Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (7)

Search Parameters:
Keywords = III-V tandem solar cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
45 pages, 4439 KB  
Review
Gallium Nitride for Space Photovoltaics: Properties, Synthesis Methods, Device Architectures and Emerging Market Perspectives
by Anna Drabczyk, Paweł Uss, Katarzyna Bucka, Wojciech Bulowski, Patryk Kasza, Paula Mazur, Edyta Boguta, Marta Mazur, Grzegorz Putynkowski and Robert P. Socha
Micromachines 2025, 16(12), 1421; https://doi.org/10.3390/mi16121421 - 18 Dec 2025
Viewed by 749
Abstract
Gallium nitride (GaN) has emerged as one of the most promising wide-bandgap semiconductors for next-generation space photovoltaics. In contrast to conventional III–V compounds such as GaAs and InP, which are highly efficient under terrestrial conditions but suffer from radiation-induced degradation and thermal instability, [...] Read more.
Gallium nitride (GaN) has emerged as one of the most promising wide-bandgap semiconductors for next-generation space photovoltaics. In contrast to conventional III–V compounds such as GaAs and InP, which are highly efficient under terrestrial conditions but suffer from radiation-induced degradation and thermal instability, GaN offers an exceptional combination of intrinsic material properties ideally suited for harsh orbital environments. Its wide bandgap, high thermal conductivity, and strong chemical stability contribute to superior resistance against high-energy protons, electrons, and atomic oxygen, while minimizing thermal fatigue under repeated cycling between extreme temperatures. Recent progress in epitaxial growth—spanning metal–organic chemical vapor deposition, molecular beam epitaxy, hydride vapor phase epitaxy, and atomic layer deposition—has enabled unprecedented control over film quality, defect densities, and heterointerface sharpness. At the device level, InGaN/GaN heterostructures, multiple quantum wells, and tandem architectures demonstrate outstanding potential for spectrum-tailored solar energy conversion, with modeling studies predicting efficiencies exceeding 40% under AM0 illumination. In this review article, the current state of knowledge on GaN materials and device architectures for space photovoltaics has been summarized, with emphasis placed on recent progress and persisting challenges. Particular focus has been given to defect management, doping strategies, and bandgap engineering approaches, which define the roadmap toward scalable and radiation-hardened GaN-based solar cells. With sustained interdisciplinary advances, GaN is anticipated to complement or even supersede traditional III–V photovoltaics in space, enabling lighter, more durable, and radiation-hard power systems for long-duration missions beyond Earth’s magnetosphere. Full article
(This article belongs to the Special Issue Thin Film Microelectronic Devices and Circuits, 2nd Edition)
Show Figures

Figure 1

25 pages, 9496 KB  
Article
Enhancing Multi-Junction Solar Cell Performance: Advanced Predictive Modeling and Cutting-Edge CIGS Integration Techniques
by Zakarya Ziani, Moustafa Yassine Mahdad, Mohammed Zakaria Bessenouci, Mohammed Chakib Sekkal and Nacera Ghellai
Energies 2024, 17(18), 4669; https://doi.org/10.3390/en17184669 - 19 Sep 2024
Cited by 5 | Viewed by 3577
Abstract
Historically, multi-junction solar cells have evolved to capture a broader spectrum of sunlight, significantly enhancing efficiency beyond conventional solar technologies. In this study, we utilized Silvaco TCAD tools to optimize a five-junction solar cell composed of AlInP, AlGaInP, AlGaInAs, GaInP, GaAs, InGaAs, and [...] Read more.
Historically, multi-junction solar cells have evolved to capture a broader spectrum of sunlight, significantly enhancing efficiency beyond conventional solar technologies. In this study, we utilized Silvaco TCAD tools to optimize a five-junction solar cell composed of AlInP, AlGaInP, AlGaInAs, GaInP, GaAs, InGaAs, and Ge, drawing on advancements documented in the literature. Our research focused on optimizing these cells through sophisticated statistical modeling and material innovation, particularly examining the relationship between layer thickness and electrical yield under one sun illumination. Employing III-V tandem solar cells, renowned for their superior efficiency in converting sunlight to electricity, we applied advanced statistical models to a reference solar cell configured with predefined layer thicknesses. Our analysis revealed significant positive correlations between layer thickness and electrical performance, with correlation coefficients (R2 values) impressively ranging from 0.86 to 0.96 across different regions. This detailed statistical insight led to an improvement in overall cell efficiency to 44.2. A key innovation in our approach was replacing the traditional germanium (Ge) substrate with Copper Indium Gallium Selenide (CIGS), known for its adjustable bandgap and superior absorption of long-wavelength photons. This strategic modification not only broadened the absorption spectrum but also elevated the overall cell efficiency to 47%. Additionally, the optimization process involved simulations using predictive profilers and Silvaco Atlas tools, which systematically assessed various configurations for their spectral absorption and current–voltage characteristics, further enhancing the cell’s performance. These findings underscore the critical role of precise material engineering and sophisticated statistical analyses in advancing solar cell technology, setting new efficiency benchmarks, and driving further developments in the field. Full article
(This article belongs to the Section D1: Advanced Energy Materials)
Show Figures

Figure 1

10 pages, 561 KB  
Article
Optical Analysis of Perovskite III-V Nanowires Interpenetrated Tandem Solar Cells
by Matteo Tirrito, Phillip Manley, Christiane Becker, Eva Unger and Magnus T. Borgström
Nanomaterials 2024, 14(6), 518; https://doi.org/10.3390/nano14060518 - 14 Mar 2024
Cited by 3 | Viewed by 2165
Abstract
Multi-junction photovoltaics approaches are being explored to mitigate thermalization losses that occur in the absorption of high-energy photons. However, the design of tandem cells faces challenges such as light reflection and parasitic absorption. Nanostructures have emerged as promising solutions due to their anti-reflection [...] Read more.
Multi-junction photovoltaics approaches are being explored to mitigate thermalization losses that occur in the absorption of high-energy photons. However, the design of tandem cells faces challenges such as light reflection and parasitic absorption. Nanostructures have emerged as promising solutions due to their anti-reflection properties, which enhances light absorption. III-V nanowires (NWs) solar cells can achieve strong power conversion efficiencies, offering the advantage of potentially integrating tunnel diodes within the same fabrication process. Metal halide perovskites (MHPs) have gained attention for their optoelectronic attributes and cost-effectiveness. Notably, both material classes allow for tunable bandgaps. This study explores the integration of MHPs with III-V NWs solar cells in both two-terminal and three-terminal configurations. Our primary focus lies in the optical analysis of a tandem design using III-V semiconductor nanowire arrays in combination with perovskites, highlighting their potential for tandem applications. The space offered by the compact footprint of NW arrays is used in an interpenetrated tandem structure. We systematically optimize the bottom cell, addressing reflectivity and parasitic absorption, and extend to a full tandem structure, considering experimentally feasible thicknesses. Simulation of a three-terminal structure highlights a potential increase in efficiency, decoupling the operating points of the subcells. The two-terminal analysis underscores the benefits of nanowires in reducing reflection and achieving a higher matched current between the top and the bottom cells. This research provides significant insights into NW tandem solar cell optics, enhancing our understanding of their potential to improve photovoltaic performance. Full article
(This article belongs to the Section Solar Energy and Solar Cells)
Show Figures

Figure 1

9 pages, 2860 KB  
Article
GaAs/Si Tandem Solar Cells with an Optically Transparent InAlAs/GaAs Strained Layer Superlattices Dislocation Filter Layer
by Yeonhwa Kim, May Angelu Madarang, Eunkyo Ju, Tsimafei Laryn, Rafael Jumar Chu, Tae Soo Kim, Dae-Hwan Ahn, Taehee Kim, In-Hwan Lee, Won Jun Choi and Daehwan Jung
Energies 2023, 16(3), 1158; https://doi.org/10.3390/en16031158 - 20 Jan 2023
Cited by 11 | Viewed by 3309
Abstract
Epitaxial growth of III–V materials on Si is a promising approach for large-scale, relatively low-cost, and high-efficiency Si-based multi-junction solar cells. Several micron-thick III–V compositionally graded buffers are typically grown to reduce the high threading dislocation density that arises due to the lattice [...] Read more.
Epitaxial growth of III–V materials on Si is a promising approach for large-scale, relatively low-cost, and high-efficiency Si-based multi-junction solar cells. Several micron-thick III–V compositionally graded buffers are typically grown to reduce the high threading dislocation density that arises due to the lattice mismatch between III–V and Si. Here, we show that optically transparent n-In0.1Al0.9As/n-GaAs strained layer superlattice dislocation filter layers can be used to reduce the threading dislocation density in the GaAs buffer on Si while maintaining the GaAs buffer thickness below 2 μm. Electron channeling contrast imaging measurements on the 2 μm n-GaAs/Si template revealed a threading dislocation density of 6 × 107 cm−2 owing to the effective n-In0.1Al0.9As/n-GaAs superlattice filter layers. Our GaAs/Si tandem cell showed an open-circuit voltage of 1.28 V, Si bottom cell limited short-circuit current of 7.2 mA/cm2, and an efficiency of 7.5%. This result paves the way toward monolithically integrated triple-junction solar cells on Si substrates. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

13 pages, 1390 KB  
Article
Detecting the Knowledge Domains of Compound Semiconductors
by Qian-Yo Lee, Chiyang James Chou, Ming-Xuan Lee and Yen-Chun Lee
Micromachines 2022, 13(3), 476; https://doi.org/10.3390/mi13030476 - 20 Mar 2022
Cited by 2 | Viewed by 3164
Abstract
The development of compound semiconductors (CS) has received extensive attention worldwide. This study aimed to detect and visualize CS knowledge domains for quantifying CS research patterns and emerging trends through a scientometric review based on the literature between 2011 and 2020 by using [...] Read more.
The development of compound semiconductors (CS) has received extensive attention worldwide. This study aimed to detect and visualize CS knowledge domains for quantifying CS research patterns and emerging trends through a scientometric review based on the literature between 2011 and 2020 by using CiteSpace. The combined dataset of 24,622 bibliographic records were collected through topic searches and citation expansion to ensure adequate coverage of the field. While research in “solar cell” and “perovskite tandem” appears to be the two most distinctive knowledge domains in the CS field, research related to thermoelectric materials has grown at a respectable pace. Most notably, the deep connections between “thermoelectric material” and “III-Sb nanowire (NW)” research have been demonstrated. A rapid adaptation of black phosphorus (BP) field-effect transistors (FETs) and gallium nitride (GaN) transistors in the CS field is also apparent. Innovative strategies have focused on the opto-electronics with engineered functionalities, the design, synthesis and fabrication of perovskite tandem solar cells, the growing techniques of Sb-based III–V NWs, and the thermal conductivity of boron arsenide (BAs). This study revealed how the development trends and research areas in the CS field advance over time, which greatly help us to realize its knowledge domains. Full article
(This article belongs to the Special Issue Feature Papers of Micromachines in Materials and Processing 2021)
Show Figures

Figure 1

2 pages, 26 KB  
Addendum
Addendum: Tanabe, K. A Review of Ultrahigh Efficiency III-V Semiconductor Compound Solar Cells: Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and Plasmonic Nanometallic Structures. Energies, 2009, 2, 504-530.
by Katsuaki Tanabe
Energies 2009, 2(3), 695-696; https://doi.org/10.3390/en20300695 - 26 Aug 2009
Cited by 5 | Viewed by 9601
Abstract
I have stated in my recent review article that no direct observation of multiple exciton generation (MEG) in the shape of photocurrent extracted from a semiconductor had been made yet. [...] Full article
27 pages, 699 KB  
Review
A Review of Ultrahigh Efficiency III-V Semiconductor Compound Solar Cells: Multijunction Tandem, Lower Dimensional, Photonic Up/Down Conversion and Plasmonic Nanometallic Structures
by Katsuaki Tanabe
Energies 2009, 2(3), 504-530; https://doi.org/10.3390/en20300504 - 13 Jul 2009
Cited by 154 | Viewed by 28188
Abstract
Solar cells are a promising renewable, carbon-free electric energy resource to address the fossil fuel shortage and global warming. Energy conversion efficiencies around 40% have been recently achieved in laboratories using III-V semiconductor compounds as photovoltaic materials. This article reviews the efforts and [...] Read more.
Solar cells are a promising renewable, carbon-free electric energy resource to address the fossil fuel shortage and global warming. Energy conversion efficiencies around 40% have been recently achieved in laboratories using III-V semiconductor compounds as photovoltaic materials. This article reviews the efforts and accomplishments made for higher efficiency III-V semiconductor compound solar cells, specifically with multijunction tandem, lower-dimensional, photonic up/down conversion, and plasmonic metallic structures. Technological strategies for further performance improvement from the most efficient (Al)InGaP/(In)GaAs/Ge triple-junction cells including the search for 1.0 eV bandgap semiconductors are discussed. Lower-dimensional systems such as quantum well and dot structures are being intensively studied to realize multiple exciton generation and multiple photon absorption to break the conventional efficiency limit. Implementation of plasmonic metallic nanostructures manipulating photonic energy flow directions to enhance sunlight absorption in thin photovoltaic semiconductor materials is also emerging. Full article
(This article belongs to the Special Issue Solar Cells)
Show Figures

Graphical abstract

Back to TopTop