GaAs/Si Tandem Solar Cells with an Optically Transparent InAlAs/GaAs Strained Layer Superlattices Dislocation Filter Layer
Abstract
1. Introduction
2. Epitaxial Growth
3. Material Characterizations
4. Cell Fabrication and Measurement
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feifel, M.; Lackner, D.; Schon, J.; Ohlmann, J.; Benick, J.; Siefer, G.; Predan, F.; Hermle, M.; Dimroth, F. Epitaxial GaInP/GaAs/Si Triple-Junction Solar Cell with 25.9% AM1.5g Efficiency Enabled by Transparent Metamorphic AlxGa1-xAsyP1-y Step-Graded Buffer Structures. Sol. Rrl. 2021, 5, 2000763. [Google Scholar] [CrossRef]
- Green, M.A.; Dunlop, E.D.; Hohl-Ebinger, J.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Hinken, D.; Rauer, M.; Hao, X.J. Solar cell efficiency tables (Version 60). Prog. Photovolt. 2022, 30, 687–701. [Google Scholar] [CrossRef]
- Essig, S.; Allebe, C.; Remo, T.; Geisz, J.F.; Steiner, M.A.; Horowitz, K.; Barraud, L.; Ward, J.S.; Schnabel, M.; Descoeudres, A.; et al. Raising the one-sun conversion efficiency of III-V/Si solar cells to 32.8% for two junctions and 35.9% for three junctions. Nat. Energy 2017, 2, 1–9. [Google Scholar] [CrossRef]
- Cano, P.; Hinojosa, M.; Garcia, I.; Beanland, R.; Marron, D.F.; Ruiz, C.M.; Johnson, A.; Rey-Stolle, I. GaAsP/SiGe tandem solar cells on porous Si substrates. Sol. Energy 2021, 230, 925–934. [Google Scholar] [CrossRef]
- Fan, S.Z.; Yu, Z.J.; Hool, R.D.; Dhingra, P.; Weigand, W.; Kim, M.J.; Ratta, E.D.; Li, B.D.; Sun, Y.K.; Holman, Z.C.; et al. Current-Matched III-V/Si Epitaxial Tandem Solar Cells with 25.0% Efficiency. Cell Rep. Phys. Sci. 2020, 1, 100208. [Google Scholar] [CrossRef]
- Feifel, M.; Lackner, D.; Ohlmann, J.; Benick, J.; Hermle, M.; Dimroth, F. Direct Growth of a GaInP/GaAs/Si Triple-Junction Solar Cell with 22.3% AM1.5g Efficiency. Sol. Rrl. 2019, 3, 1900313. [Google Scholar] [CrossRef]
- Soga, T.; Kato, T.; Yang, M.; Umeno, M.; Jimbo, T. High-Efficiency Algaas/Si Monolithic Tandem Solar-Cell Grown by Metalorganic Chemical-Vapor-Deposition. J. Appl. Phys. 1995, 78, 4196–4199. [Google Scholar] [CrossRef]
- Lepkowski, D.L.; Grassman, T.J.; Boyer, J.T.; Chmielewski, D.J.; Yi, C.Q.; Juhl, M.K.; Soeriyadi, A.H.; Western, N.; Mehrvarz, H.; Romer, U.; et al. 23.4% monolithic epitaxial GaAsP/Si tandem solar cells and quantification of losses from threading dislocations. Sol. Energ Mat. Sol. C 2021, 230, 111299. [Google Scholar] [CrossRef]
- Feifel, M.; Ohlmann, J.; Benick, J.; Hermle, M.; Belz, J.; Beyer, A.; Volz, K.; Hannappel, T.; Bett, A.W.; Lackner, D.; et al. Direct Growth of III-V/Silicon Triple-Junction Solar Cells With 19.7% Efficiency. IEEE J. Photovolt. 2018, 8, 1590–1595. [Google Scholar] [CrossRef]
- Kim, Y.; Chu, R.J.; Ryu, G.; Woo, S.; Lung, Q.N.D.; Ahn, D.H.; Han, J.H.; Choi, W.J.; Jung, D.H. Enhanced Photoluminescence of 1.3?m InAs Quantum Dots Grown on Ultrathin GaAs Buffer/Si Templates by Suppressing Interfacial Defect Emission. ACS Appl. Mater. Inter. 2022, 14, 45051–45058. [Google Scholar] [CrossRef]
- Hong, N.; Chu, R.J.; Kang, S.S.; Ryu, G.; Han, J.H.; Yu, K.J.; Jung, D.; Choi, W.J. Flexible GaAs photodetector arrays hetero-epitaxially grown on GaP/Si for a low-cost III-V wearable photonics platform. Opt. Express 2020, 28, 36559–36567. [Google Scholar] [CrossRef] [PubMed]
- Jung, D.H.; Zhang, Z.Y.; Norman, J.; Herrick, R.; Kennedy, M.J.; Patel, P.; Turnlund, K.; Jan, C.; Wan, Y.T.; Gossard, A.C.; et al. Highly Reliable Low-Threshold InAs Quantum Dot Lasers on On-Axis (001) Si with 87% Injection Efficiency. ACS Photonics 2018, 5, 1094–1100. [Google Scholar] [CrossRef]
- Jung, D.; Norman, J.; Kennedy, M.J.; Shang, C.; Shin, B.; Wan, Y.T.; Gossard, A.C.; Bowers, J.E. High efficiency low threshold current 1.3 mu m InAs quantum dot lasers on on-axis (001) GaP/Si. Appl. Phys. Lett. 2017, 111, 122107. [Google Scholar] [CrossRef]
- Jung, D.; Callahan, P.G.; Shin, B.; Mukherjee, K.; Gossard, A.C.; Bowers, J.E. Low threading dislocation density GaAs growth on on-axis GaP/Si (001). J. Appl. Phys. 2017, 122, 225703. [Google Scholar] [CrossRef]
- Ryu, G.; Woo, S.; Kang, S.S.; Chu, R.J.; Han, J.H.; Lee, I.H.; Jung, D.; Choi, W.J. Optimized InAlAs graded buffer and tensile-strained dislocation filter layer for high quality InAs photodetector grown on Si. Appl. Phys. Lett. 2020, 117, 262106. [Google Scholar] [CrossRef]
- Hool, R.D.; Sun, Y.K.; Li, B.D.; Dhingra, P.; Tham, R.W.; Fan, S.Z.; Lee, M.L. Challenges of relaxed n-type GaP on Si and strategies to enable low threading dislocation density. J. Appl. Phys. 2021, 130, 243104. [Google Scholar] [CrossRef]
- Amano, C.; Sugiura, H.; Yamamoto, A.; Yamaguchi, M. 20.2-Percent Efficiency Al0.4ga0.6as Gaas Tandem Solar-Cells Grown by Molecular-Beam Epitaxy. Appl. Phys. Lett. 1987, 51, 1998–2000. [Google Scholar] [CrossRef]
- Cho, H.K.; Lee, J.Y.; Kwon, M.S.; Lee, B.; Baek, J.H.; Han, W.S. Observation of phase separation and ordering in the InAlAs epilayer grown on InP at the low temperature. Mat. Sci. Eng. B-Solid 1999, 64, 174–179. [Google Scholar] [CrossRef]
- Yaung, K.N.; Kirnstoetter, S.; Faucher, J.; Gerger, A.; Lochtefeld, A.; Barnett, A.; Lee, M.L. Threading dislocation density characterization in III-V photovoltaic materials by electron channeling contrast imaging. J. Cryst. Growth 2016, 453, 65–70. [Google Scholar] [CrossRef]
- Fan, S.Z.; Jung, D.W.; Sun, Y.K.; Li, B.D.; Martin-Martin, D.; Lee, M.L. 16.8%-Efficient n(+)/p GaAs Solar Cells on Si With High Short-Circuit Current Density. IEEE J. Photovolt. 2019, 9, 660–665. [Google Scholar] [CrossRef]
- Wang, J.Q.; Zhong, F.Q.; Liu, H.; Zhao, L.; Wang, W.J.; Xu, X.X.; Zhang, Y.Z.; Yan, H. Influence of the textured pyramid size on the performance of silicon heterojunction solar cell. Sol. Energy 2021, 221, 114–119. [Google Scholar] [CrossRef]
- Ma, R.; Yan, C.; Fong, P.W.K.; Yu, J.; Liu, H.; Yin, J.; Huang, J.; Lu, X.; Li, G. In situ and ex situ investigations on ternary strategy and co-solvent effects towards high-efficiency organic solar cells. Energy Environ. Sci. 2022, 15, 2479–2488. [Google Scholar] [CrossRef]
- Ma, R.; Yan, C.; Yu, J.; Liu, T.; Liu, H.; Li, Y.; Chen, J.; Luo, Z.; Tang, B.; Lu, X.; et al. High-efficiency ternary or ganic solar cells with a good figure-of-merit enabled by two low-cost donor polymers. ACS Energy Lett. 2022, 7, 2547–2556. [Google Scholar] [CrossRef]
Cells (5 mm × 5 mm) | Voc (V) | Jsc (mA/cm2) | FF (%) | Eff. (%) |
---|---|---|---|---|
GaAs cell w/o aperture | 0.78 | 17.4 | 58.7 | 7.8 |
Si cell w/o aperture | 0.50 | 7.76 | 72.7 | 2.8 |
Tandem cell w/o aperture | 1.28 | 7.84 | 80.8 | 8.0 |
Tandem cell w/aperture | 1.28 | 7.19 | 81.7 | 7.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Madarang, M.A.; Ju, E.; Laryn, T.; Chu, R.J.; Kim, T.S.; Ahn, D.-H.; Kim, T.; Lee, I.-H.; Choi, W.J.; et al. GaAs/Si Tandem Solar Cells with an Optically Transparent InAlAs/GaAs Strained Layer Superlattices Dislocation Filter Layer. Energies 2023, 16, 1158. https://doi.org/10.3390/en16031158
Kim Y, Madarang MA, Ju E, Laryn T, Chu RJ, Kim TS, Ahn D-H, Kim T, Lee I-H, Choi WJ, et al. GaAs/Si Tandem Solar Cells with an Optically Transparent InAlAs/GaAs Strained Layer Superlattices Dislocation Filter Layer. Energies. 2023; 16(3):1158. https://doi.org/10.3390/en16031158
Chicago/Turabian StyleKim, Yeonhwa, May Angelu Madarang, Eunkyo Ju, Tsimafei Laryn, Rafael Jumar Chu, Tae Soo Kim, Dae-Hwan Ahn, Taehee Kim, In-Hwan Lee, Won Jun Choi, and et al. 2023. "GaAs/Si Tandem Solar Cells with an Optically Transparent InAlAs/GaAs Strained Layer Superlattices Dislocation Filter Layer" Energies 16, no. 3: 1158. https://doi.org/10.3390/en16031158
APA StyleKim, Y., Madarang, M. A., Ju, E., Laryn, T., Chu, R. J., Kim, T. S., Ahn, D.-H., Kim, T., Lee, I.-H., Choi, W. J., & Jung, D. (2023). GaAs/Si Tandem Solar Cells with an Optically Transparent InAlAs/GaAs Strained Layer Superlattices Dislocation Filter Layer. Energies, 16(3), 1158. https://doi.org/10.3390/en16031158