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Abstract: Epitaxial growth of III–V materials on Si is a promising approach for large-scale, relatively
low-cost, and high-efficiency Si-based multi-junction solar cells. Several micron-thick III–V compo-
sitionally graded buffers are typically grown to reduce the high threading dislocation density that
arises due to the lattice mismatch between III–V and Si. Here, we show that optically transparent
n-In0.1Al0.9As/n-GaAs strained layer superlattice dislocation filter layers can be used to reduce the
threading dislocation density in the GaAs buffer on Si while maintaining the GaAs buffer thickness
below 2 µm. Electron channeling contrast imaging measurements on the 2 µm n-GaAs/Si template
revealed a threading dislocation density of 6 × 107 cm−2 owing to the effective n-In0.1Al0.9As/n-
GaAs superlattice filter layers. Our GaAs/Si tandem cell showed an open-circuit voltage of 1.28 V, Si
bottom cell limited short-circuit current of 7.2 mA/cm2, and an efficiency of 7.5%. This result paves
the way toward monolithically integrated triple-junction solar cells on Si substrates.

Keywords: solar cell; Si tandem cell; monolithic integration; molecular beam epitaxy

1. Introduction

Si-based solar cells currently dominate the photovoltaic market because of their low
manufacturing cost and mediocre efficiencies. The theoretical efficiency of a single-junction
Si solar cell is limited to 29.4% [1], and the best record-high laboratory Si cell efficiency
is currently reported to be 26.1%, which is approaching its theoretical limit. However,
III-V solar cells have demonstrated much higher 1-sun efficiencies of up to 39.5% by
constructing monolithically grown multi-junction structures [2]. Those high-efficiency III-V
multi-junction solar cells have been primarily used for space applications due to their
expensive fabrication cost by growing on costly Ge or GaAs wafers. Alternative approaches
for low-cost and high-efficiency solar cells include Si-based multi-junction solar cells via
either III-V wafer bonding [3] or epitaxial growth [2,4–6]. While the former already reached
~35.9% efficiency in a four-terminal structure, the latter is recently drawing more attention
because of its strong potential for low fabrication cost and high efficiency.

Several studies have reported Si-based dual-junction solar cells. Soga et al. demon-
strated 21.4% efficient AlGaAs/Si tandem solar cells using metal-organic chemical vapor
deposition (MOCVD) [7]. More recently, other III-V materials such as GaAsP with a 1.72 eV
bandgap energy were also employed for monolithic current-matched III-V/Si tandem solar
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cells by several research groups [5,8]. On top of these dual-junction solar cell research
efforts, triple-junction solar cells have also been investigated since a combination of en-
ergy bandgaps of 1.12 eV, 1.50 eV, and 2.01 eV can theoretically surpass the efficiency of
optimal dual-junction solar cells [1,6,7]. The first Si-based monolithic InGaP/GaAs/Si
triple-junction cells were reported in 2018 with an efficiency of 19.7% [9]. They used
GaAsxP1-x step-graded buffers to bridge the lattice mismatch between Si and GaAsP top
cell. The GaAsxP1-x step-graded buffers were also found to be effective in lowering the
threading dislocation density (TDD) to 1.4 × 108 cm−2. Afterward, the researchers further
improved the efficiency to 22.3% and 25.9% by lowering the TDD to 2.2 × 107 cm−2 and
switching to AlGaAsP step-graded buffers [1].

Direct growth of GaAs buffer on Si has also been used as a virtual template for
high-performance optoelectronic devices [10–12]. In particular, 1.3 µm InAs quantum dot
lasers grown with a TDD of ~6 × 107 cm−2 in high-quality GaAs/Si template boasted low
threshold current, high peak power, and impressive reliability [13]. The advantages of
directly growing GaAs on Si rather than the step-graded buffers with ternary compounds
such as GaAsxP1-x materials are straight-forward device design, epitaxial growth, and a
potentially lower TDD. To reduce TDD, compressively strained dislocation filter layers
(DFLs), e.g., InGaAs with In ~10–20% are commonly used [14,15]. However, the effective
InxGa1-xAs DFLs cannot be applied for Si-based tandem cells because the Si bottom cell
would suffer from undesirable parasitic absorption. Therefore, developing an optically
transparent DFL with a high dislocation filter efficacy is needed for high-performance
triple-junction solar cells on Si.

In this paper, we show that 10 nm n-In0.1Al0.9As/10 nm n-GaAs strained layer super-
lattices can serve as an efficient dislocation filter layer while being optically transparent
to the Si bottom subcell. The proposed filter layer enables a threading dislocation density
of 6 × 107 cm−2 and smooth surface morphology, which are necessary for III-V top cell
growth. Our GaAs/Si tandem solar cell shows an open-circuit voltage of 1.28 V, a fill factor
of 81.7%, and 7.5% efficiency with a short-circuit current of 7.2 mA/cm2 which is limited
by the Si bottom subcell. The results obtained in this study pave the way towards high
efficiency, crack-free triple-junction solar cells epitaxially grown on Si substrate.

2. Epitaxial Growth

All samples were grown in a solid source molecular beam epitaxy chamber. The
GaP/Si substrate was purchased from NAsP GmbH corp. The Si wafer consists of unin-
tentionally n-doped (<n = 1 × 1016 cm−3) 200 nm Si emitter. It should be noted that the
Si wafer structure is not optimized for III-V/Si tandem cell application. A 40 nm GaP
layer was grown by MOCVD for an anti-phase domain-free III-V growth. Three different
dislocation filter layers were investigated, 200 nm n-In0.1Ga0.9As, 200 nm n-In0.1Al0.9As,
and 15 × (10 nm n-In0.1Al0.9As/10 nm n-GaAs) strained layer superlattices as shown in
Figure 1a–c). After oxide desorption at 650 ◦C under As2 over-pressure, a 50–100 nm
GaAs layer was first grown at a low temperature (500 ◦C) and low growth rate (0.1 µm/h).
Then, the growth temperature was raised to 580 ◦C to grow a 1200–1300 nm GaAs layer.
Thermal cycle annealing (TCA) from 350 ◦C to 700 ◦C was performed four times to facilitate
dislocation movement and to improve GaAs buffer crystalline quality. The growth was
interrupted to change the substrate temperature for DFL growth as indicated in the sample
schematics. Finally, an n-GaAs layer was grown to complete the GaAs buffer growth on Si.
We doped the entire GaAs buffer structure at 1 × 1018 cm−3 using Si to be able to electrically
interconnect the top subcell and bottom subcell. A moderate doping level of 1 × 1018 cm−3

was used because an excessive n-type doping can prohibit dislocation movement and the
dislocation reduction process [16].
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Figure 1. Schematics of the GaAs/Si templates with (a) n-In0.1Ga0.9As DFL, (b) n-In0.1Al0.9As DFL,
(c) 10 nm n-In0.1Al0.9As/10 nm n-GaAs SLS, and (d) GaAs/Si tandem solar cell.

Figure 1d illustrates the entire structure of GaAs/Si tandem solar cell. The GaAs/Si
buffer sample with the strained layer superlattice DFL was reloaded to our MBE reactor to
grow the GaAs tunnel junction (TJ) and top GaAs cell. We have adopted an Al0.8Ga0.2As
cladding structure surrounding the 50 nm n++GaAs and p++GaAs TJ to inhibit dopant
diffusion during the top cell growth [17]. The GaAs TJ and upper p-Al0.8Ga0.2As cladding
layer were grown at 500 ◦C at a slow growth of GaAs 0.1 µm/h to achieve a high n-type
doping concentration and smooth surface morphology. The rest of the GaAs top cell layers
were grown under typical growth conditions. During the entire tandem cell growth, the
reflection high energy electron diffraction showed streaky patterns, indicating smooth
surface morphology of the TJ and GaAs top cell growths.

3. Material Characterizations

Figure 2 shows the Nomarski micrographs of the as-grown GaAs/Si buffer with 200 nm
n-In0.1Ga0.9As DFL, 200 nm n-In0.1Al0.9As DFL and 15 × (10 nm n-In0.1Al0.9As/10 nm n-
GaAs) DFL at 1000× magnification. In Figure 2a, the surface of GaAs/Si with the 200 nm
n-InGaAs DFL exhibits a qualitatively smoother surface, which is correlated with the absence
of ternary phase separation. Even though the InGaAs DFL considerably improved the surface
morphology, it is not desirable for Si bottom cells due to parasitic absorption since it has a lower
band gap than GaAs. On the other hand, Figure 2b shows the surface of the GaAs/Si buffer
with 200 nm n-In0.1Al0.9As DFL, which was designed to be optically transparent to minimize
parasitic absorption. However, the sample surface looks very rough due to phase separation
similarly observed by previous studies demonstrating phase separation and ordering of
InAlAs [18]. Consequently, the growth of a high-quality n-In0.1Al0.9As DFL is difficult on a
GaAs/Si template. To achieve optically transparent DFL while maintaining smooth surface
morphology, periodically strained layer superlattice (SLS) of 10 nm n-In0.1Al0.9As and 10 nm
n-GaAs were inserted in GaAs buffers. Compared to the InAlAs DFL only, Figure 2c shows a
smoother surface from the n-InAlAs/n-GaAs SLS DFL. Finally, a relatively smooth surface
morphology was achieved without using InGaAs, indicative of a relatively high-quality grown
GaAs/Si template with optically transparent 15 × (10 nm InAlAs + 10 nm GaAs) DFL.
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Figure 2. Optical microscope images of GaAs/Si buffer surface with (a) n-In0.1Ga0.9As DFL, (b) n-
In0.1Al0.9As DFL and (c) n-In0.1Al0.9As/n-GaAs DFL.

Prior to GaAs top cell growth, electron channeling contrast imaging (ECCI) measurement
was performed to investigate if the n-InAlAs/n-GaAs SLS DFL had successfully filtered TDs
during the 2 µm GaAs/Si template growth. We chose the ECCI technique because it involves
a simple, rapid, and non-destructive process commonly used to characterize TDD [14]. It takes
advantage of the dark-bright contrast resulting from the strong backscattering of electrons at
defects such as TDs [19]. ECCI was performed using an FEI Inspector F50 scanning electron
microscope (SEM) operating at an accelerating voltage of 20 kV with a spot size of 5.0 and
a working distance of 5.9 mm. Figure 3 shows a representative ECCI image of the GaAs/Si
template with an optically transparent n-In0.1Al0.9As/n-GaAs superlattice filter layer. An
average of 150 TDs were detected by surveying a total area of 230 µm2. Incorporating n-
In0.1Al0.9As/n-GaAs SLS and thermal cycling annealing to the sample structure reduced the
TDD to 6 × 107 cm−2, which is more than a factor of four lower compared to the un-optimized
GaAs buffer with TDD of 2.8 × 108 cm−2 [14]. This result suggests that InAlAs/GaAs SLS can
apply compressive stress and efficiently prevent TDs from propagating upward by bending
them into the growth planes [20]. In addition to this dislocation movement, TCA can increase
the mobility of TDs, allowing them to interact more with each other. The mechanism of
TD reduction by using TCA is based on thermal stress as a consequence of the differential
thermal expansion coefficients. It can enhance TDs to glide and combine with existing TDs,
causing self-annihilation. Based on the ECCI analysis, we concluded that optically transparent
n-In0.1Al0.9As/n-GaAs SLS and TCA have a significant impact on improving the quality of
n-GaAs/Si template via TD reduction process.
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Figure 3. ECCI image of the GaAs/Si template with In0.1Al0.9As/GaAs SLS showing
threading dislocations.

Figure 4a shows a cross-sectional transmission electron microscopy image of the GaAs
top cell grown on GaP/Si with n-In0.1Al0.9As/n-GaAs SLS. Multiple crystalline defects
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such as misfit and threading dislocations were observed at the bottom of the GaAs buffer
due to the highly defective GaAs/Si heterointerface. However, beyond the InAlAs/GaAs
SLS DFL, threading dislocations were not visibly penetrating into the adjacent GaAs buffer
and GaAs subcell on this scale. Shown in the enlarged marked area in Figure 4b are
arrays of misfit dislocations formed at the interfaces between the InAlAs/GaAs SLS and
GaAs buffers as indicated by the white arrows. The low density of misfit dislocations
within the interface provides a good platform for the growth of high-quality GaAs top
cells. Consequently, these observations agree with the low threading dislocation density
acquired using ECCI.
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Figure 4. (a) Cross-sectional TEM image of the GaAs/Si tandem solar cell. (b) A high magnification
image of the red rectangle in (a), showing effective TD reduction by In0.1Al0.9As/GaAs SLS.

4. Cell Fabrication and Measurement

Standard cleanroom procedures were carried out for the fabrication of the GaAs/Si
tandem solar cells as shown in Figure 5. To increase the light absorption of the tandem solar
cell, the Si backside was randomly textured using an aqueous KOH solution for 25 min at
70 ◦C. The addition of IPA is known to slow down the etching rate and help produce stable
pyramid structures [21]. A 200 nm aluminum metal contact was deposited on the backside
via a thermal evaporator, followed by thermal annealing at 500 ◦C for 20 min. Then Ti/Au
(20/300 nm) was deposited via an electron beam as a p-type electrode. For the top grid metal,
Pd/Ge/Au (10/20/200 nm) was deposited via electron beam evaporation. Individual GaAs
top cells were isolated by wet etching using H3PO4/H2O2/DI water (1:1:10). Top cells were
etched past the GaAs TJ and until the n-GaAs buffer, and Pd/Ge/Au (10/20/200 nm) was
deposited as middle-metal contact after the patterning process. Having the middle metal
enabled us to measure the top GaAs cell and the Si bottom cell individually. Si bottom cells
were mesa-defined by a combination of wet chemical etching for the remaining III-V buffer
layers and inductively coupled plasma-reactive ion etching 2 µm past the n-type Si emitter for
the Si bottom cell. Finally, the fabricated sample underwent rapid thermal annealing at 300 ◦C
for 1 min to improve Ohmic contact.
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Figure 5. Fabrication procedure of the GaAs/Si tandem solar cell.

Figure 6a shows an SEM image of textured Si. Surface texturing using KOH produced
uniform pyramids with an average size of 12 µm on the entire Si back surface. As a
consequence of this light trapping effect, the surface reflectance of the textured Si back
surface was lowered to about 12% in the wavelength range of 820–1100 nm compared to
bare Si as shown in Figure 6b. This surface texturing can maximize the surface reflection
for the solar spectrum in the Si subcell and increase the optical path of the incident light
by the multiple reflections between the pyramids, enhancing the probability of e−-h+ pair
collection [21].
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The tandem cells were measured under AM 1.5G condition as shown in Figure 7a
after applying TiO2/SiO2 anti-reflective coatings on devices. To avoid any contributions
of photo-generated carriers outside the dedicated bottom Si cell area, we used a metal
aperture mask with an opening size equivalent to that of the GaAs top cell. Figure 7b
shows the performance of the GaAs top cell, Si bottom cell, and GaAs/Si tandem cell with
and without the metal aperture. First, the GaAs top cell without aperture demonstrated
an efficiency of 7.8% with Voc = 0.78 V, Jsc = 17.4 mA/cm2, and FF = 58.7%. Please note
that the GaAs top cell was measured through the GaAs TJ by probing the top metal and
middle metal as illustrated in Figure 5. In addition, the Si bottom cell and tandem cell
without aperture both exhibited Jsc = 7.84 mA/cm2, clearly showing that the tandem cell is
current-limited by the Si subcell. Our GaAs/Si tandem cell with an aperture demonstrated
a similar Voc = 1.28 V, equivalent to the measured Voc without an aperture. However, the
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measured Jsc value was lower with Jsc = 7.19 mA/cm2. This indicates that the Jsc of the Si
bottom cell without aperture was overestimated due to the contribution of charge carriers
from outside the dedicated Si mesa as mentioned beforehand. Table 1 summarizes the
results of individual subcells and tandem cells. The external quantum efficiency (EQE)
curve in Figure 7c reveals a peak efficiency of ~80% at 680 nm and decreasing efficiencies
in the blue and red wavelength regimes. Our in-house GaAs baseline solar cell grown on
GaAs with a nominally identical cell structure (Al0.4Ga0.6As window and BSF) achieved
internal quantum efficiency (IQE) of 90% at 650 nm and maintained 80% up to 870 nm
cut-off wavelength. Therefore, the relatively poor blue and red response can likely be
attributed to the unoptimized design and growth sequence, resulting in parasitic absorption
in Al0.4Ga0.6As window and non-radiative recombination at the interface between the p-
Al0.4Ga0.6As BSF and TJ. Especially, on the blue response regime, ~20% higher EQE can
be expected by replacing the Al0.4Ga0.6As window with an InGaP layer, which is Al-O
defects-free with a higher bandgap [20]. The EQE response for the bottom Si cell could not
be measured due to difficulties in probing in our current EQE setup. Potential parasitic
absorption of the SLS structure is also going to be studied by measuring EQE on the Si
subcell in the future.
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Table 1. Summary of GaAs/Si tandem cell performance.

Cells (5 mm × 5 mm) Voc (V) Jsc (mA/cm2) FF (%) Eff. (%)

GaAs cell w/o aperture 0.78 17.4 58.7 7.8

Si cell w/o aperture 0.50 7.76 72.7 2.8

Tandem cell w/o aperture 1.28 7.84 80.8 8.0

Tandem cell w/aperture 1.28 7.19 81.7 7.5

Future work should focus on improving GaAs top cell efficiency by reducing crack
formation with optimized growth conditions and structure. In addition, improved Jsc of
Si bottom cell can be achieved by applying thinning and then pyramid texturing for light
trapping in Si bottom cell to obtain higher Jsc. Furthermore, slight tuning of the GaAs cell
bandgap by adding aluminum is requisite since the optimal energy bandgap for the middle
cell in a triple-junction structure is 1.50 eV. Incorporating high-efficiency organic solar cells
with the Si tandem cell can also be considered. [22,23]

Table 2 compares our GaAs/Si tandem cell result with the previously reported works.
Feifel et al. reported monolithically integrated InGaP/GaAs/Si triple-junction solar cells
using GaAsP-graded buffers. We extrapolated the subcell Voc values from their electro-
luminescence measurements. Since our current tandem cell does not have a top cell, the
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performance of GaAs middle and Si bottom cells is compared to each other. We would
like to emphasize the fact that the GaAs middle cell Voc = 0.78 V reported in this study
is higher than the previously reported values (0.70 V and 0.76 V). We believe that this is
because of the low TDD of ~6 × 107 cm−2 in the GaAs middle cell grown on Si. However,
the relatively low Voc of our Si bottom cell compared to the references was observed, and
this can be attributed to the GaP/Si interface nonradiative recombination rates [6,9].

Table 2. Comparison of GaAs/Si tandem cell performance.

Voc (V) Top
(InGaP)

Middle
(GaAs)

Bottom
(Si)

Tandem
(3 J)

Tandem
(GaAs + Si)

Ref. [9] 1.07 V 0.70 V 0.55 V 2.32 V 1.25 V

Ref. [6] 1.23 V 0.76 V 0.63 V 2.62 V 1.39 V

Our work N/A 0.78 V 0.50 V N/A 1.28 V

5. Conclusions

In this paper, we have demonstrated a GaAs/Si tandem solar cell by using optically
transparent n-In0.1Al0.9As/n-GaAs strained-layer superlattices in the GaAs buffer. The
optically transparent dislocation filter layer not only efficiently decreased the threading
dislocation density to 6 × 107 cm−2 but also allowed smooth surface morphology without
InAlAs phase separations. The high-quality GaAs/Si template enabled a GaAs top cell
with an open-circuit voltage of 0.78 V and short-circuit current of 17.5 mA/cm2. Eventually,
our GaAs/Si tandem cell showed an open-circuit voltage of 1.28 V, short-circuit current of
7.19 mA/cm2, fill factor of 81.7%, and efficiency of 7.5%. The tandem cell is current-limited
by the Si bottom cell, and this current-mismatching will be avoided by incorporating a
proper third cell with a bandgap of ~1.9 eV. Further improvements in the tandem cell
performance can be achieved via the reduction of threading dislocations and optimization
of growth conditions. We believe that this work is very promising for high-efficiency
triple-junction solar cells monolithically integrated on Si wafer.
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