Cu(II)-Loaded Polydopamine-Coated Urchin-like Titanate Microspheres as a High-Performance IMAC Adsorbent for Hemoglobin Separation
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization
2.2. Protein Adsorption Behaviors
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Instruments
3.3. Synthesis
3.3.1. Fabrication of Na-Titanate Nanotubes (Na-TNT)
3.3.2. Fabrication of Urchin-like Na-Titanate Microspheres (Na-UTMS)
3.3.3. Fabrication of Urchin-like Protonated Titanate Microspheres (H-UTMS)
3.3.4. Fabrication of Polydopamine-Coated Urchin-like Titanate Microspheres (PDA-UTMS)
3.3.5. Fabrication of Cu (II)-Loaded Polydopamine-Coated Urchin-like Titanate Microspheres (Cu-PDA-UTMS)
3.4. Protein Adsorption Behavior
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Topkan, E.; Selek, U.; Ozdemir, Y.; Yildirim, B.A.; Guler, O.C.; Mertsoylu, H.; Hahn, S.M. Chemoradiotherapy-induced hemo globin nadir values and survival in patients with stage III non-small cell lung cancer. Lung Cancer 2018, 121, 30–36. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, R.; Yang, X.; Liu, X.; Zhang, H. Facile synthesis of copper(II)-decorated functional mesoporous material for specific adsorption of histidine-rich proteins. Talanta 2018, 176, 308–317. [Google Scholar] [CrossRef]
- Gaudre, N.; Cougoul, P.; Bartolucci, P.; Dörr, G.; Bura-Riviere, A.; Kamar, N.; Del Bello, A. Improved fetal hemoglobin with mTOR inhibitor–based immunosuppression in a kidney transplant recipient with sickle cell disease. Am. J. Transplant. 2017, 17, 2212–2214. [Google Scholar] [CrossRef]
- Shi, S.; Zhang, W.; Wu, H.; Li, Y.; Ren, X.; Li, M.; Liu, J.; Sun, J.; Yue, T.; Wang, J. In situ ascade derivation toward a hierarchical layered double hydroxide magnetic absorbent for high-performance protein separation. ACS Sustain. Chem. Eng. 2020, 8, 4966–4974. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, W.; Gao, R.; Heinlein, J.A.; Pfefferle, L.D.; Hussain, S.; Zhang, J.; Wang, X.; An, J. Facile and green preparation of multifeatured montmorillonite-supported Fe3O4-Cu2+ hybrid magnetic nanomaterials for the selective adsorption of a high-abundance protein from complex biological matrices. Green Chem. 2023, 25, 3705–3714. [Google Scholar] [CrossRef]
- Guo, Z.-Y.; Zhang, Y.; Zhang, D.-D.; Shu, Y.; Chen, X.-W.; Wang, J.-H. Magnetic nanospheres encapsulated by mesoporous copper oxide shell for selective isolation of hemoglobin. ACS Appl. Mater. Interfaces 2016, 8, 29734–29741. [Google Scholar] [CrossRef]
- Xue, X.; Lu, R.; Liu, M.; Li, Y.; Li, J.; Wang, L. A facile and general approach for the preparation of boronic acid-functionalized magnetic nanoparticles for the selective enrichment of glycoproteins. Analyst 2019, 144, 641–648. [Google Scholar] [CrossRef] [PubMed]
- Niu, Y.; Tang, Y.; Gao, R.; Chen, X.; Wang, Y.; Gao, Y.; Zhang, S.; Hussain, S.; Hao, Y.; Wang, S. One-step synthesis of sustain able montmorillonite-supported, copper-doped magnetic nanoparticles for highly specific separation of his-rich proteins. ACS Sustain. Chem. Eng. 2022, 10, 5341–5351. [Google Scholar] [CrossRef]
- Colombo, R.; Wu, M.A.; Castelli, A.; Fossali, T.; Rech, R.; Ottolina, D.; Cogliati, C.; Catena, E. The effects of severe hemocon centration on acid-base equilibrium in critically Ill patients: The forgotten role of buffers in whole blood. J. Crit. Care 2020, 57, 177–184. [Google Scholar] [CrossRef]
- Wang, J.; Han, Q.; Wang, K.; Li, S.; Luo, W.; Liang, Q.; Zhong, J.; Ding, M. Recent advances in development of functional magnetic adsorbents for selective separation of proteins/peptides. Talanta 2023, 253, 123919. [Google Scholar] [CrossRef]
- Guo, P.-F.; Wang, X.-M.; Wang, M.-M.; Yang, T.; Chen, M.-L.; Wang, J.-H. Boron-titanate monolayer nanosheets for highly selective adsorption of immunoglobulin G. Nanoscale 2019, 11, 9362–9368. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Mori, A.; Ito, S.; Ohtsuki, S. Quantitative and targeted proteomics-based identification and validation of drug efficacy biomarkers. Drug Metab. Pharmacokinet. 2021, 36, 100361. [Google Scholar] [CrossRef]
- Hao, Y.; Gao, Y.; Song, H.; Niu, Y.; Chen, X.; Liu, X.; Gao, R.; Wang, S. Fabrication of metal coordination-synergistic magnetic imprinted microspheres based on ligand-free Fe3O4–Cu for specific recognition of bovine hemoglobin. Talanta 2021, 233, 122496. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, M.; Wu, J.; Yan, Y.; Ding, C.-F. Efficient enrichment of global phosphopeptides using magnetic tannic acid—tita nium(IV)/zirconium(IV) functionalized spheres as a novel sorbent for immobilized metal ion affinity chromatography (IMAC). Anal. Lett. 2023, 56, 1016–1030. [Google Scholar] [CrossRef]
- Chen, X.; Chai, J.; Yang, X.; Chai, F.; Tian, M. Amino acid-immobilized copper ion-modified carbon-based adsorbent for selec tive adsorption of bovine hemoglobin. J. Chromatogr. A 2022, 1680, 463440. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Lin, Z. Recent advances in protein-imprinted polymers: Synthesis, applications and challenges. J. Mater. Chem. B 2022, 10, 6571–6589. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, Y.; Gao, P.; Sun, S.; Du, Q.; Wang, Z.; Jiang, Y. Preparation of Fe3O4@PMAA@Ni microspheres towards the efficient and selective enrichment of histidine-rich proteins. ACS Appl. Mater. Interfaces 2021, 13, 11166–11176. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Zhao, L.; Liang, C.; Du, K. The construction of porous chitosan microspheres with high specific surface area by using agarose as the pore-forming agent and further functionalized application in bioseparation. J. Mater. Chem. B 2019, 7, 5510–5519. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Guan, H.; Liang, Q.; Ding, M. Construction of copper (II) affinity- DTPA functionalized magnetic composite for efficient adsorption and specific separation of bovine hemoglobin from bovine serum. Compos. Part B 2020, 198, 108248. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, Y.; Xu, Q.; Shao, S.; Man, H.; Nie, Y.; Wang, Z.; Jiang, Y. Fabrication of yolk–shell Fe3O4@NiSiO3 /Ni micro spheres for efficient purification of histidine-rich proteins. Langmuir 2021, 37, 14167–14176. [Google Scholar] [CrossRef]
- Franklin, L.M.; Walker, S.M.; Hill, G. A dft study of isolated histidine interactions with metal ions (Ni2+, Cu2+, Zn2+) in a six-coordinated octahedral complex. J. Mol. Model. 2020, 26, 116. [Google Scholar] [CrossRef] [PubMed]
- Ge, M.; Zhang, J.; Gai, Z.; Fan, R.; Hu, S.; Liu, G.; Cao, Y.; Du, X.; Shen, Y. Synthesis of magnetic Fe3O4@PS-ANTA-M2+(M = Ni, Co, Cu and Zn) nanospheres for specific isolation of histidine-tagged proteins. Chem. Eng. J. 2021, 404, 126427. [Google Scholar] [CrossRef]
- He, Q.-L.; Jia, B.-X.; Wang, Y.-K.; Qin, M.; Xu, W.-B.; Zhang, Z.; Feng, Y.-F.; Zhou, B. Copper ion based metal–organic frame work nanomaterials with roughness enhanced protein adhesion for high-efficiency hemoglobin separation. New J. Chem. 2023, 47, 7245–7252. [Google Scholar] [CrossRef]
- Liang, Y.; Liu, J.; Wang, L.; Wan, Y.; Shen, J.; Bai, Q. Metal affinity-carboxymethyl cellulose functionalized magnetic graphene composite for highly selective isolation of histidine-rich proteins. Talanta 2019, 195, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Miao, T.; Zheng, J.; Xu, J.; Asiri, A.M.; Marwani, H.M. Oriented-assembly of hierarchical fe3o4@cusio3 microchains towards efficient separation of histidine-rich proteins. Microporous Mesoporous Mater. 2019, 286, 207–213. [Google Scholar] [CrossRef]
- Guo, P.-F.; Zhang, D.-D.; Guo, Z.-Y.; Chen, M.-L.; Wang, J.-H. Copper-decorated titanate nanosheets: Novel homogeneous monolayers with a superior capacity for selective isolation of hemoglobin. ACS Appl. Mater. Interfaces 2017, 9, 28273–28280. [Google Scholar] [CrossRef] [PubMed]
- Guo, P.-F.; Wang, X.-M.; Chen, X.-W.; Yang, T.; Chen, M.-L.; Wang, J.-H. Nanostructures serve as adsorbents for the selective separation/enrichment of proteins. TrAC Trends Anal. Chem. 2019, 120, 115650. [Google Scholar] [CrossRef]
- Fei, P.; Guo, Z.; Ye, C.; Teng, Z.; Chen, Q.; Zhang, G.; Zhuang, Y.; Lai, W.; Xiong, H.; Cai, J. The enhancement of the flame retardance of bamboo fibre/hdpe composites: Cerium doped H2Ti2O5·H2O nanotubes effects. Constr. Build. Mater. 2019, 201, 728–735. [Google Scholar] [CrossRef]
- Helbig, U.; Herbst, K.; Roudenko, J.; Helbig, J.; Barton, B.; Kolb, U. Carbon-Doped Titania as a Precursor for Titanate Nanotubes. J. Mater. Res. 2018, 33, 1288–1300. [Google Scholar] [CrossRef]
- Song, Z.; Xu, H.; Li, K.; Wang, H.; Yan, H. Hydrothermal synthesis and photocatalytic properties of titanium acid H2Ti2O5·H2O nanosheets. J. Mol. Catal. A Chem. 2005, 239, 87–91. [Google Scholar] [CrossRef]
- Li, A.; Wang, X.; Guo, L.; Li, S. Tunable subradiant mode in free-standing metallic nanohole arrays for high-performance plasmofluidic sensing. J. Phys. Chem. C 2019, 123, 25394–25401. [Google Scholar] [CrossRef]
- Zheng, G.; Schaefer, M.; Karplus, M. Hemoglobin bohr effects: Atomic origin of the histidine residue contributions. Biochem. Try 2013, 52, 8539–8555. [Google Scholar] [CrossRef]
- Guan, H.; Wang, J.; Tan, S.; Han, Q.; Liang, Q.; Ding, M. A facile method to synthesize magnetic nanoparticles chelated with copper(II) for selective adsorption of bovine hemoglobin. Korean J. Chem. Eng. 2020, 37, 1097–1106. [Google Scholar] [CrossRef]
- Ding, L.; Zhang, M.; Ren, Y.; Xu, J.; Zheng, J.; Alsulami, H.; Kutbi, A.; Zhang, F.-Y. Carbon-supported nickel nanoparticles on SiO2 cores for protein adsorption and nitroaromatics reduction. ACS Appl. Nano Mater. 2020, 3, 4623–4634. [Google Scholar] [CrossRef]
- Wang, J.; Tan, S.; Liang, Q.; Sun, S.; Han, Q.; Ding, M. Preparation of magnetic microspheres functionalized by lanthanide oxides for selective isolation of bovine hemoglobin. Talanta 2018, 190, 210–218. [Google Scholar] [CrossRef]
- Zhang, X.; Wu, D.; Shen, J.; Wei, Y.; Wang, C. Preparation of bottlebrush polymer–modified magnetic graphene as immobilized metal ion affinity adsorbent for purification of hemoglobin from blood samples. Microchim. Acta 2020, 187, 472. [Google Scholar] [CrossRef]
- Liu, J.; Liang, Y.; Liang, Q.; Yan, H.; Shen, J.; Wang, C.; Bai, Q. Tunable composites prepared from graphene oxide and zeolitic imidazolate framework-8 for improved selective isolation of hemoglobin. Microchim. Acta 2018, 185, 361. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Zhang, M.; Zheng, J.; Li, W.; Gan, W.; Xu, J.; Hayat, T.; Alharbi, N.S.; Yang, F. Ni nanoparticles decorated onto graphene oxide with SiO2 as interlayer for high performance on histidine-rich protein separation. Appl. Surf. Sci. 2018, 439, 128–138. [Google Scholar] [CrossRef]
- Zhao, L.; Qi, L.; Wang, H. Sodium titanate nanotube/graphite, an electric energy storage device using Na+-based organic elec trolytes. J. Power Sources 2013, 242, 597–603. [Google Scholar] [CrossRef]
- Li, J.; Wan, W.; Zhu, F.; Li, Q.; Zhou, H.; Li, J.; Xu, D. Nanotube-based hierarchical titanate microspheres: An improved anode structure for li-ion batteries. Chem. Commun. 2012, 48, 389–391. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Hu, L.; Yang, J.; Guo, P.; Wang, J.; Zhang, W. Cu(II)-Loaded Polydopamine-Coated Urchin-like Titanate Microspheres as a High-Performance IMAC Adsorbent for Hemoglobin Separation. Molecules 2024, 29, 1656. https://doi.org/10.3390/molecules29071656
Zhang Q, Hu L, Yang J, Guo P, Wang J, Zhang W. Cu(II)-Loaded Polydopamine-Coated Urchin-like Titanate Microspheres as a High-Performance IMAC Adsorbent for Hemoglobin Separation. Molecules. 2024; 29(7):1656. https://doi.org/10.3390/molecules29071656
Chicago/Turabian StyleZhang, Qian, Linlin Hu, Jianyu Yang, Pengfei Guo, Jinhong Wang, and Weifen Zhang. 2024. "Cu(II)-Loaded Polydopamine-Coated Urchin-like Titanate Microspheres as a High-Performance IMAC Adsorbent for Hemoglobin Separation" Molecules 29, no. 7: 1656. https://doi.org/10.3390/molecules29071656
APA StyleZhang, Q., Hu, L., Yang, J., Guo, P., Wang, J., & Zhang, W. (2024). Cu(II)-Loaded Polydopamine-Coated Urchin-like Titanate Microspheres as a High-Performance IMAC Adsorbent for Hemoglobin Separation. Molecules, 29(7), 1656. https://doi.org/10.3390/molecules29071656