Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (66)

Search Parameters:
Keywords = ITO (In2O3: SnO2)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2677 KiB  
Article
Enzyme-Based Solid-Phase Electrochemiluminescence Sensors with Stable, Anchored Emitters for Sensitive Glucose Detection
by Chunyin Wei, Yanyan Zheng, Fei Yan and Lifang Xu
Biosensors 2025, 15(5), 332; https://doi.org/10.3390/bios15050332 - 21 May 2025
Cited by 2 | Viewed by 614
Abstract
Glucose (Glu) detection, as a fundamental analytical technique, has applications in medical diagnostics, clinical testing, bioanalysis and environmental monitoring. In this work, a solid-phase electrochemiluminescence (ECL) enzyme sensor was developed by immobilizing the ECL emitter in a stable manner within bipolar silica nanochannel [...] Read more.
Glucose (Glu) detection, as a fundamental analytical technique, has applications in medical diagnostics, clinical testing, bioanalysis and environmental monitoring. In this work, a solid-phase electrochemiluminescence (ECL) enzyme sensor was developed by immobilizing the ECL emitter in a stable manner within bipolar silica nanochannel array film (bp-SNA), enabling sensitive glucose detection. The sensor was constructed using an electrochemical-assisted self-assembly (EASA) method with various siloxane precursors to quickly modify the surface of indium tin oxide (ITO) electrodes with a bilayer SNA of different charge properties. The inner layer, including negatively charged SNA (n-SNA), attracted the positively charged ECL emitter tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) via electrostatic interaction, while the outer layer, including positively charged SNA (p-SNA), repelled it, forming a barrier that efficiently concentrated the Ru(bpy)32+ emitter in a stable manner. After modifying the amine groups on the p-SNA surface with aldehyde groups, glucose oxidase (GOx) was covalently immobilized, forming the enzyme electrode. In the presence of glucose, GOx catalyzed the conversion of glucose to hydrogen peroxide (H2O2), which acted as a quencher for the Ru(bpy)32+/triethanolamine (TPA) system, reducing the ECL signal and enabling quantitative glucose analysis. The sensor exhibited a wide linear range from 10 μM to 7.0 mM and a limit of detection (LOD) of 1 μM (S/N = 3). Glucose detection in fetal bovine serum was realized. By replacing the enzyme type on the electrode surface, this sensing strategy holds the potential to provide a universal platform for the detection of different metabolites. Full article
(This article belongs to the Special Issue Recent Developments in Nanomaterial-Based Electrochemical Biosensors)
Show Figures

Figure 1

16 pages, 2805 KiB  
Article
Numerical Investigation of Perovskite/Silicon Heterojunction Tandem Solar Cell with a Dual-Functional Layer of MoOX
by Tian-Yu Lu, Jin Wang and Xiao-Dong Feng
Materials 2025, 18(7), 1438; https://doi.org/10.3390/ma18071438 - 24 Mar 2025
Viewed by 517
Abstract
This study proposed a novel perovskite/silicon heterojunction (SHJ) tandem device structure without an interlayer, represented as ITO/NiO/perovskite/SnO2/MoOX/i-a-Si:H/n-c-Si/i-a-Si:H/n-a-Si:H/Ag, which was investigated by Silvaco TCAD software. The recombination layer in this structure comprises the carrier transport layers of SnO2 and [...] Read more.
This study proposed a novel perovskite/silicon heterojunction (SHJ) tandem device structure without an interlayer, represented as ITO/NiO/perovskite/SnO2/MoOX/i-a-Si:H/n-c-Si/i-a-Si:H/n-a-Si:H/Ag, which was investigated by Silvaco TCAD software. The recombination layer in this structure comprises the carrier transport layers of SnO2 and MoOX, where MoOX serves dual functions, acting as the emitter for the SHJ bottom cell and as part of the recombination layer in the tandem cell. First, the effects of different recombination layers are analyzed, and the SnO2/MoOX layer demonstrates the best performance. Then, we systematically investigated the impact of the carrier concentration, interface defect density, thicknesses of the SnO2/MoOX layer, different hole transport layers (HTLs) for the top cell, absorption layer thicknesses, and perovskite defect density on device performance. The optimal carrier concentration in the recombination layer should exceed 5 × 1019 cm−3, the interface defect density should be below 1 × 1016 cm−2, and the thicknesses of SnO2/MoOX should be kept at 20 nm/20 nm. CuSCN has been found to be the optimal HTL for the top cell. When the silicon absorption layer is 200 μm, the perovskite layer thickness is 470 nm, and the defect density of the perovskite layer is 1011 cm−3, the planar structure can achieve the best performance of 32.56%. Finally, we studied the effect of surface texturing on the SHJ bottom cell, achieving a power conversion efficiency of 35.31% for the tandem cell. Our simulation results suggest that the simplified perovskite/SHJ tandem solar cell with a dual-functional MoOX layer has the potential to provide a viable pathway for developing high-efficiency tandem devices. Full article
(This article belongs to the Special Issue Recent Advances in Semiconductors for Solar Cell Devices)
Show Figures

Figure 1

17 pages, 3597 KiB  
Article
Interrelationships Between Topology and Wettability of Nanostructured Composite Wide Bandgap Metal Oxide Films Prepared by Spray Pyrolysis
by Vadim Morari, Elena I. Monaico, Eduard V. Monaico, Emil V. Rusu and Veaceslav V. Ursaki
Appl. Sci. 2025, 15(5), 2381; https://doi.org/10.3390/app15052381 - 23 Feb 2025
Viewed by 686
Abstract
The interrelationships between the topological features, such as surface roughness deduced from atomic force microscopy (AFM), and wettability properties expressed by the contact angle of a water droplet on the surface of nanostructured wide bandgap oxide films prepared by spray pyrolysis are investigated [...] Read more.
The interrelationships between the topological features, such as surface roughness deduced from atomic force microscopy (AFM), and wettability properties expressed by the contact angle of a water droplet on the surface of nanostructured wide bandgap oxide films prepared by spray pyrolysis are investigated for a wide range of compositions. A direct relationship between the surface roughness and the value of the contact angle was found for nanocomposite (In2O3)1−x(MgO)x, (In1−xGax)2O3, and Zn1−xMgxO films, for which both the surface roughness and the contact angle increase with the increasing x-value. On the other hand, in ITO films doped with Ga, it was found that the surface roughness increases by increasing the Ga doping, while the contact angle decreases. Both the surface roughness and the contact angle proved to increase in Ga2O3 films when they were alloyed with Al2O3, similar to other nanocomposite films. An inverse relationship was revealed for a nanocomposite formed from Ga2O3 and SnO2. The contact angle for a (Ga2O3)0.75(SnO2)0.25 film was larger as compared to that of the Ga2O3 film, while the surface roughness was lower, similar to ITO films. The highest value of the contact angle equal to 128° was found for a (In2O3)1−x(MgO)x film with an x-value of 0.8, and the largest RMS roughness of 20 nm was showed by a Ga1.75Al0.25O3 film. The optical properties of the prepared films were also analyzed from optical absorption spectroscopy, demonstrating their bandgap variation in the range of (4 to 4.85) eV, corresponding to the middle ultraviolet spectral range. Full article
Show Figures

Figure 1

15 pages, 5437 KiB  
Article
Deposition and Characterization of Zinc–Tin Oxide Thin Films with Varying Material Compositions
by Stanka Spasova, Vladimir Dulev, Alexander Benkovsky, Vassil Palankovski, Ekaterina Radeva, Rumen Stoykov, Zoya Nenova, Hristosko Dikov, Atanas Katerski, Olga Volobujeva, Daniela Lilova and Maxim Ganchev
Coatings 2025, 15(2), 225; https://doi.org/10.3390/coatings15020225 - 13 Feb 2025
Viewed by 1181
Abstract
Zinc–tin oxide (ZTO) thin films (ZnO)x(SnO2)1−x with different material composition x (0 < x < 1) are deposited by spin coating on glass substrates at room temperature. The Differential Scanning Calorimetry (DSC) data of the precursor compounds show [...] Read more.
Zinc–tin oxide (ZTO) thin films (ZnO)x(SnO2)1−x with different material composition x (0 < x < 1) are deposited by spin coating on glass substrates at room temperature. The Differential Scanning Calorimetry (DSC) data of the precursor compounds show gradual phase transitions up to 480 °C. These data are used for an appropriate regime for thermal annealing of the layers. X-ray photoelectron spectroscopy (XPS) data show mixed oxide compound formation in states Zn2+, Sn4+ and O2− of the constituents. Optical investigation manifests high transmittance above 80% in the visible spectral range and an optical band gap of 3.3–3.7 eV. The work functions vary between 4.1 eV and 5 eV, depending on the annealing, with deviations less than 1% for surface 1 mm2 scans. Stack devices ITO/ZTO/metal with different metal contacts are formed. The I–V (current–voltage) measurements of the fabricated stacks exhibit Ohmic or nonlinear behavior, depending on the material composition and the work function levels. Full article
(This article belongs to the Special Issue Trends in Coatings and Surface Technology, 2nd Edition)
Show Figures

Figure 1

16 pages, 2864 KiB  
Article
Evaluation of Physicochemical Properties of Cadmium Oxide (CdO)-Incorporated Indium–Tin Oxide (ITO) Nanoparticles for Photocatalysis
by Habtamu Fekadu Etefa and Francis Birhanu Dejene
J. Compos. Sci. 2025, 9(1), 43; https://doi.org/10.3390/jcs9010043 - 16 Jan 2025
Cited by 6 | Viewed by 1405
Abstract
This study investigates the structural, optical, and photocatalytic properties of cadmium oxide (CdO) nanoparticles (NPs) and indium–tin oxide (ITO)-doped CdO NPs. The synthesis of CdO NPs and ITO NPs was accomplished through the co-precipitation method. Scanning electron microscopy (SEM) analysis indicates that pure [...] Read more.
This study investigates the structural, optical, and photocatalytic properties of cadmium oxide (CdO) nanoparticles (NPs) and indium–tin oxide (ITO)-doped CdO NPs. The synthesis of CdO NPs and ITO NPs was accomplished through the co-precipitation method. Scanning electron microscopy (SEM) analysis indicates that pure CdO NPs exhibit agglomerated structures, whereas ITO doping introduces porosity and roughness, thereby improving particle dispersion and facilitating electron transport. Energy dispersive spectroscopy (EDS) corroborates the successful incorporation of tin (Sn) and indium (In) within indium–tin oxide (ITO)-doped cadmium oxide (CdO) nanoparticles (NPs) in addition to cadmium (Cd) and oxygen (O). X-ray diffraction (XRD) analysis demonstrates that an increase in ITO doping results in a reduction of the crystallite size, decreasing from 23.43 nm for pure CdO to 18.42 nm at a 10% doping concentration, which can be attributed to lattice distortion. Simultaneously, the band gap exhibits a narrowing from 2.92 eV to 2.52 eV, achieving an optimal value at 10% ITO doping before experiencing a slight increase at higher doping concentrations. This tuneable band gap improves light absorption, which is crucial for photocatalysis. The photocatalytic degradation of rhodamine B (RhB) highlights the superior efficiency of ITO-doped CdO nanoparticles, achieving a remarkable 94.68% degradation under sunlight within 120 min, up 81.01%, significantly surpassing the performance of pure CdO. The optimal RhB concentration for achieving maximum degradation was determined to be 5 mg/L. This enhanced catalytic activity demonstrates the effectiveness of ITO-doped CdO NPs under both UV and visible light, showcasing their potential for efficient pollutant degradation in sunlight-driven applications. Full article
Show Figures

Figure 1

12 pages, 4553 KiB  
Article
A Biomimetic Chip with Dendrimer-Encapsulated Platinum Nanoparticles for Enhanced Electrochemiluminescence Detection of Cardiac Troponin I
by Yun Hui, Weijun Kong, Weiliang Shu, Zhiting Peng, Fengshan Shen, Mingyang Jiang, Zhen Xu, Tianzhun Wu, Wenhua Zhou and Xue-Feng Yu
Chemosensors 2024, 12(10), 214; https://doi.org/10.3390/chemosensors12100214 - 16 Oct 2024
Viewed by 1352
Abstract
The measurement of cardiac troponin I (cTnI) is of vital importance for the early diagnosis of acute myocardial infarction. In this study, an enhanced electrochemiluminescent immunoassay for the highly sensitive and precise determination of cTnI was reported. A biomimetic chip with nepenthes peristome [...] Read more.
The measurement of cardiac troponin I (cTnI) is of vital importance for the early diagnosis of acute myocardial infarction. In this study, an enhanced electrochemiluminescent immunoassay for the highly sensitive and precise determination of cTnI was reported. A biomimetic chip with nepenthes peristome surface microstructures to achieve single-layer microbead arrays and integrated microelectrode arrays (MEAs) for ECL detection was microfabricated. Ru@SiO2 nanoparticles were prepared as signal amplificators labeling immunomagnetic beads. Dendrimer-encapsulated platinum nanoparticles (Pt DENs) were electrochemically modified on ITO MEAs. The resulting Pt DEN-modified ITO MEAs preserved good optical transparency and exhibited an approximately 20-fold ECL signal amplification compared to that obtained from bare ITO. The method made full use of the biomimetic chip with Pt DENs to develop single-layer immunomagnetic bead arrays with increasingly catalyzed electrochemical oxidation of the [Ru(bpy)3]2+–TPA system. Consequently, a limit of detection calculated as 0.38 pg/mL (S/N = 3) was obtained with excellent selectivity, demonstrating significant potential for the detection of cTnI in clinical diagnostics. Full article
(This article belongs to the Special Issue Application of Luminescent Materials for Sensing, 2nd Edition)
Show Figures

Figure 1

16 pages, 5129 KiB  
Article
Enhanced Electrochemiluminescence of Luminol and-Dissolved Oxygen by Nanochannel-Confined Au Nanomaterials for Sensitive Immunoassay of Carcinoembryonic Antigen
by Weibin Li, Ruliang Yu and Fengna Xi
Molecules 2024, 29(20), 4880; https://doi.org/10.3390/molecules29204880 - 15 Oct 2024
Cited by 8 | Viewed by 1801
Abstract
Simple development of an electrochemiluminescence (ECL) immunosensor for convenient detection of tumor biomarker is of great significance for early cancer diagnosis, treatment evaluation, and improving patient survival rates and quality of life. In this work, an immunosensor is demonstrated based on an enhanced [...] Read more.
Simple development of an electrochemiluminescence (ECL) immunosensor for convenient detection of tumor biomarker is of great significance for early cancer diagnosis, treatment evaluation, and improving patient survival rates and quality of life. In this work, an immunosensor is demonstrated based on an enhanced ECL signal boosted by nanochannel-confined Au nanomaterial, which enables sensitive detection of the tumor biomarker—carcinoembryonic antigen (CEA). Vertically-ordered mesoporous silica film (VMSF) with a nanochannel array and amine groups was rapidly grown on a simple and low-cost indium tin oxide (ITO) electrode using the electrochemically assisted self-assembly (EASA) method. Au nanomaterials were confined in situ on the VMSF through electrodeposition, which catalyzed both the conversion of dissolved oxygen (O2) to reactive oxygen species (ROS) and the oxidation of a luminol emitter and improved the electrode active surface. The ECL signal was enhanced fivefold after Au nanomaterial deposition. The recognitive interface was fabricated by covalent immobilization of the CEA antibody on the outer surface of the VMSF, followed with the blocking of non-specific binding sites. In the presence of CEA, the formed immunocomplex reduced the diffusion of the luminol emitter, resulting in the reduction of the ECL signal. Based on this mechanism, the constructed immunosensor was able to provide sensitive detection of CEA ranging from 1 pg·mL−1 to 100 ng·mL−1 with a low limit of detection (LOD, 0.37 pg·mL−1, S/N = 3). The developed immunosensor exhibited high selectivity and good stability. ECL determination of CEA in fetal bovine serum was achieved. Full article
Show Figures

Figure 1

11 pages, 4655 KiB  
Article
Compositional Optimization of Sputtered SnO2/ZnO Films for High Coloration Efficiency
by Zoltán Lábadi, Noor Taha Ismaeel, Péter Petrik and Miklós Fried
Int. J. Mol. Sci. 2024, 25(19), 10801; https://doi.org/10.3390/ijms251910801 - 8 Oct 2024
Cited by 1 | Viewed by 1090
Abstract
We performed an electrochromic investigation to optimize the composition of reactive magnetron-sputtered mixed layers of zinc oxide and tin oxide (ZnO-SnO2). Deposition experiments were conducted as a combinatorial material synthesis approach. The binary system for the samples of SnO2-ZnO [...] Read more.
We performed an electrochromic investigation to optimize the composition of reactive magnetron-sputtered mixed layers of zinc oxide and tin oxide (ZnO-SnO2). Deposition experiments were conducted as a combinatorial material synthesis approach. The binary system for the samples of SnO2-ZnO represented the full composition range. The coloration efficiency (CE) was determined for the mixed oxide films with the simultaneous measurement of layer transmittance, in a conventional three-electrode configuration, and an electric current was applied by using organic propylene carbonate electrolyte cells. The optical parameters and composition were measured and mapped by using spectroscopic ellipsometry (SE). Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray Spectroscopy (EDS) measurements were carried out to check the SE results, for (TiO2-SnO2). Pure metal targets were placed separately from each other, and the indium–tin-oxide (ITO)-covered glass samples and Si-probes on a glass holder were moved under the two separated targets (Zn and Sn) in a reactive argon–oxygen (Ar-O2) gas mixture. This combinatorial process ensured that all the compositions (from 0 to 100%) were achieved in the same sputtering chamber after one sputtering preparation cycle. The CE data evaluated from the electro-optical measurements plotted against the composition displayed a characteristic maximum at around 29% ZnO. The accuracy of our combinatorial approach was 5%. Full article
Show Figures

Figure 1

14 pages, 3909 KiB  
Article
Impact of Annealing in Various Atmospheres on Characteristics of Tin-Doped Indium Oxide Layers towards Thermoelectric Applications
by Anna Kaźmierczak-Bałata, Jerzy Bodzenta, Piotr Szperlich, Marcin Jesionek, Anna Michalewicz, Alina Domanowska, Jeyanthinath Mayandi, Vishnukanthan Venkatachalapathy and Andrej Kuznetsov
Materials 2024, 17(18), 4606; https://doi.org/10.3390/ma17184606 - 20 Sep 2024
Cited by 2 | Viewed by 1390
Abstract
The aim of this work was to investigate the possibility of modifying the physical properties of indium tin oxide (ITO) layers by annealing them in different atmospheres and temperatures. Samples were annealed in vacuum, air, oxygen, nitrogen, carbon dioxide and a mixture of [...] Read more.
The aim of this work was to investigate the possibility of modifying the physical properties of indium tin oxide (ITO) layers by annealing them in different atmospheres and temperatures. Samples were annealed in vacuum, air, oxygen, nitrogen, carbon dioxide and a mixture of nitrogen with hydrogen (NHM) at temperatures from 200 °C to 400 °C. Annealing impact on the crystal structure, optical, electrical, thermal and thermoelectric properties was examined. It has been found from XRD measurements that for samples annealed in air, nitrogen and NHM at 400 °C, the In2O3/In4Sn3O12 share ratio decreased, resulting in a significant increase of the In4Sn3O12 phase. The annealing at the highest temperature in air and nitrogen resulted in larger grains and the mean grain size increase, while vacuum, NHM and carbon dioxide atmospheres caused the decrease in the mean grain size. The post-processing in vacuum and oxidizing atmospheres effected in a drop in optical bandgap and poor electrical properties. The carbon dioxide seems to be an optimal atmosphere to obtain good TE generator parameters—high ZT. The general conclusion is that annealing in different atmospheres allows for controlled changes in the structure and physical properties of ITO layers. Full article
Show Figures

Figure 1

18 pages, 4720 KiB  
Article
Optimization of the Active Layer Thickness for Inverted Ternary Organic Solar Cells Achieves 20% Efficiency with Simulation
by Mohamed El Amine Boudia, Qiuwang Wang and Cunlu Zhao
Sustainability 2024, 16(14), 6159; https://doi.org/10.3390/su16146159 - 18 Jul 2024
Cited by 5 | Viewed by 2536
Abstract
Energy harvesting from cleaner sources and preserving the environment from dangerous gasses are presently the key priorities globally to maintain sustainable development. In this context, photovoltaic technology plays a vital role in generating energy from ternary organic solar cells. Ternary organic solar cells [...] Read more.
Energy harvesting from cleaner sources and preserving the environment from dangerous gasses are presently the key priorities globally to maintain sustainable development. In this context, photovoltaic technology plays a vital role in generating energy from ternary organic solar cells. Ternary organic solar cells display significant potential for achieving outstanding photovoltaic performance compared to binary structures. Over the past few years, significant endeavors to develop novel organic materials have led to a consistent rise in efficiency, surpassing 19% for single-junction devices. In our study, we simulated an inverted ternary organic solar cell (TOSC) structure employing the one-dimensional optical and drift diffusion model and using “Oghma-Nano 8.0.034” software by optimizing the active blend thickness at 80 nm within the structure of ITO/SnO2/PM6:D18:L8-BO/PEDOT:PSS/Ag. We simulated different performance parameters such as EQE, Photo-CELIV, PCE, Jsc, Voc, and FF with different active layer thicknesses ranging from 50 to 200 nm to discover the behavior of the device in terms of efficiency parameters. Furthermore, the structure attained a PCE of 20% for an active layer thickness of 80 nm within a Jsc of 27.2 mA cm−2, a Voc of 0.89 V, and an FF of 82.3%. This approach can potentially be valuable in constructing a highly effective TOSC model in the laboratory. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

15 pages, 4087 KiB  
Article
Facile Doping of 2,2,2-Trifluoroethanol to Single-Walled Carbon Nanotubes Electrodes for Durable Perovskite Solar Cells
by Naoki Ueoka, Achmad Syarif Hidayat, Hisayoshi Oshima, Yoshimasa Hijikata and Yutaka Matsuo
Photochem 2024, 4(3), 319-333; https://doi.org/10.3390/photochem4030019 - 14 Jul 2024
Cited by 2 | Viewed by 2447
Abstract
Perovskite solar cells with an indium tin oxide (ITO)/SnO2/CH3NH3PbI3/Spiro-OMeTAD/2,2,2-trifluoroethanol (TFE) doped single-walled carbon nanotube (SWCNT) structure were developed by dropping TFE onto SWCNTs, which replaced the metal back electrode, and a conversion efficiency of 14.1% [...] Read more.
Perovskite solar cells with an indium tin oxide (ITO)/SnO2/CH3NH3PbI3/Spiro-OMeTAD/2,2,2-trifluoroethanol (TFE) doped single-walled carbon nanotube (SWCNT) structure were developed by dropping TFE onto SWCNTs, which replaced the metal back electrode, and a conversion efficiency of 14.1% was achieved. Traditionally, acidic doping of the back electrode, SWCNT, has been challenging due to the potential damage it may cause to the perovskite layer. However, TFE has facilitated easy doping of SWCNT as the back electrode. The sheet resistance of the SWCNTs decreased and their ionization potential shifted to deeper levels, resulting in improved hole transport properties with a lower barrier to carrier transport. Furthermore, the Seebeck coefficient (S) increased from 34.5 μV/K to 73.1 μV/K when TFE was dropped instead of EtOH, indicating an enhancement in the behavior of p-type charge carriers. It was observed that hydrophilic substances adhered less to the SWCNT surface, and the formation of PbI2 was suppressed. These effects resulted in higher conversion efficiency and improved solar cell performance. Furthermore, the decrease in conversion efficiency after 260 days was suppressed, showing improved durability. The study suggests that combining SWCNTs and TFEs improves solar cell performance and stability. Full article
Show Figures

Graphical abstract

14 pages, 3071 KiB  
Article
Simulation and Comparison of the Photovoltaic Performance of Conventional and Inverted Organic Solar Cells with SnO2 as Electron Transport Layers
by Mohamed El Amine Boudia, Qiuwang Wang and Cunlu Zhao
Energies 2024, 17(13), 3302; https://doi.org/10.3390/en17133302 - 5 Jul 2024
Cited by 4 | Viewed by 2058
Abstract
Extensive research on organic solar cells (OSCs) over the past decade has led to efficiency improvements exceeding 18%. Enhancing the efficacy of binary organic solar cells involves multiple factors, including the strategic selection of materials. The choice of donor and acceptor materials, which [...] Read more.
Extensive research on organic solar cells (OSCs) over the past decade has led to efficiency improvements exceeding 18%. Enhancing the efficacy of binary organic solar cells involves multiple factors, including the strategic selection of materials. The choice of donor and acceptor materials, which must exhibit complementary absorption spectra, is crucial. Additionally, optimizing the solar cell structure, such as adjusting the thickness of layers and incorporating hole-transporting layers, can further increase efficiency. In this study, we simulated three different novels within the use of the inorganic SnO2 on the OSCs within this specific arrangement of structures using a drift-diffusion model: direct and inverted binary; direct ternary configurations of OSCs, specifically ITO/PEDOT: PSS/PM6:L8-BO/SnO2/Ag, ITO/SnO2/PM6:L8-BO/PEDOT: PSS/Ag; and FTO/PEDOT: PSS/PM6:D18:L8-BO/SnO2/Ag. These structures achieved power conversion efficiencies (PCE) of 18.34%, 18.37%, and 19.52%, respectively. The direct ternary device achieved an important Voc of 0.89 V and an FF of 82.3%, which is high in comparison with other simulated results in the literature. Our research focused on the role of SnO2 as an inorganic electron transport layer in enhancing efficiency in all three configurations. We also evaluated the properties of these structures by simulating external quantum efficiency (EQE), which results in a broadened absorption spectrum from 380 nm to 900 nm for both binary and ternary devices. Furthermore, we measured the spectral distribution of absorbed photons, and photo-charge extraction by linearly increasing voltage (photo-CELIV) to assess charge extraction and generation rates as well as charge mobility. These measurements help establish a robust model for practical application. Full article
(This article belongs to the Special Issue Organic and Hybrid Solar Cells for Efficient Solar Power Conversion)
Show Figures

Figure 1

17 pages, 3580 KiB  
Article
Impact of Temperature Optimization of ITO Thin Film on Tandem Solar Cell Efficiency
by Elif Damgaci, Emre Kartal, Furkan Gucluer, Ayse Seyhan and Yuksel Kaplan
Materials 2024, 17(11), 2784; https://doi.org/10.3390/ma17112784 - 6 Jun 2024
Cited by 1 | Viewed by 2654
Abstract
This study examined the impact of temperature optimization on indium tin oxide (ITO) films in monolithic HJT/perovskite tandem solar cells. ITO films were deposited using magnetron sputtering at temperatures ranging from room temperature (25 °C) to 250 °C. The sputtering target was ITO, [...] Read more.
This study examined the impact of temperature optimization on indium tin oxide (ITO) films in monolithic HJT/perovskite tandem solar cells. ITO films were deposited using magnetron sputtering at temperatures ranging from room temperature (25 °C) to 250 °C. The sputtering target was ITO, with a mass ratio of In2O3 to SnO2 of 90% to 10%. The effects of temperature on the ITO film were analyzed using X-ray diffraction (XRD), spectroscopic ellipsometry, and sheet resistance measurements. Results showed that all ITO films exhibited a polycrystalline morphology, with diffraction peaks corresponding to planes (211), (222), (400), (440), and (622), indicating a cubic bixbyite crystal structure. The light transmittance exceeded 80%, and the sheet resistance was 75.1 Ω/sq for ITO deposited at 200 °C. The optical bandgap of deposited ITO films ranged between 3.90 eV and 3.93 eV. Structural and morphological characterization of the perovskite solar cell was performed using XRD and FE-SEM. Tandem solar cell performance was evaluated by analyzing current density-voltage characteristics under simulated sunlight. By optimizing the ITO deposition temperature, the tandem cell achieved a power conversion efficiency (PCE) of 16.74%, resulting in enhanced tandem cell efficiency. Full article
Show Figures

Figure 1

10 pages, 2340 KiB  
Article
Enhancing the Carrier Mobility and Bias Stability in Metal–Oxide Thin Film Transistors with Bilayer InSnO/a-InGaZnO Heterojunction Structure
by Xiaoming Huang, Chen Chen, Fei Sun, Xinlei Chen, Weizong Xu and Lin Li
Micromachines 2024, 15(4), 512; https://doi.org/10.3390/mi15040512 - 11 Apr 2024
Cited by 3 | Viewed by 2566
Abstract
In this study, the electrical performance and bias stability of InSnO/a-InGaZnO (ITO/a-IGZO) heterojunction thin-film transistors (TFTs) are investigated. Compared to a-IGZO TFTs, the mobility (µFE) and bias stability of ITO/a-IGZO heterojunction TFTs are enhanced. The band alignment of the ITO/a-IGZO [...] Read more.
In this study, the electrical performance and bias stability of InSnO/a-InGaZnO (ITO/a-IGZO) heterojunction thin-film transistors (TFTs) are investigated. Compared to a-IGZO TFTs, the mobility (µFE) and bias stability of ITO/a-IGZO heterojunction TFTs are enhanced. The band alignment of the ITO/a-IGZO heterojunction is analyzed by using X-ray photoelectron spectroscopy (XPS). A conduction band offset (∆EC) of 0.5 eV is observed in the ITO/a-IGZO heterojunction, resulting in electron accumulation in the formed potential well. Meanwhile, the ∆EC of the ITO/a-IGZO heterojunction can be modulated by nitrogen doping ITO (ITON), which can affect the carrier confinement and transport properties at the ITO/a-IGZO heterojunction interface. Moreover, the carrier concentration distribution at the ITO/a-IGZO heterointerface is extracted by means of TCAD silvaco 2018 simulation, which is beneficial for enhancing the electrical performance of ITO/a-IGZO heterojunction TFTs. Full article
Show Figures

Figure 1

15 pages, 5434 KiB  
Article
Performance Enhancement of Three-Dimensional MAPbI3 Perovskite Solar Cells by Doping Perovskite Films with CsPbX3 Quantum Dots
by Ming-Chen Tsai, Sheng-Yuan Chu and Po-Ching Kao
Materials 2024, 17(6), 1238; https://doi.org/10.3390/ma17061238 - 7 Mar 2024
Cited by 5 | Viewed by 2697
Abstract
Perovskite thin films directly impact solar cell properties, making defect reduction crucial in perovskite solar cell research. In our study, we used perovskite quantum dots in the anti-solvent to act as nucleation centers in MAPbI3 thin films. These centers had lower nucleation barriers [...] Read more.
Perovskite thin films directly impact solar cell properties, making defect reduction crucial in perovskite solar cell research. In our study, we used perovskite quantum dots in the anti-solvent to act as nucleation centers in MAPbI3 thin films. These centers had lower nucleation barriers than homogeneous nucleation, improving perovskite crystallinity, reducing defects, and extending carrier lifetime. Fine-tuning the energy band also enhanced carrier transport. The most effective results were obtained using CsPb(Br0.5 I0.5)3 perovskite quantum dots. The resulting device, ITO/SnO2/MAPbI3 (300 nm)/spiro-OMeTAD (200 nm)/Ag (100 nm), achieved a 12.88% power conversion efficiency, a 16% increase from the standard element. The modified device maintained approximately 95% of its efficiency over 100 h in a 70% humidity environment. Full article
Show Figures

Figure 1

Back to TopTop