Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (111)

Search Parameters:
Keywords = IMAC

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6653 KB  
Article
Targeting Triple-Negative Breast Cancer with Momordicine-I for Therapeutic Gain in Preclinical Models
by Kousik Kesh, Ellen T. Tran, Ruchi A. Patel, Cynthia X. Ma and Ratna B. Ray
Cancers 2025, 17(14), 2342; https://doi.org/10.3390/cancers17142342 - 15 Jul 2025
Viewed by 539
Abstract
Background: TNBC patients respond poorly to chemotherapy, leading to high mortality rates and a worsening prognosis. Here, we investigated the effect of M-I on TNBC tumor growth suppression and its potential mechanisms. Methods: Signaling pathways were analyzed to study the effect [...] Read more.
Background: TNBC patients respond poorly to chemotherapy, leading to high mortality rates and a worsening prognosis. Here, we investigated the effect of M-I on TNBC tumor growth suppression and its potential mechanisms. Methods: Signaling pathways were analyzed to study the effect of M-I on TNBC cells (human MDA-MB-231 and mouse 4T1). We used orthotopic mouse models to examine the anti-tumor efficacy of M-I. Tumor volume and the status of tumor-associated macrophages (TAMs) were assessed by qRT-PCR or FACS analysis. Results: We found a significant dose- and time-dependent inhibition of TNBC cell proliferation following treatment with M-I. Cell cycle analysis revealed a shortened S phase in M-I-treated cells and downregulation of AURKA, PLK1, CDC25c, CDK1, and cyclinB1. Furthermore, M-I treatment reduced the expression of pSTAT3, cyclinD1, and c-Myc in TNBC cells. To evaluate the anti-tumor efficacy of M-I, we employed orthotopic TNBC mouse models and observed a significant reduction in tumor growth without measurable toxicity. Next, we analyzed RNA from control and M-I-treated tumors to further assess the status of TAMs and observed a significant decrease in M2-like macrophages in the M-I-treated group. Immortalized bone marrow-derived mouse macrophages (iMacs) exposed to conditioned media (CM) of TNBC cells with or without M-I treatment indicated that the M-I treated CM of TNBC cells significantly reduce the M2phenotype in iMacs. Mechanistically, we found that M-I specifically targets the IL-4/MAPK signaling axis to reduce immunosuppressive M2 macrophage polarization. Conclusions: Our study reveals a novel mechanism by which M-I inhibits TNBC cell proliferation by regulating intracellular signaling and altering TAMs in the tumor microenvironment and highlights its potential as a promising candidate for TNBC therapy. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

18 pages, 4606 KB  
Article
Dynamic 3D-Network Coating Composite Enables Global Isolation of Phosphopeptides, Stepwise Separation of Mono- and Multi-Phosphopeptides, and Phosphoproteomics of Human Lung Cells
by Linlin Liu, Zhenhua Chen, Danni Wang, Weida Liang, Binbin Wang, Chenglong Xia, Yinghua Yan, Chuanfan Ding, Xiaodan Meng and Hongze Liang
Biomolecules 2025, 15(6), 894; https://doi.org/10.3390/biom15060894 - 18 Jun 2025
Viewed by 672
Abstract
Protein phosphorylation is one of the most common and important post-translational modifications (PTMs) and is highly involved in various biological processes. Ideal adsorbents with high sensitivity and specificity toward phosphopeptides with large coverage are therefore essential for enrichment and mass spectroscopy-based phosphoproteomics analysis. [...] Read more.
Protein phosphorylation is one of the most common and important post-translational modifications (PTMs) and is highly involved in various biological processes. Ideal adsorbents with high sensitivity and specificity toward phosphopeptides with large coverage are therefore essential for enrichment and mass spectroscopy-based phosphoproteomics analysis. In this study, a newly designed IMAC adsorbent composite was constructed on the graphene matrix coated with mesoporous silica. The outer functional 3D-network layer was prepared by free radical polymerization of the phosphonate-functionalized vinyl imidazolium salt monomer and subsequent metal immobilization. Due to its unique structural feature and high content of Ti4+ ions, the resulting phosphonate-immobilized adsorbent composite G@mSiO2@PPFIL-Ti4+ exhibits excellent performance in phosphopeptide enrichment with a low detection limit (0.1 fmol, tryptic β-casein digest) and superior selectivity (molar ratio of 1:15,000, digest mixture of β-casein and bovine serum albumin). G@mSiO2@PPFIL-Ti4+ displays high tolerance to loading and elution conditions and thus can be reused without a marked decrease in enrichment efficacy. The captured phosphopeptides can be released globally, and mono-/multi-phosphopeptides can be isolated stepwise by gradient elution. When applying this material to enrich phosphopeptides from human lung cell lysates, a total of 3268 unique phosphopeptides were identified, corresponding to 1293 phosphoproteins. Furthermore, 2698 phosphorylated peptides were found to be differentially expressed (p < 0.05) between human lung adenocarcinoma cells (SPC-A1) and human normal epithelial cells (Beas-2B), of which 1592 were upregulated and 1106 were downregulated in the cancer group. These results demonstrate the material’s superior enrichment efficiency in complex biological samples. Full article
Show Figures

Graphical abstract

17 pages, 601 KB  
Article
Disease Activity-Dependent Siglec-1 Expression on Monocyte Subsets of Patients with Idiopathic Inflammatory Myopathies
by Sándor Baráth, Melinda Nagy-Vincze, Zsuzsanna Kun, Dorottya Szinay, Zoltán Griger, Tibor Gábor Béldi, Katalin Szabó, Marianna Száraz-Széles, Zsuzsanna Hevessy and Zoltán Griger
Int. J. Mol. Sci. 2025, 26(10), 4950; https://doi.org/10.3390/ijms26104950 - 21 May 2025
Cited by 1 | Viewed by 706
Abstract
Interferon signature is one of the key pathogenic pathways in idiopathic inflammatory myopathies (IIMs), particularly in dermatomyositis (DM). The aim of this study was to analyze Siglec-1, an interferon-inducible receptor, on different monocyte subsets in IIM subtypes and investigate its association with disease [...] Read more.
Interferon signature is one of the key pathogenic pathways in idiopathic inflammatory myopathies (IIMs), particularly in dermatomyositis (DM). The aim of this study was to analyze Siglec-1, an interferon-inducible receptor, on different monocyte subsets in IIM subtypes and investigate its association with disease activity measures. Siglec-1 expression was measured by 8-color flow cytometry in 62 IIM patients and 10 healthy controls (HC). Disease activity was assessed using the International Myositis Assessment and Clinical Studies (IMACS) core set measures. Active DM patients exhibited significantly higher Siglec-1 mean fluorescence intensity (MFI) compared to inactive subgroups and HCs in every monocyte subset. Intermediate monocytes displayed the highest Siglec-1 expression across all groups and the strongest associations between disease activity markers. Siglec-1 expression on monocyte subsets was strongly associated with global, extramuscular global, constitutional, cutaneous, muscular, and gastrointestinal activity measures, but not with pulmonary, skeletal, and cardiac activities in the DM population. The best indicator of DM global disease activity among the examined biomarkers was Siglec-1 MFI on intermediate monocytes. Siglec-1 on intermediate monocytes correlates strongly with organ-specific clinical and biochemical markers of disease activity; therefore, it is a candidate biomarker for monitoring IIM disease activity. Siglec-1 could be useful in patient selection for interferon-targeted treatments. Full article
Show Figures

Figure 1

26 pages, 3677 KB  
Article
Application of Pseudoinfectious Viruses in Transient Gene Expression in Mammalian Cells: Combining Efficient Expression with Regulatory Compliance
by Gulzat Zauatbayeva, Tolganay Kulatay, Bakytkali Ingirbay, Zhanar Shakhmanova, Viktoriya Keyer, Mikhail Zaripov, Maral Zhumabekova and Alexandr V. Shustov
Biomolecules 2025, 15(2), 274; https://doi.org/10.3390/biom15020274 - 13 Feb 2025
Viewed by 1568
Abstract
Transient gene expression (TGE) is commonly employed for protein production, but its reliance on plasmid transfection makes it challenging to scale up. In this paper, an alternative TGE method is presented, utilizing pseudoinfectious alphavirus as an expression vector. Pseudoinfectious viruses (PIV) and a [...] Read more.
Transient gene expression (TGE) is commonly employed for protein production, but its reliance on plasmid transfection makes it challenging to scale up. In this paper, an alternative TGE method is presented, utilizing pseudoinfectious alphavirus as an expression vector. Pseudoinfectious viruses (PIV) and a replicable helper construct were derived from the genome of the Venezuelan equine encephalitis virus. The PIV carries a mutant capsid protein that prevents packaging into infectious particles, while the replicable helper encodes a wild-type capsid protein but lacks other viral structural proteins. Although PIV and the helper cannot independently spread infection, their combination results in increased titers in cell cultures, enabling easier scale-up of producing cultures. The PIV-driven production of a model protein outperforms that of alphavirus replicon vectors or simple plasmid vectors. Another described feature of the expression system is the modification to immobilized metal affinity chromatography (IMAC), allowing purification of His-tagged recombinant proteins from a conditioned medium in the presence of substances that can strip metal from the IMAC columns. The PIV-based expression system allows for the production of milligram quantities of recombinant proteins in static cultures, without the need for complex equipment such as bioreactors, and complies with regulatory requirements due to its distinction from common recombinant viruses. Full article
(This article belongs to the Section Synthetic Biology and Bioengineering)
Show Figures

Figure 1

8 pages, 3294 KB  
Article
Aggregation-Dispersion Chromatography: Application of Elastin-like Polypeptides
by Han Bin Shin and Young Kee Chae
Separations 2024, 11(12), 335; https://doi.org/10.3390/separations11120335 - 21 Nov 2024
Cited by 1 | Viewed by 1244
Abstract
Protein purification is a crucial step for various downstream applications like drug development, antibody preparation, and structure determination. The constant pursuit is for methods that are more efficient and cost-effective. We propose a novel approach using an elastin-like polypeptide (ELP) as an aggregation [...] Read more.
Protein purification is a crucial step for various downstream applications like drug development, antibody preparation, and structure determination. The constant pursuit is for methods that are more efficient and cost-effective. We propose a novel approach using an elastin-like polypeptide (ELP) as an aggregation core that serves as an anchor between the beads in a chromatography column. In this method, a chilled sample containing a [target protein type] fusion protein is loaded onto a pre-equilibrated IMAC (immobilized metal affinity chromatography) column with a low-salt buffer. The column is then washed with a warm buffer containing high salt to remove impurities. Here, the key step involves warming the column above the ELP’s transition temperature (Tt), which triggers its aggregation. This aggregation is expected to trap the target protein tightly between the beads. Subsequently, a harsh wash with high salt and high imidazole can be applied to remove even persistent contaminants, achieving high protein purity. Finally, the temperature is lowered, and a cold, low-salt buffer is introduced to reverse the aggregation and elute the purified target protein. This method has the potential to eliminate the need for sophisticated chromatography systems while still achieving high protein purity. Full article
Show Figures

Figure 1

13 pages, 283 KB  
Article
Dini’s Theorem for Fuzzy Number-Valued Continuous Functions
by Juan José Font, Sergio Macario and Manuel Sanchis
Mathematics 2024, 12(20), 3209; https://doi.org/10.3390/math12203209 - 13 Oct 2024
Viewed by 1251
Abstract
This work aims to provide several versions of Dini’s theorem for fuzzy number-valued continuous functions defined on a compact set K. In this context, there is a wide variety of possibilities since, unlike the real line, we can consider different topologies and [...] Read more.
This work aims to provide several versions of Dini’s theorem for fuzzy number-valued continuous functions defined on a compact set K. In this context, there is a wide variety of possibilities since, unlike the real line, we can consider different topologies and orders on the set of fuzzy numbers. For example, we will show that the fuzzy Dini’s theorem holds for the usual partial orders and the most commonly used topologies but does not hold for all orders in general. Full article
(This article belongs to the Section D2: Operations Research and Fuzzy Decision Making)
19 pages, 8961 KB  
Article
Novel Insights into Ethanol-Soluble Oyster Peptide–Zinc-Chelating Agents: Structural Characterization, Chelation Mechanism, and Potential Protection on MEHP-Induced Leydig Cells
by Zhen Lu, Qianqian Huang, Xiaoming Qin, Fujia Chen, Enzhong Li and Haisheng Lin
Mar. Drugs 2024, 22(10), 465; https://doi.org/10.3390/md22100465 - 10 Oct 2024
Viewed by 2153
Abstract
Numerous studies have reported that mono-(2-ethylhexyl) phthalate (MEHP) (bioactive metabolite of Di(2-ethylhexyl) phthalate) has inhibitory effects on Leydig cells. This study aims to prepare an oyster peptide–zinc complex (PEP-Zn) to alleviate MEHP-induced damage in Leydig cells. Zinc-binding peptides were obtained through the following [...] Read more.
Numerous studies have reported that mono-(2-ethylhexyl) phthalate (MEHP) (bioactive metabolite of Di(2-ethylhexyl) phthalate) has inhibitory effects on Leydig cells. This study aims to prepare an oyster peptide–zinc complex (PEP-Zn) to alleviate MEHP-induced damage in Leydig cells. Zinc-binding peptides were obtained through the following processes: zinc-immobilized affinity chromatography (IMAC-Zn2+), liquid chromatography–mass spectrometry technology (LC-MS/MS) analysis, molecular docking, molecular dynamic simulation, and structural characterization. Then, the Zn-binding peptide (PEP) named Glu—His—Ala—Pro—Asn—His—Asp—Asn—Pro—Gly—Asp—Leu (EHAPNHDNPGDL) was identified. EHAPNHDNPGDL showed the highest zinc-chelating ability of 49.74 ± 1.44%, which was higher than that of the ethanol-soluble oyster peptides (27.50 ± 0.41%). In the EHAPNHDNPGDL-Zn complex, Asn-5, Asp-7, Asn-8, His-2, and Asp-11 played an important role in binding to the zinc ion. Additionally, EHAPNHDNPGDL-Zn was found to increase the cell viability, significantly increase the relative activity of antioxidant enzymes and testosterone content, and decrease malondialdehyde (MDA) content in MEHP-induced TM3 cells. The results also indicated that EHAPNHDNPGDL-Zn could alleviate MEHP-induced apoptosis by reducing the protein level of p53, p21, and Bax, and increasing the protein level of Bcl-2. These results indicate that the zinc-chelating peptides derived from oyster peptides could be used as a potential dietary zinc supplement. Full article
(This article belongs to the Special Issue The Bioactive Potential of Marine-Derived Peptides and Proteins)
Show Figures

Graphical abstract

22 pages, 4650 KB  
Article
The Impact of Liquid Biopsy in Advanced Ovarian Cancer Care
by Antoni Llueca, Sarai Canete-Mota, Anna Jaureguí, Manuela Barneo, Maria Victoria Ibañez, Alexander Neef, Enrique Ochoa, Sarai Tomas-Perez, Josep Mari-Alexandre, Juan Gilabert-Estelles, Anna Serra, Maria Teresa Climent, Carla Bellido, Nuria Ruiz, Blanca Segarra-Vidal and Maria Llueca
Diagnostics 2024, 14(17), 1868; https://doi.org/10.3390/diagnostics14171868 - 26 Aug 2024
Cited by 3 | Viewed by 2104
Abstract
Introduction: Ovarian cancer is the third most common gynaecological cancer and has a very high mortality rate. The cornerstone of treatment is complete debulking surgery plus chemotherapy. Even with treatment, 80% of patients have a recurrence. Circulating tumour DNA (ctDNA) has been shown [...] Read more.
Introduction: Ovarian cancer is the third most common gynaecological cancer and has a very high mortality rate. The cornerstone of treatment is complete debulking surgery plus chemotherapy. Even with treatment, 80% of patients have a recurrence. Circulating tumour DNA (ctDNA) has been shown to be useful in the control and follow-up of some tumours. It could be an option to define complete cytoreduction and for the early diagnosis of recurrence. Objective: We aimed to demonstrate the usefulness of ctDNA and cell-free DNA (cfDNA) as a marker of complete cytoreduction and during follow-up in patients with advanced ovarian cancer. Material and Methods: We selected 22 women diagnosed with advanced high-grade serous ovarian cancer, of which only 4 had complete records. We detected cfDNA by polymerase chain reaction (PCR), presented as ng/mL, and detected ctDNA with droplet digital PCR (ddPCR). We calculated Pearson correlation coefficients to evaluate correlations among cfDNA, ctDNA, and cancer antigen 125 (CA125), a biomarker. Results: The results obtained in the evaluation of cfDNA and ctDNA and their correlation with tumour markers and the radiology of patients with complete follow-up show disease progression during the disease, stable disease, or signs of recurrence. cfDNA and ctDNA correlated significantly with CA125. Following cfDNA and ctDNA over time indicated a recurrence several months earlier than computed tomography and CA125 changes. Conclusion: An analysis of cfDNA and ctDNA offers a non-invasive clinical tool for monitoring the primary tumour to establish a complete cytoreduction and to diagnose recurrence early. Full article
(This article belongs to the Special Issue Pathology and Diagnosis of Ovarian Cancer)
Show Figures

Figure 1

12 pages, 1927 KB  
Article
Mechanomyography-Based Metric Scale for Spasticity: A Pilot Descriptive Observational Study
by Elgison L. dos Santos, Eduardo M. Scheeren, Guilherme N. Nogueira-Neto, Eddy Krueger, Nathalia Peixoto and Percy Nohama
Sensors 2024, 24(16), 5276; https://doi.org/10.3390/s24165276 - 15 Aug 2024
Cited by 1 | Viewed by 1225
Abstract
(1) Background: The Modified Ashworth Scale (MAS) is commonly used clinically to evaluate spasticity, but its qualitative nature introduces subjectivity. We propose a novel metric scale to quantitatively measure spasticity using mechanomyography (MMG) to mitigate these subjective effects. (2) Methods: The flexor and [...] Read more.
(1) Background: The Modified Ashworth Scale (MAS) is commonly used clinically to evaluate spasticity, but its qualitative nature introduces subjectivity. We propose a novel metric scale to quantitatively measure spasticity using mechanomyography (MMG) to mitigate these subjective effects. (2) Methods: The flexor and extensor muscles of knee and elbow joints were assessed with the Modified Ashworth Scale (MAS) during the acquisition of mechanomyography (MMG) data. The median absolute amplitude of the MMG signals was utilized as a key descriptor. An algorithm was developed to normalize the MMG signals to a universal gravitational (G) acceleration scale, aligning them with the limits and range of MAS. (3) Results: We evaluated 34 lower and upper limbs from 22 volunteers (average age 39.91 ± 13.77 years) of both genders. Polynomial regression provided the best fit (R2 = 0.987), with negligible differences (mean of 0.001 G) between the MAS and MMG. We established three numerical sets for the median, minimum, and maximum MMG(G) values corresponding to each MAS range, ensuring consistent alignment of the Modified Ashworth levels with our proposed scale. (4) Conclusions: Muscle spasticity can now be quantitatively and semi-automatically evaluated using our algorithm and instrumentation, enhancing the objectivity and reliability of spasticity assessments. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

19 pages, 3107 KB  
Article
Recombinant Subunit Vaccine Candidate against the Bovine Viral Diarrhea Virus
by Verónica Avello, Santiago Salazar, Eddy E. González, Paula Campos, Viana Manríque, Christian Mathieu, Florence Hugues, Ignacio Cabezas, Paula Gädicke, Natalie C. Parra, Jannel Acosta, Oliberto Sánchez, Alaín González and Raquel Montesino
Int. J. Mol. Sci. 2024, 25(16), 8734; https://doi.org/10.3390/ijms25168734 - 10 Aug 2024
Cited by 2 | Viewed by 2048
Abstract
Multivalent live-attenuated or inactivated vaccines are often used to control the bovine viral diarrhea disease (BVD). Still, they retain inherent disadvantages and do not provide the expected protection. This study developed a new vaccine prototype, including the external segment of the E2 viral [...] Read more.
Multivalent live-attenuated or inactivated vaccines are often used to control the bovine viral diarrhea disease (BVD). Still, they retain inherent disadvantages and do not provide the expected protection. This study developed a new vaccine prototype, including the external segment of the E2 viral protein from five different subgenotypes selected after a massive screening. The E2 proteins of every subgenotype (1aE2, 1bE2, 1cE2, 1dE2, and 1eE2) were produced in mammalian cells and purified by IMAC. An equimolar mixture of E2 proteins formulated in an oil-in-water adjuvant made up the vaccine candidate, inducing a high humoral response at 50, 100, and 150 µg doses in sheep. A similar immune response was observed in bovines at 50 µg. The cellular response showed a significant increase in the transcript levels of relevant Th1 cytokines, while those corresponding to the Th2 cytokine IL-4 and the negative control were similar. High levels of neutralizing antibodies against the subgenotype BVDV1a demonstrated the effectiveness of our vaccine candidate, similar to that observed in the sera of animals vaccinated with the commercial vaccine. These results suggest that our vaccine prototype could become an effective recombinant vaccine against the BVD. Full article
(This article belongs to the Special Issue Protective Immune Response to Virus Infection and Vaccines)
Show Figures

Figure 1

15 pages, 1621 KB  
Article
Layered Double Hydroxides (LDH) as Delivery Vehicles of a Chimeric Protein Carrying Epitopes from the Porcine Reproductive and Respiratory Syndrome Virus
by María José Alonso-Cerda, Mariano J. García-Soto, Arleth Miranda-López, René Segura-Velázquez, José Ivan Sánchez-Betancourt, Omar González-Ortega and Sergio Rosales-Mendoza
Pharmaceutics 2024, 16(7), 841; https://doi.org/10.3390/pharmaceutics16070841 - 21 Jun 2024
Cited by 3 | Viewed by 2003
Abstract
The Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) causes reproductive failure and respiratory symptoms, leading to huge economic losses for the pig farming industry. Although several vaccines against PRRSV are available in the market; they show an overall low efficacy, and several countries [...] Read more.
The Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) causes reproductive failure and respiratory symptoms, leading to huge economic losses for the pig farming industry. Although several vaccines against PRRSV are available in the market; they show an overall low efficacy, and several countries have the need for vaccines covering the local, circulating variants. This project aims at developing a new chimeric antigen targeting specific epitopes from PRRSV and evaluating two test adjuvants to formulate a vaccine candidate. The test antigen was called LTB–PRRSV, which was produced recombinantly in Escherichia coli and consisted of the heat labile enterotoxin B subunit from E. coli (LTB) and four epitopes from PRRSV. LTB–PRRSV was rescued as inclusion bodies and methods for its solubilization, IMAC-based purification, and refolding were standardized, leading to mean yields of 18 mg of pure protein per liter culture. Layered double hydroxides (LDH) have been used as vaccine adjuvants given their biocompatibility, low cost, and positive surface charge that allows an efficient adsorption of negatively charged biomolecules. Therefore, LDH were selected as delivery vehicles of LTB–PRRSV. Pure LTB–PRRSV was adsorbed onto LDH by incubation at different LDH:LTB–PRRSV mass ratios (1:0.25, 1:0.5, 1:1, and 1:2) and at pH 9.5. The best adsorption occurred with a 1:2 mass ratio, and in a sucrose-tween solution. The conjugates obtained had a polydispersity index of 0.26, a hydrodynamic diameter of 192 nm, and a final antigen concentration of 64.2 μg/mL. An immunogenicity assessment was performed by injecting mice with LDH:LTB–PRRSV, Alum/LTB–PRRSV, or LTB–PRRSV in a scheme comprising three immunizations at two-week intervals and two dose levels (1 and 5 μg). LTB–PRRSV was capable of inducing strong humoral responses, which lasted for a longer period when LDH was used as the delivery vehicle/adjuvant. The potential of LDH to serve as an attractive carrier for veterinary vaccines is discussed. Full article
(This article belongs to the Special Issue Transport of Drugs through Biological Barriers—an Asset or Risk)
Show Figures

Graphical abstract

12 pages, 2769 KB  
Article
Copper-Chelated Chitosan Microgels for the Selective Enrichment of Small Cationic Peptides
by Jean-Christophe Jacquier, Ciara Duffy, Michael O’Sullivan and Eugène Dillon
Gels 2024, 10(5), 289; https://doi.org/10.3390/gels10050289 - 24 Apr 2024
Viewed by 1706
Abstract
Copper-chelated chitosan microgels were investigated as an immobilized metal affinity chromatography (IMAC) phase for peptide separation. The copper-crosslinked chitosan beads were shown to strongly interact with a range of amino acids, in a wide range of pH and saline conditions. The beads exhibited [...] Read more.
Copper-chelated chitosan microgels were investigated as an immobilized metal affinity chromatography (IMAC) phase for peptide separation. The copper-crosslinked chitosan beads were shown to strongly interact with a range of amino acids, in a wide range of pH and saline conditions. The beads exhibited an affinity that seemed to depend on the isoelectric point of the amino acid, with the extent of uptake increasing with decreasing isoelectric point. This selective interaction with anionic amino acids resulted in a significant relative enrichment of the supernatant solution in cationic amino acids. The beads were then studied as a novel fractionation system for complex milk hydrolysates. The copper chitosan beads selectively removed larger peptides from the hydrolysate aqueous solution, yielding a solution relatively enriched in medium and smaller peptides, which was characterized both quantitatively and qualitatively by size exclusion chromatography (SEC). Liquid chromatography–mass spectrometry (LCMS) work provided comprehensive data on a peptide sequence level and showed that a depletion of the anionic peptides by the beads resulted in a relative enrichment of the cationic peptides in the supernatant solution. It could be concluded that after fractionation a dramatic relative enrichment in respect to small- and medium-sized cationic peptides in the solution, characteristics that have been linked to bioactivities, such as anti-microbial and cell-penetrating properties. The results demonstrate the use of the chitosan copper gel bead system in lab scale fractionation of complex hydrolysate mixtures, with the potential to enhance milk hydrolysate bioactivity. Full article
(This article belongs to the Special Issue Gels in Separation Science)
Show Figures

Figure 1

14 pages, 4880 KB  
Article
Cu(II)-Loaded Polydopamine-Coated Urchin-like Titanate Microspheres as a High-Performance IMAC Adsorbent for Hemoglobin Separation
by Qian Zhang, Linlin Hu, Jianyu Yang, Pengfei Guo, Jinhong Wang and Weifen Zhang
Molecules 2024, 29(7), 1656; https://doi.org/10.3390/molecules29071656 - 7 Apr 2024
Cited by 2 | Viewed by 1573
Abstract
Immobilized metal ion affinity chromatography (IMAC) adsorbents generally have excellent affinity for histidine-rich proteins. However, the leaching of metal ions from the adsorbent usually affects its adsorption performance, which greatly affects the reusable performance of the adsorbent, resulting in many limitations in practical [...] Read more.
Immobilized metal ion affinity chromatography (IMAC) adsorbents generally have excellent affinity for histidine-rich proteins. However, the leaching of metal ions from the adsorbent usually affects its adsorption performance, which greatly affects the reusable performance of the adsorbent, resulting in many limitations in practical applications. Herein, a novel IMAC adsorbent, i.e., Cu(II)-loaded polydopamine-coated urchin-like titanate microspheres (Cu-PDA-UTMS), was prepared via metal coordination to make Cu ions uniformly decorate polydopamine-coated titanate microspheres. The as-synthesized microspheres exhibit an urchin-like structure, providing more binding sites for hemoglobin. Cu-PDA-UTMS exhibit favorable selectivity for hemoglobin adsorption and have a desirable adsorption capacity towards hemoglobin up to 2704.6 mg g−1. Using 0.1% CTAB as eluent, the adsorbed hemoglobin was easily eluted with a recovery rate of 86.8%. In addition, Cu-PDA-UTMS shows good reusability up to six cycles. In the end, the adsorption properties by Cu-PDA-UTMS towards hemoglobin from human blood samples were analyzed by SDS-PAGE. The results showed that Cu-PDA-UTMS are a high-performance IMAC adsorbent for hemoglobin separation, which provides a new method for the effective separation and purification of hemoglobin from complex biological samples. Full article
(This article belongs to the Special Issue Chromatography and Extraction Techniques for Chemical Applications)
Show Figures

Graphical abstract

21 pages, 7862 KB  
Article
A Comparative Study of Human Pluripotent Stem Cell-Derived Macrophages in Modeling Viral Infections
by Yaxuan Zhang, Hui Qiu, Fuyu Duan, Haoran An, Huimin Qiao, Xingwu Zhang, Jing-Ren Zhang, Qiang Ding and Jie Na
Viruses 2024, 16(4), 552; https://doi.org/10.3390/v16040552 - 1 Apr 2024
Cited by 2 | Viewed by 2575
Abstract
Macrophages play multiple roles in innate immunity including phagocytosing pathogens, modulating the inflammatory response, presenting antigens, and recruiting other immune cells. Tissue-resident macrophages (TRMs) adapt to the local microenvironment and can exhibit different immune responses upon encountering distinct pathogens. In this study, we [...] Read more.
Macrophages play multiple roles in innate immunity including phagocytosing pathogens, modulating the inflammatory response, presenting antigens, and recruiting other immune cells. Tissue-resident macrophages (TRMs) adapt to the local microenvironment and can exhibit different immune responses upon encountering distinct pathogens. In this study, we generated induced macrophages (iMACs) derived from human pluripotent stem cells (hPSCs) to investigate the interactions between the macrophages and various human pathogens, including the hepatitis C virus (HCV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and Streptococcus pneumoniae. iMACs can engulf all three pathogens. A comparison of the RNA-seq data of the iMACs encountering these pathogens revealed that the pathogens activated distinct gene networks related to viral response and inflammation in iMACs. Interestingly, in the presence of both HCV and host cells, iMACs upregulated different sets of genes involved in immune cell migration and chemotaxis. Finally, we constructed an image-based high-content analysis system consisting of iMACs, recombinant GFP-HCV, and hepatic cells to evaluate the effect of a chemical inhibitor on HCV infection. In summary, we developed a human cell-based in vitro model to study the macrophage response to human viral and bacterial infections; the results of the transcriptome analysis indicated that the iMACs were a useful resource for modeling pathogen–macrophage–tissue microenvironment interactions. Full article
(This article belongs to the Special Issue Roles of Macrophages in Viral Infections)
Show Figures

Figure 1

19 pages, 2439 KB  
Article
Simulation of Ni2+ Chelating Peptides Separation in IMAC: Prediction of Langmuir Isotherm Parameters from SPR Affinity Data
by Rachel Irankunda, Pauline Jambon, Alexandra Marc, Jairo Andrés Camaño Echavarría, Laurence Muhr and Laetitia Canabady-Rochelle
Processes 2024, 12(3), 592; https://doi.org/10.3390/pr12030592 - 15 Mar 2024
Viewed by 1256
Abstract
Chromatography modeling for simulation is a tool that can help to predict the separation of molecules inside the column. Knowledge of sorption isotherms in chromatography modeling is a crucial step and methods such as frontal analysis or batch are used to obtain sorption [...] Read more.
Chromatography modeling for simulation is a tool that can help to predict the separation of molecules inside the column. Knowledge of sorption isotherms in chromatography modeling is a crucial step and methods such as frontal analysis or batch are used to obtain sorption isotherm parameters, but they require a significant quantity of samples. This study aims to predict Langmuir isotherm parameters from Surface Plasmon Resonance (SPR) affinity data (requiring less quantity of sample) to simulate metal chelating peptides (MCPs) separation in Immobilized Metal ion Affinity Chromatography (IMAC), thanks to the analogy between both techniques. The validity of simulation was evaluated by comparing the peptide’s simulated retention time with its experimental retention time obtained by IMAC. Results showed that the peptide affinity constant (KA) can be conserved between SPR and IMAC. However, the maximal capacity (qmax) must be adjusted by a correction factor to overcome the geometry differences between IMAC (spherical particles) and SPR (plane sensor ship). Therefore, three approaches were studied; the best one was to use qmax,IMAC imidazole determined experimentally while a correction factor was applied on qmax,SPR to obtain the qmax,IMAC of the peptide, thus minimizing the discrepancy between the experimental and simulated retention times of a peptide. Full article
(This article belongs to the Special Issue New Frontiers in Chromatographic Separation Technology)
Show Figures

Figure 1

Back to TopTop