Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = Ikzf1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2831 KiB  
Article
IKZF1 Variants Predicted Poor Outcomes in Acute Myeloid Leukemia Patients with CEBPA bZIP In-Frame Mutations
by Shunjie Yu, Lijuan Hu, Yazhen Qin, Guorui Ruan, Yazhe Wang, Hao Jiang, Feifei Tang, Ting Zhao, Jinsong Jia, Jing Wang, Qiang Fu, Xiaohui Zhang, Lanping Xu, Yu Wang, Yuqian Sun, Yueyun Lai, Hongxia Shi, Xiaojun Huang and Qian Jiang
Cancers 2025, 17(15), 2494; https://doi.org/10.3390/cancers17152494 - 29 Jul 2025
Viewed by 340
Abstract
Background: CCAAT/enhancer-binding protein alpha–basic leucine zipper in-frame (CEBPAbZIP-inf) mutations are associated with favorable outcomes in acute myeloid leukemia (AML). So far, there are limited data on integrating clinical and genomic features impacting the outcomes. Methods: Clinical and genomic data from [...] Read more.
Background: CCAAT/enhancer-binding protein alpha–basic leucine zipper in-frame (CEBPAbZIP-inf) mutations are associated with favorable outcomes in acute myeloid leukemia (AML). So far, there are limited data on integrating clinical and genomic features impacting the outcomes. Methods: Clinical and genomic data from consecutive patients with CEBPAbZIP-inf were reviewed. A Cox proportional hazards regression was used to identify the variables associated with event-free survival (EFS), relapse-free survival (RFS) and survival. Results: 224 CEBPAbZIP-inf patients were included in this study. In the 201 patients, except for the 19 receiving the transplant in the first complete remission with no events (the transplant cohort), multivariate analyses showed that IKZF1 mutations/deletions were significantly associated with poor EFS (p = 0.001) and RFS (p < 0.001); FLT3-ITD mutations, poor RFS (p = 0.048). In addition, increasing WBC count, lower hemoglobin concentration, non-intensive induction, and MRD positivity after first consolidation predicted poor outcomes. On the basis of the number of adverse prognostic covariates for RFS, the 201 patients were classified into low-, intermediate- or high-risk subgroups, and there were significant differences in the 3-year EFS, RFS and survival rates (all p < 0.001); however, except for survival in the low-risk group, these metrics were lower than those in the transplant cohort. Conclusions: We identified a potential high-risk population with adverse prognostic factors in CEBPAbZIP-inf AML patients for which transplantation should be considered. Full article
(This article belongs to the Section Cancer Survivorship and Quality of Life)
Show Figures

Figure 1

18 pages, 3151 KiB  
Article
Next-Generation Sequencing Analysis in Greek Patients with Predominantly Antibody Deficiencies
by Achilleas P. Galanopoulos, Sofia Raftopoulou, Styliani Sarrou, Alexia Matziri, Stamatia Papoutsopoulou, Grigorios Stratakos, Varvara A. Mouchtouri, Martin Hölzer, Christos Hadjichristodoulou, Fani Kalala and Matthaios Speletas
Immuno 2025, 5(3), 27; https://doi.org/10.3390/immuno5030027 - 16 Jul 2025
Viewed by 403
Abstract
Predominantly antibody deficiencies (PADs) are the most prevalent types of inherited errors of immunity (IEI) and are characterized by a broad range of clinical manifestations, such as recurrent infections, autoimmunity, lymphoproliferation, atopy and malignancy. The aim of this study was to identify genetic [...] Read more.
Predominantly antibody deficiencies (PADs) are the most prevalent types of inherited errors of immunity (IEI) and are characterized by a broad range of clinical manifestations, such as recurrent infections, autoimmunity, lymphoproliferation, atopy and malignancy. The aim of this study was to identify genetic defects associated with PADs in order to improve diagnosis and personalized care. Twenty patients (male/female: 12/8, median age of disease onset: 16.5 years, range: 1–50) were analyzed by next-generation sequencing (NGS) using a custom panel of 30 genes associated with PADs and their possible disease phenotype. The detected variants were classified according to the American College of Medical Genetics and Genomics (ACMG) guidelines and inheritance, and the penetrance patterns were evaluated by PCR–Sanger sequencing. Novel and rare mutations associated with the phenotype of common variable immunodeficiency (CVID) in genes encoding the transcription factors NFKB1, NFKB2 and IKZF1/IKAROS were identified. Alphafold3 protein structure prediction was utilized to perform a comprehensive visualization strategy and further delineate the mutation-bearing domains and elucidate their potential impact on protein function. This study highlights the value of genetic testing in PADs and will guide further research and improvement in diagnosis and treatment. Full article
Show Figures

Figure 1

15 pages, 3330 KiB  
Article
Full-Length Transcriptome Sequencing Reveals Treg-Specific Isoform Expression upon Activation
by Yohei Sato, Erika Osada and Yoshinobu Manome
Int. J. Mol. Sci. 2025, 26(13), 6302; https://doi.org/10.3390/ijms26136302 - 30 Jun 2025
Viewed by 323
Abstract
FOXP3+ regulatory T cells (Tregs) play a central role in the regulation of the immune system. Human Tregs preferentially express a FOXP3 isoform known as delta 2, which lacks exon 2. In addition to FOXP3, Tregs also express isoforms of other Treg-related molecules, [...] Read more.
FOXP3+ regulatory T cells (Tregs) play a central role in the regulation of the immune system. Human Tregs preferentially express a FOXP3 isoform known as delta 2, which lacks exon 2. In addition to FOXP3, Tregs also express isoforms of other Treg-related molecules, such as CTLA-4 and IKZF-2. It is hypothesized that Tregs possess a unique isoform repertoire based on their unique gene and isoform expression profiles, which include FOXP3. Here, we identified a Treg-specific unique isoform repertoire confirmed by long-read high-throughput isoform sequencing called Iso-seq, which is uniquely capable of providing data on genome-wide isoform usage. Notably, while conventional T cells (Tconvs) do not exhibit this pattern, Tregs preferentially express the full-length FOXP3 isoform. Interestingly, the preferential expression of ICOS and PD-L1 upon T-cell receptor (TCR) stimulation was noted in activated Tregs but not in Tconvs or non-activated Tregs. Moreover, using a PD-L1 antibody blockade on Tregs did not diminish FOXP3 expression; however, it significantly reduced the suppressive function. Therefore, Tregs may have a unique isoform repertoire, which becomes pronounced upon polyclonal TCR stimulation. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

17 pages, 2154 KiB  
Article
Application of Optical Genome Mapping for the Diagnosis and Risk Stratification of Myeloid and Lymphoid Malignancies
by Lucía Ballesta-Alcaraz, Mónica Bernal, Jose Ramón Vilchez, Jorge Antonio Palacios, Pilar Jiménez, Pilar Garrido, Juan Francisco Gutiérrez-Bautista and Francisco Ruiz-Cabello
Int. J. Mol. Sci. 2025, 26(12), 5763; https://doi.org/10.3390/ijms26125763 - 16 Jun 2025
Viewed by 553
Abstract
Optical genome mapping (OGM) is a novel, high-resolution technology for genome-wide detection of structural variants, offering clear advantages over conventional cytogenetics in hematologic malignancies. We applied OGM to a large cohort of patients with acute myeloid leukemia (AML), myelodysplastic syndromes (MDSs), and B-cell [...] Read more.
Optical genome mapping (OGM) is a novel, high-resolution technology for genome-wide detection of structural variants, offering clear advantages over conventional cytogenetics in hematologic malignancies. We applied OGM to a large cohort of patients with acute myeloid leukemia (AML), myelodysplastic syndromes (MDSs), and B-cell acute lymphoblastic leukemia (B-ALL) to evaluate its clinical utility. In AML and MDS, it revealed high-risk alterations such as deletions in 5q31–5q32 and 7q22, and cryptic fusions like NUP98::NSD1 that were missed by karyotyping or FISH. It also identified chromoanagenesis, a catastrophic chromosomal event linked to poor prognosis and often undetectable by standard methods. In B-ALL, OGM uncovered clinically relevant deletions in CDKN2A/B, PAX5, and IKZF1, as well as high-risk ploidy changes like hypodiploidy and hyperdiploidy, all important for risk assessment and frequently underdetected. OGM not only refines diagnosis and improves risk stratification but can also uncover cryptic and complex genomic abnormalities. Our findings support its integration into routine diagnostics to enhance classification, guide treatment decisions, and improve patient outcomes. Full article
(This article belongs to the Special Issue Molecular Diagnosis and Treatment of Hematological Malignancies)
Show Figures

Figure 1

15 pages, 715 KiB  
Review
Molecular Design of Novel Protein-Degrading Therapeutics Agents Currently in Clinical Trial
by Ela Kacin and Raj Nayan Sewduth
Pharmaceutics 2025, 17(6), 744; https://doi.org/10.3390/pharmaceutics17060744 - 5 Jun 2025
Viewed by 919
Abstract
The landscape of clinical trials aimed at targeting specific proteins has experienced significant advancements, presenting promising opportunities for the development of effective therapeutics across a range of diseases. These trials focus on the investigation of modulation of protein functions, utilizing innovative technologies such [...] Read more.
The landscape of clinical trials aimed at targeting specific proteins has experienced significant advancements, presenting promising opportunities for the development of effective therapeutics across a range of diseases. These trials focus on the investigation of modulation of protein functions, utilizing innovative technologies such as PROTACs (Proteolysis-Targeting Chimeras) and other protein degraders. These innovative approaches aim to address previously undruggable targets, enhancing the specificity and efficacy of treatments. The current landscape of clinical trials encompasses a diverse array of therapeutic areas, including oncology, autoimmune diseases, and neurological disorders. For instance, drugs like ARV-471 and ARV-110 are in advanced phases for treating metastatic breast cancer and prostate cancer, respectively, by targeting estrogen and androgen receptors. Early-phase trials explored the potential of targeting proteins like IKZF1/3 in multiple myeloma and IRAK4 in autoimmune diseases. The conducted trials not only emphasize the therapeutic potential of protein degradation but also highlight the challenges associated with bioavailability, stability, and delivery mechanisms. As these clinical trials advance, they possess the potential to transform treatment paradigms, providing renewed hope for patients facing complex and refractory conditions. Full article
(This article belongs to the Section Drug Targeting and Design)
Show Figures

Figure 1

17 pages, 2313 KiB  
Article
Mapping Inherited Genetic Variation with Opposite Effects on Autoimmune Disease and Four Cancer Types Identifies Candidate Drug Targets Associated with the Anti-Tumor Immune Response
by Junyu Chen, Michael P. Epstein, Joellen M. Schildkraut and Siddhartha P. Kar
Genes 2025, 16(5), 575; https://doi.org/10.3390/genes16050575 - 14 May 2025
Viewed by 910
Abstract
Background: Germline alleles near genes encoding certain immune checkpoints (CTLA4, CD200) are associated with autoimmune/autoinflammatory disease and cancer, but in opposite ways. This motivates a systematic search for additional germline alleles with this pattern with the aim of identifying [...] Read more.
Background: Germline alleles near genes encoding certain immune checkpoints (CTLA4, CD200) are associated with autoimmune/autoinflammatory disease and cancer, but in opposite ways. This motivates a systematic search for additional germline alleles with this pattern with the aim of identifying potential cancer immunotherapeutic targets using human genetics. Methods: Pairwise fixed effect cross-disorder meta-analyses combining genome-wide association studies (GWAS) for breast, prostate, ovarian and endometrial cancers (240,540 cases/317,000 controls) and seven autoimmune/autoinflammatory diseases (112,631 cases/895,386 controls) coupled with in silico follow-up. Results: Meta-analyses followed by linkage disequilibrium clumping identified 312 unique, independent lead variants with p < 5 × 10−8 associated with at least one of the cancer types at p < 10−3 and one of the autoimmune/autoinflammatory diseases at p < 10−3. At each lead variant, the allele that conferred autoimmune/autoinflammatory disease risk was protective for cancer. Mapping led variants to nearest genes as putative functional targets and focusing on immune-related genes implicated 32 genes. Tumor bulk RNA-Seq data highlighted that the tumor expression of 5/32 genes (IRF1, IKZF1, SPI1, SH2B3, LAT) was each strongly correlated (Spearman’s ρ > 0.5) with at least one intra-tumor T/myeloid cell infiltration marker (CD4, CD8A, CD11B, CD45) in every one of the cancer types. Tumor single-cell RNA-Seq data from all cancer types showed that the five genes were more likely to be expressed in intra-tumor immune versus malignant cells. The five lead SNPs corresponding to these genes were linked to them via the expression of quantitative trait locus mechanisms and at least one additional line of functional evidence. Proteins encoded by the genes were predicted to be druggable. Conclusions: We provide population-scale germline genetic and functional genomic evidence to support further evaluation of the proteins encoded by IRF1, IKZF1, SPI1, SH2B3 and LAT as possible targets for cancer immunotherapy. Full article
(This article belongs to the Special Issue Genetics of Cancer Immunology)
Show Figures

Figure 1

14 pages, 260 KiB  
Review
Tyrosine Kinase Inhibitor Post-Allogeneic Stem Cell Transplantation in Adult Philadelphia-Positive B-Acute Lymphoblastic Leukemia: State of the Art and Future Directions
by Martina Canichella and Paolo de Fabritiis
Curr. Issues Mol. Biol. 2025, 47(2), 129; https://doi.org/10.3390/cimb47020129 - 18 Feb 2025
Viewed by 1451
Abstract
In a scenario characterized by continuous improvement in outcomes, Philadelphia chromosome-positive (Ph+) ALL, once considered a biologically defined subtype with one of the poorest prognoses, now includes patients achieving long-term survival even without allogeneic stem cell transplantation. First-line therapy is increasingly adopting a [...] Read more.
In a scenario characterized by continuous improvement in outcomes, Philadelphia chromosome-positive (Ph+) ALL, once considered a biologically defined subtype with one of the poorest prognoses, now includes patients achieving long-term survival even without allogeneic stem cell transplantation. First-line therapy is increasingly adopting a chemo-free approach, combining tyrosine kinase inhibitors (TKIs) with immunotherapy—specifically blinatumomab—which has resulted in high rates of complete molecular responses and improved survival outcomes. Within this paradigm shift, the allocation to transplantation is becoming increasingly selective and genomically oriented, focusing on patients with particularly unfavorable prognostic and predictive factors. For patients undergoing transplantation, maintenance therapy with TKIs has emerged as one of the most important strategies to reduce the risk of relapse. However, there remains considerable uncertainty regarding which patients benefit most from this approach, the optimal TKI agents, dosing strategies, and the duration of maintenance therapy. In this review, we aim to consolidate the available evidence on this topic, analyzing it in the context of the most recent clinical experiences. Full article
(This article belongs to the Special Issue Molecular Research and Pathological Mechanism of Leukemia)
13 pages, 1707 KiB  
Article
Characterization of CK2, MYC and ERG Expression in Biological Subgroups of Children with Acute Lymphoblastic Leukemia
by Luca Lo Nigro, Marta Arrabito, Nellina Andriano, Valeria Iachelli, Manuela La Rosa and Paola Bonaccorso
Int. J. Mol. Sci. 2025, 26(3), 1076; https://doi.org/10.3390/ijms26031076 - 26 Jan 2025
Cited by 1 | Viewed by 1036
Abstract
Despite the excellent survival rate, relapse occurs in 20% of children with ALL. Deep analyses of cell signaling pathways allow us to identify new markers and/or targets promising more effective and less toxic therapy. We analyzed 61 diagnostic samples collected from 35 patients [...] Read more.
Despite the excellent survival rate, relapse occurs in 20% of children with ALL. Deep analyses of cell signaling pathways allow us to identify new markers and/or targets promising more effective and less toxic therapy. We analyzed 61 diagnostic samples collected from 35 patients with B- and 26 with T-ALL, respectively. The expression of CK2, MYC and ERG genes using Sybr-Green assay and the comparative 2-ΔΔCt method using 20 healthy donors (HDs) was evaluated. We observed a statistically significant difference in CK2 expression in non-HR (p = 0.010) and in HR (p = 0.0003) T-ALL cases compared to HDs. T-ALL patients with PTEN-Exon7 mutation, IKZF1 and CDKN2A deletions showed high CK2 expression. MYC expression was higher in pediatric T-ALL patients than HDs (p = 0.019). Surprisingly, we found MYC expression to be higher in non-HR than in HR T-ALL patients. TLX3 (HOX11L2)-rearranged T-ALLs (27%) in association with CRLF2 overexpression (23%) showed very high MYC expression. In B-ALLs, we detected CK2 expression higher than HDs and MYC overexpression in HR compared to non-HR patients, particularly in MLL-rearranged B-ALLs. We observed a strong difference in ERG expression between pediatric T- and B-ALL cases. In conclusion, we confirmed CK2 as a prognostic marker and a therapeutic target. Full article
(This article belongs to the Special Issue Acute Leukemia: From Basic Research to Clinical Application)
Show Figures

Figure 1

15 pages, 3844 KiB  
Article
Preferential Genetic Pathways Lead to Relapses in Adult B-Cell Acute Lymphoblastic Leukemia
by Josgrey Navas-Acosta, Alberto Hernández-Sánchez, Teresa González, Ángela Villaverde Ramiro, Sandra Santos, Cristina Miguel, Jordi Ribera, Isabel Granada, Mireia Morgades, Ricardo Sánchez, Esperanza Such, Susana Barrena, Juana Ciudad, Julio Dávila, Natalia de Las Heras, Alfonso García-de Coca, Jorge Labrador, José Antonio Queizán, Sandra Martín, Alberto Orfao, Josep-María Ribera, Rocío Benito and Jesús María Hernández-Rivasadd Show full author list remove Hide full author list
Cancers 2024, 16(24), 4200; https://doi.org/10.3390/cancers16244200 - 17 Dec 2024
Cited by 1 | Viewed by 2003
Abstract
Adult B-cell acute lymphoblastic leukemia (B-ALL) is characterized by genetic heterogeneity and a high relapse rate, affecting over 40% of adults. However, the mechanisms leading to relapse in adults are poorly understood. Forty-four adult B-ALL patients were studied at both diagnosis and relapse [...] Read more.
Adult B-cell acute lymphoblastic leukemia (B-ALL) is characterized by genetic heterogeneity and a high relapse rate, affecting over 40% of adults. However, the mechanisms leading to relapse in adults are poorly understood. Forty-four adult B-ALL patients were studied at both diagnosis and relapse by next-generation sequencing (NGS). Four main genetic pathways leading to relapse in adults were identified: IKZF1plus genetic profile, RAS mutations and TP53 alterations in Ph-negative B-ALL and acquisition of ABL1 mutations in Ph-positive patients. The most frequently deleted gene at diagnosis was IKZF1 (52%), and 70% of these patients had IKZF1plus profile. Notably, 88% of patients with IKZF1plus at diagnosis retained this genetic profile at relapse. Conversely, the acquisition of RAS mutations or the expansion of subclones (normalized variant allele frequency < 25%) present from diagnosis were observed in 24% of Ph-negative patients at relapse. In addition, 24% of relapses in the Ph-negative cohort could potentially be driven by TP53 alterations. Of these cases, five presented from diagnosis, and four emerged at relapse, mostly as “double-hit” events involving both TP53 deletion and mutation. In Ph-positive B-ALL, the main genetic finding at relapse was the acquisition of ABL1 mutations (86%). Three clonal evolution patterns were identified: the persistent clone trajectory (25%), the expanding clone trajectory (11%) and the therapy-boosted trajectory (48%). Our results reveal the presence of preferential biological pathways leading to relapse in adult B-ALL. These findings underscore the need for personalized therapeutic strategies to improve clinical outcomes in adult patients with B-ALL. Full article
(This article belongs to the Section Molecular Cancer Biology)
Show Figures

Graphical abstract

15 pages, 7578 KiB  
Article
Optical Genome Mapping for Detection of BCR::ABL1—Another Tool in Our Toolbox
by Zhenya Tang, Wei Wang, Gokce A. Toruner, Shimin Hu, Hong Fang, Jie Xu, M. James You, L. Jeffrey Medeiros, Joseph D. Khoury and Guilin Tang
Genes 2024, 15(11), 1357; https://doi.org/10.3390/genes15111357 - 22 Oct 2024
Cited by 2 | Viewed by 1326
Abstract
Background: BCR::ABL1 fusion is mostly derived from a reciprocal translocation t(9;22)(q34.1;q11.2) and is rarely caused by insertion. Various methods have been used for the detection of t(9;22)/BCR::ABL1, such as G-banded chromosomal analysis, fluorescence in situ hybridization (FISH), quantitative real-time reverse [...] Read more.
Background: BCR::ABL1 fusion is mostly derived from a reciprocal translocation t(9;22)(q34.1;q11.2) and is rarely caused by insertion. Various methods have been used for the detection of t(9;22)/BCR::ABL1, such as G-banded chromosomal analysis, fluorescence in situ hybridization (FISH), quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR) and optical genome mapping (OGM). Understanding the strengths and limitations of each method is essential for the selection of appropriate method(s) of disease diagnosis and/or during the follow-up. Methods: We compared the results of OGM, chromosomal analysis, FISH, and/or RT-PCR in 12 cases with BCR::ABL1. Results: BCR:ABL1 was detected by FISH and RT-PCR in all 12 cases. One case with ins(22;9)/BCR::ABL1 was cryptic by chromosomal analysis and nearly missed by OGM. Atypical FISH signal patterns were observed in five cases, suggesting additional chromosomal aberrations involving chromosomes 9 and/or 22. RT-PCR identified the transcript isoforms p210 and p190 in seven and five cases, respectively. Chromosomal analysis revealed additional chromosomal aberrations in seven cases. OGM identified extra cytogenomic abnormalities in 10 cases, including chromoanagenesis and IKZF1 deletion, which were only detected by OGM. Conclusions: FISH offers rapid and definitive detection of BCR::ABL1 fusion, while OGM provides a comprehensive cytogenomic analysis. In scenarios where OGM is feasible, chromosomal analysis and RT-PCR may not offer additional diagnostic value. Full article
(This article belongs to the Special Issue Clinical Molecular Genetics in Hematologic Diseases)
Show Figures

Figure 1

12 pages, 2919 KiB  
Article
Ikaros Deletions among Bulgarian Patients with Acute Lymphoblastic Leukemia/Lymphoma
by Stefan Lozenov, Yoanna Tsoneva, Georgi Nikolaev and Rossitza Konakchieva
Diagnostics 2024, 14(17), 1953; https://doi.org/10.3390/diagnostics14171953 - 3 Sep 2024
Viewed by 1307
Abstract
The Ikaros zinc finger factor 1 is a transcription factor with a well-known role in B- and T-cell development. The deletions of IKZF1 have an established significance in acute lymphoblastic leukemia, while reports on its prevalence and prognostic significance among ALL subtypes and [...] Read more.
The Ikaros zinc finger factor 1 is a transcription factor with a well-known role in B- and T-cell development. The deletions of IKZF1 have an established significance in acute lymphoblastic leukemia, while reports on its prevalence and prognostic significance among ALL subtypes and regions vary. Breakpoint-specific qPCR is a practical method for testing of the most frequent types of IKZF1 deletions, considering there is clustering of the deletion events. The most commonly reported deletions are Δ4–7, Δ4–8, Δ2–7, and Δ2–8, with deletion Δ4–7 being the most common one. We retrospectively administered a breakpoint-specific qPCR design for screening for the most frequent types of IKZF1 deletions to 78 ALL patients that were diagnosed and treated between 2010 and 2022. We observed the products through gel electrophoresis, and we conducted descriptive statistics, EFS, and OS analyses. Our study found 19 patients with IKZF1 deletions, with two subjects manifesting more than one deletion. The prevalence in the different subgroups was as follows: Ph/+/ B-ALL 46%, Ph/−/ B-ALL 30%, T-ALL/LBL 4%. There was a statistically significant difference in EFS of 39 vs. 0% in favor of patients without deletions (p = 0.000), which translated to a difference in OS of 49 vs. 0% (p = 0.001). This difference was preserved in the subgroup of Ph/−/ B-ALL, while there was no significant difference in the Ph/+/ B-ALL. The most frequently observed type of deletion (15 out of 19) was the Δ4–7. There is a strong negative prognostic impact of the IKZF1 deletions at diagnosis in the observed population. IKZF1 deletion testing through breakpoint-specific qPCR is a practical approach in diagnostic testing for this risk factor. IKZF1 deletions may warrant treatment decisions and intensified treatment strategies to overcome the negative prognostic impact. Full article
(This article belongs to the Special Issue Diagnosis, Prognosis and Management of Hematologic Malignancies)
Show Figures

Figure 1

21 pages, 1444 KiB  
Article
SingleNucleotide Polymorphisms as Biomarkers of Mepolizumab and Benralizumab Treatment Response in Severe Eosinophilic Asthma
by Susana Rojo-Tolosa, José Antonio Sánchez-Martínez, Alberto Caballero-Vázquez, Laura Elena Pineda-Lancheros, María Victoria González-Gutiérrez, Cristina Pérez-Ramírez, Alberto Jiménez-Morales and Concepción Morales-García
Int. J. Mol. Sci. 2024, 25(15), 8139; https://doi.org/10.3390/ijms25158139 - 26 Jul 2024
Cited by 1 | Viewed by 2352
Abstract
The most promising treatment options for severe uncontrolled asthma (SUA) have emerged in recent years with the development of monoclonal antibodies for blocking selective targets responsible for the underlying inflammation, such as mepolizumab and benralizumab. However, there is variability in treatment response that [...] Read more.
The most promising treatment options for severe uncontrolled asthma (SUA) have emerged in recent years with the development of monoclonal antibodies for blocking selective targets responsible for the underlying inflammation, such as mepolizumab and benralizumab. However, there is variability in treatment response that is not fully controlled. The variability of the response to mepolizumab and benralizumab could be influenced by single-nucleotide polymorphisms (SNPs), and it would be useful to detect these and use them as predictive biomarkers of response. We conducted a retrospective observational cohort study of 72 Caucasian patients recruited from a tertiary hospital with severe uncontrolled eosinophilic asthma treated with mepolizumab and benralizumab. Polymorphisms in the IL5 (rs4143832, rs17690122), RAD50 (rs11739623, rs4705959), IL1RL1 (rs1420101, rs17026974, rs1921622), GATA2 (rs4857855), IKZF2 (rs12619285), FCGR2A (rs1801274), FCGR2B (rs3219018, rs1050501), FCGR3A (rs10127939, rs396991), FCER1A (rs2251746, rs2427837), FCER1B (rs1441586, rs573790, rs569108), and ZNF415 (rs1054485) genes were analyzed by real-time polymerase chain reaction (PCR) using Taqman probes. The response was analyzed after 12 months of treatment. In patients under mepolizumab treatment, a treatment response defined as a reduction in exacerbations was associated with ZNF415 rs1054485-T (p = 0.042; OR = 5.33; 95% CI = 1.06–30.02), treatment response defined as a reduction in oral corticosteroids use was associated with the number of exacerbations in the previous year (p = 0.029; OR = 3.89; 95% CI = 1.24–14.92), and treatment response defined as improvement in lung function was associated with the age at the beginning of biological therapy (p = 0.002; OR = 1.10; 95% CI = 1.04–1.18), FCER1B rs569108-AA (p < 0.001; OR = 171.06; 95% CI = 12.94–6264.11), and FCER1A rs2427837-A (p = 0.021; OR = 8.61; 95% CI = 1.71–76.62). On the other hand, in patients under benralizumab treatment, treatment response, defined as a reduction in exacerbations, was associated with ZNF415 rs1054485-T (p = 0.073; OR = 1.3 × 108; 95% CI = 1.8 × 10−19–NA), FCER1B rs569108-AA (p = 0.050; OR = 11.51; 95% CI = 1.19–269.78), allergies (p = 0.045; OR = 4.02; 95% CI = 1.05–16.74), and sex (p = 0.028; OR = 4.78; 95% CI = 1.22–20.63); and treatment response defined as improvement in lung function was associated with polyposis (p = 0.027; OR = 9.16; 95% CI = 1.58–91.4), IKZF2 rs12619285-AA (p = 0.019; OR = 9.1; 95% CI = 1.7–75.78), IL5 rs4143832-T (p = 0.017; OR = 11.1; 95% CI = 1.9–112.17), and FCER1B rs1441586-C (p = 0.045; OR = 7.81; 95% CI = 1.16–73.45). The results of this study show the potential influence of the studied polymorphisms on the response to mepolizumab and benralizumab and the clinical benefit that could be obtained by defining predictive biomarkers of treatment response. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

14 pages, 560 KiB  
Review
Mechanisms Underlying the Development of Murine T-Cell Lymphoblastic Lymphoma/Leukemia Induced by Total-Body Irradiation
by Toshihiko Sado, John B. Cart and Chang-Lung Lee
Cancers 2024, 16(12), 2224; https://doi.org/10.3390/cancers16122224 - 14 Jun 2024
Viewed by 1666
Abstract
Exposure to ionizing radiation is associated with an increased risk of hematologic malignancies in myeloid and lymphoid lineages in humans and experimental mice. Given that substantial evidence links radiation exposure with the risk of hematologic malignancies, it is imperative to deeply understand the [...] Read more.
Exposure to ionizing radiation is associated with an increased risk of hematologic malignancies in myeloid and lymphoid lineages in humans and experimental mice. Given that substantial evidence links radiation exposure with the risk of hematologic malignancies, it is imperative to deeply understand the mechanisms underlying cellular and molecular changes during the latency period between radiation exposure and the emergence of fully transformed malignant cells. One experimental model widely used in the field of radiation and cancer biology to study hematologic malignancies induced by radiation exposure is mouse models of radiation-induced thymic lymphoma. Murine radiation-induced thymic lymphoma is primarily driven by aberrant activation of Notch signaling, which occurs frequently in human precursor T-cell lymphoblastic lymphoma (T-LBL) and T-cell lymphoblastic leukemia (T-ALL). Here, we summarize the literature elucidating cell-autonomous and non-cell-autonomous mechanisms underlying cancer initiation, progression, and malignant transformation in the thymus following total-body irradiation (TBI) in mice. Full article
Show Figures

Figure 1

18 pages, 2523 KiB  
Article
Synergy between BRD9- and IKZF3-Targeting as a Therapeutic Strategy for Multiple Myeloma
by Basudev Chowdhury, Swati Garg, Wei Ni, Martin Sattler, Dana Sanchez, Chengcheng Meng, Taisei Akatsu, Richard Stone, William Forrester, Edmund Harrington, Sara J. Buhrlage, James D. Griffin and Ellen Weisberg
Cancers 2024, 16(7), 1319; https://doi.org/10.3390/cancers16071319 - 28 Mar 2024
Cited by 3 | Viewed by 2980
Abstract
Progress in the treatment of multiple myeloma (MM) has resulted in improvement in the survival rate. However, there is still a need for more efficacious and tolerated therapies. We and others have shown that bromodomain-containing protein 9 (BRD9), a member of the non-canonical [...] Read more.
Progress in the treatment of multiple myeloma (MM) has resulted in improvement in the survival rate. However, there is still a need for more efficacious and tolerated therapies. We and others have shown that bromodomain-containing protein 9 (BRD9), a member of the non-canonical SWI/SNF chromatin remodeling complex, plays a role in MM cell survival, and targeting BRD9 selectively blocks MM cell proliferation and synergizes with IMiDs. We found that synergy in vitro is associated with the downregulation of MYC and Ikaros proteins, including IKZF3, and overexpression of IKZF3 or MYC could partially reverse synergy. RNA-seq analysis revealed synergy to be associated with the suppression of pathways associated with MYC and E2F target genes and pathways, including cell cycle, cell division, and DNA replication. Stimulated pathways included cell adhesion and immune and inflammatory response. Importantly, combining IMiD treatment and BRD9 targeting, which leads to the downregulation of MYC protein and upregulation of CRBN protein, was able to override IMiD resistance of cells exposed to iberdomide in long-term culture. Taken together, our results support the notion that combination therapy based on agents targeting BRD9 and IKZF3, two established dependencies in MM, represents a promising novel therapeutic strategy for MM and IMiD-resistant disease. Full article
(This article belongs to the Special Issue Signaling Pathways in Multiple Myeloma)
Show Figures

Figure 1

17 pages, 3420 KiB  
Review
Mezigdomide—A Novel Cereblon E3 Ligase Modulator under Investigation in Relapsed/Refractory Multiple Myeloma
by Monique A. Hartley-Brown, Clifton C. Mo, Omar Nadeem, Shonali Midha, Jacob P. Laubach and Paul G. Richardson
Cancers 2024, 16(6), 1166; https://doi.org/10.3390/cancers16061166 - 15 Mar 2024
Cited by 3 | Viewed by 5503
Abstract
Mezigomide is an oral cereblon E3 ligase modulator (CELMoD) that is under clinical investigation in patients with relapsed/refractory (RR) multiple myeloma (MM). Like other CELMoD compounds, mezigdomide acts by altering the conformation of cereblon within the cullin 4A ring ligase–cereblon (CRL4CRBN) E3 ubiquitin [...] Read more.
Mezigomide is an oral cereblon E3 ligase modulator (CELMoD) that is under clinical investigation in patients with relapsed/refractory (RR) multiple myeloma (MM). Like other CELMoD compounds, mezigdomide acts by altering the conformation of cereblon within the cullin 4A ring ligase–cereblon (CRL4CRBN) E3 ubiquitin ligase complex, thereby recruiting novel protein substrates for selective proteasomal degradation. These include two critical lymphoid transcription factors, Ikaros family zinc finger proteins 1 and 3 (IKZF1 and IKZF3), also known as Ikaros and Aiolos, which have important roles in the development and differentiation of hematopoietic cells, in MM pathobiology, and in suppressing the expression of interferon-stimulating genes and T-cell stimulation. Among the CELMoDs, mezigdomide has the greatest cereblon-binding potency, plus the greatest potency for the degradation of Ikaros and Aiolos and subsequent downstream antimyeloma effects. Preclinical studies of mezigdomide have demonstrated its anti-proliferative and apoptotic effects in MM, along with its immune-stimulatory effects and its synergistic activity with other antimyeloma agents, including in lenalidomide-/pomalidomide-resistant MM cell lines and mouse xenograft models. Early-phase clinical trial data indicate notable activity in heavily pretreated patients with RRMM, including those with triple-class-refractory disease, together with a tolerable and manageable safety profile. This review summarizes current preclinical and clinical findings with mezigdomide and its potential future roles in the treatment of MM. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

Back to TopTop