-time big data. Our research is based on recent work published between 2020 and 2025, examining the technological advances, the difficulties encountered and suggesting ways of optimizing the efficiency of these technologies. Full article
33 pages, 2091 KiB  
Review
Blockchain and Smart Cities: Co-Word Analysis and BERTopic Modeling
by Abderahman Rejeb, Karim Rejeb, Heba F. Zaher and Steve Simske
Smart Cities 2025, 8(4), 111; https://doi.org/10.3390/smartcities8040111 - 1 Jul 2025
Viewed by 958
Abstract
This paper explores the intersection of blockchain technology and smart cities to support the transition toward decentralized, secure, and sustainable urban systems. Drawing on co-word analysis and BERTopic modeling applied to the literature published between 2016 and 2025, this study maps the thematic [...] Read more.
This paper explores the intersection of blockchain technology and smart cities to support the transition toward decentralized, secure, and sustainable urban systems. Drawing on co-word analysis and BERTopic modeling applied to the literature published between 2016 and 2025, this study maps the thematic and technological evolution of blockchain in urban environments. The co-word analysis reveals blockchain’s foundational role in enabling secure and interoperable infrastructures, particularly through its integration with IoT, edge computing, and smart contracts. These systems underpin critical urban services such as transportation, healthcare, energy trading, and waste management by enhancing data privacy, authentication, and system resilience. The application of BERTopic modeling further uncovers a shift from general technological exploration to more specialized and sector-specific applications. These include real-time mobility systems, decentralized healthcare platforms, peer-to-peer energy exchanges, and blockchain-enabled drone coordination. The results demonstrate that blockchain increasingly supports cross-sectoral innovation, enabling transparency, trust, and circular flows in urban systems. Overall, the current study identifies blockchain as both a technological backbone and an ethical infrastructure for smart cities that supports secure, adaptive, and sustainable urban development. Full article
Show Figures

Figure 1

Back to TopTop