Compositional Optimization of Sputtered SnO2/ZnO Films for High Coloration Efficiency
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Granqvist, C.G. Electrochromics for smart windows: Oxide-based thin films and devices. Thin Solid Films 2014, 564, 1–38. [Google Scholar] [CrossRef]
- Ismaeel, N.T.; Lábadi, Z.; Petrik, P.; Fried, M. Investigation of Electrochromic, Combinatorial TiO2-SnO2 Mixed Layers by Spectroscopic Ellipsometry Using Different Optical Models. Materials 2023, 16, 4204. [Google Scholar] [CrossRef] [PubMed]
- Lábadi, Z.; Takács, D.; Zolnai, Z.; Petrik, P.; Fried, M. Compositional Optimization of Sputtered WO3/MoO3 Films for High Coloration Efficiency. Materials 2024, 17, 1000. [Google Scholar] [CrossRef] [PubMed]
- Zimmer, A.; Gilliot, M.; Broch, L.; Boulanger, C.; Stein, N.; Horwat, D. Morphological and chemical dynamics upon electrochemical cyclic sodiation of electrochromic tungsten oxide coatings extracted by in situ ellipsometry. Appl. Opt. 2020, 59, 3766–3772. [Google Scholar] [CrossRef] [PubMed]
- Hale, J.S.; DeVries, M.; Dworak, B.; Woollam, J.A. Visible and infrared optical constants of electrochromic materials for emissivity modulation applications. Thin Solid Film 1998, 313, 205–209. [Google Scholar] [CrossRef]
- Sauvet, K.; Rougier, A.; Sauques, L. Electrochromic WO3 thin films active in the IR region. Sol. Energy Mater. Sol. Cells 2008, 92, 209–215. [Google Scholar] [CrossRef]
- Shan, A.; Fried, M.; Juhasz, G.; Major, C.; Polgár, O.; Németh, Á.; Petrik, P.; Dahal, L.R.; Chen, J.; Huang, Z. High-speed imaging/mapping spectroscopic ellipsometry for in-line analysis of roll-to-roll thin-film photovoltaics. IEEE J. Photovolt. 2014, 4, 355–361. [Google Scholar] [CrossRef]
- Koirala, P.; Tan, X.; Li, J.; Podraza, N.J.; Marsillac, S.; Rockett, A.; Collins, R.W. Mapping spectroscopic ellipsometry of CdTe solar cells for property-performance correlations. In Proceedings of the 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), Denver, CO, USA, 8–13 June 2014; pp. 674–679. [Google Scholar] [CrossRef]
- Dahal, L.R.; Li, J.; Stoke, J.A.; Huang, Z.; Shan, A.; Ferlauto, A.S.; Wronski, C.R.; Collins, R.W.; Podraza, N.J. Applications of real-time and mapping spectroscopic ellipsometry for process development and optimization in hydrogenated silicon thin-film photovoltaics technology. Sol. Energy Mater. Sol. Cells 2014, 129, 32–56. [Google Scholar] [CrossRef]
- Aryal, P.; Pradhan, P.; Attygalle, D.; Ibdah, A.-R.; Aryal, K.; Ranjan, V.; Marsillac, S.; Podraza, N.J.; Collins, R.W. Real-time, in-line, and mapping spectroscopic ellipsometry for applications in Cu (in Ga) Se metrology. IEEE J. Photovolt. 2014, 4, 333–339. [Google Scholar] [CrossRef]
- Petrik, P.; Fried, M. Mapping and Imaging of Thin Films on Large Surfaces: A review. Phys. Status Solidi 2022, 219, 2100800. [Google Scholar] [CrossRef]
- Fried, M.; Bogar, R.; Takacs, D.; Labadi, Z.; Horvath, Z.E.; Zolnai, Z. Investigation of Combinatorial WO3-MoO3 Mixed Layers by Spectroscopic Ellipsometry Using Different Optical Models. Nanomaterials 2022, 12, 2421. [Google Scholar] [CrossRef]
- Miccoli, I.; Spampinato, R.; Marzo, F.; Prete, P.; Lovergine, N. DC-magnetron sputtering of ZnO:Al films on (00.1)Al2O3 substrates from slip-casting sintered ceramic targets. Appl. Surface Sci. 2014, 313, 418–423. [Google Scholar] [CrossRef]
- Semong, O.; Batlokwa, B.S. Rapid colorimetric detection of Hg (II) based on Hg (II)-Induced suppressed enzyme-like reduction of 4-nitrophenol by Au@ZnO/Fe3O4 in a cosmetic skin product. Nanomater. Nanotechnol. 2023, 14, 3603680. [Google Scholar] [CrossRef]
- Prete, P.; Lovergine, N.; Tapfer, L. Nanostructure size evolution during Au-catalysed growth by carbo-thermal evaporation of well-aligned ZnO nanowires on (100)Si. Appl. Phys. A 2007, 88, 21–26. [Google Scholar] [CrossRef]
- Xu, L.; Shi, L.; Li, X. Effect of TiO2 buffer layer on the structural and optical properties of ZnO thin films deposited by E-beam evaporation and sol–gel method. Appl. Surf. Sci. 2008, 255, 3230–3234. [Google Scholar] [CrossRef]
- Garratt, E.; Prete, P.; Lovergine, N.; Nikoobakht, B. Observation and Impact of a “Surface Skin Effect” on Lateral Growth of Nanocrystals. J. Phys. Chem. C 2017, 121, 14845–14853. [Google Scholar] [CrossRef]
- Wang, F.; Jia, J.; Zhao, W.; Zhang, L.; Ma, H.; Li, N.; Chen, Y. Preparation and electrochromic properties of NiO and ZnO-doped NiO thin films. Mater. Sci. Semiconduct. Process. 2022, 151, 106986. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, N.; Makgwane, P.R.; Chauhan, N.S.; Kumari, K.; Rani, M.; Maken, S. TiO2/SnO2 nano-composite: New insights in synthetic, structural, optical and photocatalytic aspects. Inorg. Chim. Acta 2022, 529, 120640. [Google Scholar] [CrossRef]
- Rajput, R.B.; Jamble, S.N.; Kale, R.B. A review on TiO2/SnO2 heterostructures as a photocatalyst for the degradation of dyes and organic pollutants. J. Environ. Manag. 2022, 307, 114533. [Google Scholar] [CrossRef] [PubMed]
- García-Cañadas, J.; Mora-Seró, I.; Fabregat-Santiago, F.; Bisquert, J.; Garcia-Belmonte, G. Analysis of cyclic voltammograms of electrochromic a-WO3 films from voltage-dependent equilibrium capacitance measurements. J. Electroanal. Chem. 2004, 565, 329–334. [Google Scholar] [CrossRef]
- Fujiwara, H. Spectroscopic Ellipsometry Principles and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2007; Print ISBN 9780470016084; Online ISBN 9780470060193. [Google Scholar]
ZnO (%) | 350 nm | 400 nm | 500 nm | 600 nm | 700 nm | 800 nm |
---|---|---|---|---|---|---|
2 | 19.4 | 17.2 | 7.9 | 5.1 | 2.9 | 1.8 |
5 | 14.1 | 15.7 | 4.4 | 2.7 | 1.9 | 1.3 |
10 | 7.3 | 10.5 | 5.0 | 3.5 | 3.0 | 3.1 |
15 | 11.2 | 6.4 | 3.7 | 1.3 | 0.4 | 0.5 |
21.6 | 33.6 | 22.0 | 13.8 | 9.3 | 6.4 | 5.8 |
29.3 | 52.8 | 46.1 | 32.5 | 30.0 | 23.7 | 21.5 |
36.2 | 39.2 | 28.3 | 19.5 | 14.6 | 12.5 | 10.1 |
41.6 | 35.4 | 18.9 | 11.6 | 7.7 | 5.2 | 3.9 |
51.4 | 48.2 | 27.3 | 14.6 | 10.3 | 7.8 | 6.0 |
59.5 | 47.7 | 25.9 | 11.9 | 9.2 | 6.9 | 5.6 |
69 | 42.5 | 16.4 | 9.7 | 7.3 | 6.6 | 4.6 |
77 | 29.4 | 15.7 | 11.5 | 9.1 | 7.6 | 5.5 |
85 | 26.3 | 10.0 | 5.7 | 4.8 | 5.1 | 3.1 |
93 | 33.7 | 4.1 | 0.6 | 1.3 | 1.2 | 1.2 |
99 | 25.9 | 6.8 | 4.0 | 2.8 | 3.2 | 1.4 |
100 | 21.4 | 6.5 | 3.3 | 1.0 | 2.6 | 1.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lábadi, Z.; Ismaeel, N.T.; Petrik, P.; Fried, M. Compositional Optimization of Sputtered SnO2/ZnO Films for High Coloration Efficiency. Int. J. Mol. Sci. 2024, 25, 10801. https://doi.org/10.3390/ijms251910801
Lábadi Z, Ismaeel NT, Petrik P, Fried M. Compositional Optimization of Sputtered SnO2/ZnO Films for High Coloration Efficiency. International Journal of Molecular Sciences. 2024; 25(19):10801. https://doi.org/10.3390/ijms251910801
Chicago/Turabian StyleLábadi, Zoltán, Noor Taha Ismaeel, Péter Petrik, and Miklós Fried. 2024. "Compositional Optimization of Sputtered SnO2/ZnO Films for High Coloration Efficiency" International Journal of Molecular Sciences 25, no. 19: 10801. https://doi.org/10.3390/ijms251910801
APA StyleLábadi, Z., Ismaeel, N. T., Petrik, P., & Fried, M. (2024). Compositional Optimization of Sputtered SnO2/ZnO Films for High Coloration Efficiency. International Journal of Molecular Sciences, 25(19), 10801. https://doi.org/10.3390/ijms251910801