Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = I-type granitoids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 27668 KB  
Article
Magmatic to Subsolidus Evolution of the Variscan Kastoria Pluton (NW Greece): Constraints from Mineral Chemistry and Textures
by Ioanna Gerontidou, Antonios Koroneos, Lambrini Papadopoulou, Alexandros Chatzipetros, Matteo Masotta and Stefanos Karampelas
Minerals 2026, 16(1), 83; https://doi.org/10.3390/min16010083 - 15 Jan 2026
Viewed by 159
Abstract
This study focuses on the mineralogy and mineral chemistry of the accessory minerals occurring in the Kastoria pluton situated in NW Greece, which intrudes the Pelagonian nappe having crystallized during the Late Paleozoic (~300 Ma). The pluton consists of porphyritic granite (GR) that [...] Read more.
This study focuses on the mineralogy and mineral chemistry of the accessory minerals occurring in the Kastoria pluton situated in NW Greece, which intrudes the Pelagonian nappe having crystallized during the Late Paleozoic (~300 Ma). The pluton consists of porphyritic granite (GR) that hosts mafic microgranular enclaves (MME) of monzonitic composition. Both lithologies contain quartz, microcline, plagioclase, biotite, secondary white mica, hornblende, and actinolite along with accessory minerals including titanite, epidote, allanite, apatite, zircon, and magnetite. Compared to the granite, the enclaves are richer in biotite, amphibole, and plagioclase but poorer in quartz and microcline. Mineral chemistry indicates a calc–alkaline affinity, consistent with the observed magmatic trends. Crystallization pressure, estimated at 3 kbar from Al in a hornblende barometer, suggests emplacement at mid-crustal levels. During the Alpine deformation, the pluton underwent low-grade greenschist to amphibolite-facies metamorphism, which partially overprinted the primary mineral assemblages. Magmatic titanite and allanite crystals are well preserved, showing only recrystallization features. Metamorphism produced tiny titanite needles and epidote replacing primary minerals (plagioclase, amphibole, and biotite). Later, hydrothermal alteration produced another generation of secondary epidote. Only a couple of epidote crystals preserve potential magmatic relict characteristics (euhedral habit, zircon inclusions, positive Eu anomaly, and sharp contact with primary minerals). These results provide insights into both the primary magmatic features and the subsequent metamorphic modification of the I-type Kastoria pluton within the Pelagonian domain. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

35 pages, 10330 KB  
Article
Mineral Chemistry, Whole-Rock Characterization, and EnMap Hyperspectral Data Analysis of Granitic Rocks of the Nubian Shield: A Case Study from Suwayqat El-Arsha District, Central Eastern Desert, Egypt
by Ahmed M. Abdel-Rahman, Bassam A. Abuamarah, Ali Shebl, Jason B. Price, Andrey Bekker and Mokhles K. Azer
Geosciences 2026, 16(1), 37; https://doi.org/10.3390/geosciences16010037 - 9 Jan 2026
Viewed by 263
Abstract
Gabal (G.) Suwayqat El-Arsha contains two distinct phases of granitoids: I-type granodiorite and A-type monzogranite. Both of them experienced intense fractional crystallization that affected plagioclase, alkali feldspar, quartz, and, to a lesser degree, ferromagnesian minerals. EnMAP hyperspectral data were used to discriminate between [...] Read more.
Gabal (G.) Suwayqat El-Arsha contains two distinct phases of granitoids: I-type granodiorite and A-type monzogranite. Both of them experienced intense fractional crystallization that affected plagioclase, alkali feldspar, quartz, and, to a lesser degree, ferromagnesian minerals. EnMAP hyperspectral data were used to discriminate between the different granitoid types through spectral analysis, using various techniques, including the Sequential Maximum Angle Convex Cone (SMACC) method. Granodiorite has high SiO2 (68.21–71.44 wt%), Al2O3 (14.29–14.92 wt%), Fe2O3 (1.99–3.32 wt%), and CaO (2.34–3.87 wt%), whereas monzogranite has even higher SiO2 (73.58–75.87 wt%) and K2O (4.28–4.88 wt%). Both granodiorite and monzogranite exhibit calc-alkaline, peraluminous to metaluminous, and medium- to high-K characteristics, with attendant enrichment of light REE and LILE and depletion of heavy REE and HFSE. A negative Eu anomaly may indicate early plagioclase fractionation, especially in the monzogranite. The I-type granodiorite is likely derived from a high-K, mafic protolith that partially melted during lithospheric delamination, leading to severe fractional crystallization in the upper crust in a post-collisional environment. In contrast, the monzogranite exhibits A-type characteristics and was likely emplaced in an anorogenic setting. Both granites were affected by several episodes of hydrothermal alteration, resulting in silicification, kaolinitization, sericitization, and chloritization. The intrusions studied here exhibit key similarities with those in the Wadi El-Hima area, including tectonic setting, petrogenetic type, Neoproterozoic age (Stage I collisional: ca. 650–620 Ma; Stage II post-collisional: ca. 630–590 Ma), and mineralogical assemblages (notably two-mica granites). These correlations suggest that both suites form part of a regionally extensive batholith composed of I- and A-type granites, stretching from north of the Marsa Alam Road (Umm Salatit–Homrit Waggat) southward to at least Wadi El-Hima. Full article
Show Figures

Figure 1

24 pages, 8121 KB  
Article
Geochemical Characteristics and Geological Significance of Late Cretaceous to Paleocene Intermediate–Acidic Intrusive Rocks in the Qiuwo Area, Southern Margin of the Lhasa Terrane, China
by Min Jia, Fuwei Xie, Yibin Lin, Shuyuan Chen, Yang Yang and Jiancuo Luosang
Minerals 2026, 16(1), 63; https://doi.org/10.3390/min16010063 - 7 Jan 2026
Viewed by 230
Abstract
The Late Cretaceous to Paleocene magmatic evolution along the southern margin of the Lhasa Terrane records a critical transition from oceanic subduction to continental collision, yet its western segment remains underexplored. This study presents integrated petrographic, zircon U–Pb geochronological, zircon Hf isotopic, whole-rock [...] Read more.
The Late Cretaceous to Paleocene magmatic evolution along the southern margin of the Lhasa Terrane records a critical transition from oceanic subduction to continental collision, yet its western segment remains underexplored. This study presents integrated petrographic, zircon U–Pb geochronological, zircon Hf isotopic, whole-rock geochemical, and Sr–Nd isotopic data for three distinct phases of intermediate to felsic intrusions from the Qiuwo area in the western segment of the southern Lhasa terrane. The results reveal three distinct magmatic pulses: an early granodiorite emplaced at 89.9 ± 0.75 Ma, followed by a diorite crystallizing at 68.6 ± 0.56 Ma, and a late-stage granodiorite forming at 56.75 ± 0.43 Ma. All three rock units are metaluminous to weakly peraluminous (A/CNK < 1.1), sodic (Na2O > 3.2 wt.%), and dominated by amphibole, with zircon saturation temperatures of 737–786 °C, consistent with I-type granitoid affinity. All units are metaluminous (A/CNK = 0.92–1.00), calc-alkaline to high-K calc-alkaline, and enriched in LILE (K, Th, Rb) while depleted in HFSE (Nb, Ta, P, Ti), with moderate ΣREE (81–130 ppm), elevated (La/Yb)N (9.3–15.8), and negative Eu anomalies (δEu = 0.70–0.89). The early granodiorite is Na-rich (Na2O/K2O = 1.6), whereas the Paleocene granodiorite shows elevated K2O (3.2 wt.%) and reduced Na2O/K2O (~1.0), reflecting progressive crustal thickening and increasing magmatic differentiation. Zr and Hf are relatively enriched, and Sr/Y ratios decrease from 39 to 21, consistent with evolving magmatic conditions from deeper crustal melting in the Late Cretaceous to shallower, more evolved sources in the Paleocene. Zircon Hf isotopes reveal consistently positive εHf(t) values (+10.4 to +4.9), indicating derivation from juvenile basaltic lower crust. Sr–Nd isotopic data further demonstrate a systematic evolution: εNd(t) decreases from +2.7 to −0.1, while (87Sr/86Sr)i increases from 0.7044 to 0.7055, reflecting progressive incorporation of ancient crustal components into the magma source from the early Late Cretaceous to the Paleocene. These findings indicate that the Qiuwo intrusions formed by partial melting of a juvenile basaltic lower crust, with increasing crustal contamination during ascent and emplacement. The temporal progression of magmatism—spanning the waning stages of Neo-Tethyan subduction to the initial India–Eurasia collision (~55 Ma)—supports a model in which slab breakoff and lithospheric delamination triggered decompression melting of the lower crust, while assimilation of older crustal materials intensified as the continental collision progressed. This work provides key geochemical evidence for the transition from arc to post-collisional magmatism in the western Gangdese belt and refines the timing and mechanism of crustal growth in southern Tibet. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

26 pages, 42537 KB  
Article
ID-TIMS U-Pb Zircon Ages and Petrogenesis of Granitoid Magmas in Central Madagascar: Geodynamic Perspectives
by Tsilavo Raharimahefa, Christine Rasoazanamparany and Timothy M. Kusky
Geosciences 2025, 15(12), 451; https://doi.org/10.3390/geosciences15120451 - 28 Nov 2025
Viewed by 404
Abstract
We present ID-TIMS U-Pb single zircon ages and major and trace element data for granitoid plutons from the Imorona–Itsindro and Kiangara suites in central Madagascar, in order to constrain the timing of igneous emplacement and investigate the petrogenesis and tectonic settings of these [...] Read more.
We present ID-TIMS U-Pb single zircon ages and major and trace element data for granitoid plutons from the Imorona–Itsindro and Kiangara suites in central Madagascar, in order to constrain the timing of igneous emplacement and investigate the petrogenesis and tectonic settings of these Neoproterozoic plutons. A U-Pb crystallization age of 779 ± 7 Ma was determined from an Imorona–Itsindro intrusion, while a Kiangara intrusion yields 777 ± 4 Ma, older than previously reported. The identical U-Pb ages suggest contemporaneous emplacement of some Kiangara and Imorona–Itsindro intrusions. Elemental data indicate that the two suites display trace element patterns similar to those of arc-type magmas. Some distinct geochemical features are apparent between these two suites. The Imorona–Itsindro sample displays I-type affinity with low REE abundances, whereas the Kiangara samples exhibit A-type signatures with higher REE contents. We suggest that the elemental differences between A-type and I-type reflect the contamination of mantle-derived magma by lower and upper crustal rocks, respectively. We suggest that the coeval A-type and I-type granitoids in central Madagascar were generated in a subduction system associated with slab rollback and back-arc extension like extension. The compositional diversity in these Neoproterozoic plutons reflects the evolution of the tectonic regime within a single geodynamic environment, similar to that proposed for plutons in other Precambrian and younger terranes. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

29 pages, 15588 KB  
Article
High Heat Producing Mesoproterozoic Granitoids and Their Impact on the Geothermal Field in Lithuania, Baltic Basin
by Saulius Šliaupa and Gediminas Motuza
Appl. Sci. 2025, 15(19), 10480; https://doi.org/10.3390/app151910480 - 27 Sep 2025
Viewed by 872
Abstract
The Palaeoproterozoic crystalline basement is overlain by the Baltic Basin. Lithuania is situated in the shallow eastern periphery and grades into the deep part of the basin, which comprises a number oil fields; the thickness of the sedimentary cover varies from 0.2 to [...] Read more.
The Palaeoproterozoic crystalline basement is overlain by the Baltic Basin. Lithuania is situated in the shallow eastern periphery and grades into the deep part of the basin, which comprises a number oil fields; the thickness of the sedimentary cover varies from 0.2 to 2.3 km. The Mesoproterozoic granitoid intrusions of different scales were discovered in the crystalline basement. In total, thirteen intrusions were defined on the gravity and magnetic maps and studied by abundant deep boreholes drilled in Lithuania. The recent dating revealed several phases of magmatic activity ranging from 1625 to 1445 Ma. No systematic lateral and temporal distribution of intrusions was noticed. The intrusions comprise sub-alkaline I-type diorites and quartz monzodiorites, granodiorites, and granites. The radiogenic granitoids are characterized by anomalous heat production ranging from 2.8 to 18.2 μW/m3 (average 7.26 μW/m3). The shoshonitic series correlates with high heat production. Furthermore, the Th series is documented in west Lithuanian (WLD) intrusions, while Th-U-enriched granitoids show high heat production in east Lithuania (LBB) domains. The high iron (magnetite) content of the Mesoproterozoic magmatic rocks accounts for specific high magnetic field anomalies. The most voluminous intrusions are mapped in the West Lithuanian Geothermal Anomaly, which is the most spectacular geothermal feature recognized in the East European Platform. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

23 pages, 11757 KB  
Article
Geodynamic Evolution of Flat-Slab Subduction of South Tianshan Ocean: Constraints from Devonian Dioritic Porphyrites and Granitoids in the Kumishi Area
by Wenbin Kang, Kai Weng, Xue Zhang, Xiaojian Zhao, Bo Chen and Yongwei Gao
Minerals 2025, 15(10), 1019; https://doi.org/10.3390/min15101019 - 26 Sep 2025
Viewed by 593
Abstract
Subduction of the South Tianshan Ocean caused widespread Devonian magmatism, lithospheric deformation, and thinning along the south margin of the Central Tianshan Belt. However, the details of this subduction process remain elusive. This study presents comprehensive data on Devonian granitoids from the Kumishi [...] Read more.
Subduction of the South Tianshan Ocean caused widespread Devonian magmatism, lithospheric deformation, and thinning along the south margin of the Central Tianshan Belt. However, the details of this subduction process remain elusive. This study presents comprehensive data on Devonian granitoids from the Kumishi area, including whole-rock geochemical data, Sr-Nb-Pb isotopic compositions, zircon U-Pb ages, and zircon Hf isotopic data. Dioritic porphyrites, medium–fine-grained monzogranites, and coarse–medium-grained monzogranites were emplaced at 397 ± 2 Ma, 397 ± 3 Ma, and 395 ± 3 Ma, respectively. The dioritic porphyrites have relatively high Sr contents, low heavy rare earth element (HREE) and Y contents, and high Sr/Y ratios, which are characteristics of adakites. High Al and Na2O contents suggest that the rocks formed through partial melting of subducted oceanic crust. The monzogranites display I-type and subduction-related arc affinities, sourced from a mixed magma of crustal materials and mantle wedge components. The granodiorites were emplaced at 373 ± 3 Ma, and also exhibit pronounced I-type and subduction-related arc affinities. Combined with previous data, our results demonstrate that the studied area of Devonian magmatism records the entire spatiotemporal evolution of subduction of the South Tianshan Ocean slab, from initial shallowing of the subduction angle to flat-slab subduction, followed by final slab rollback. Full article
Show Figures

Figure 1

30 pages, 11512 KB  
Article
Petrogenesis of Late Jurassic–Early Cretaceous Granitoids in the Central Great Xing’ an Range, NE China
by Cheng Qian, Lu Lu, Yan Wang, Junyu Fu, Xiaoping Yang, Yujin Zhang and Sizhe Ni
Minerals 2025, 15(7), 693; https://doi.org/10.3390/min15070693 - 28 Jun 2025
Viewed by 1020
Abstract
The Great Xing’ an Range is located in the eastern part of the Xing’ an-Mongolian Orogenic Belt, which is an important component of the Central Asian Orogenic Belt. To determine the emplacement age and petrogenesis of the granitoids in the Gegenmiao and Taonan [...] Read more.
The Great Xing’ an Range is located in the eastern part of the Xing’ an-Mongolian Orogenic Belt, which is an important component of the Central Asian Orogenic Belt. To determine the emplacement age and petrogenesis of the granitoids in the Gegenmiao and Taonan areas of the central Great Xing’an Range, and to investigate its tectonic setting, petrographic studies, zircon U-Pb geochronology, whole-rock Sr-Nd isotopic analysis, zircon Hf isotopic analysis, and detailed geochemical investigations of this intrusion were carried out. The results indicate the following, in relation to the granitoids in the study areas: (1) The zircon U-Pb dating of the granitic rocks in the study areas yields ages ranging from 141.4 ± 2.0 Ma to 158.7 ± 1.9 Ma, indicating their formation during the Late Jurassic to Early Cretaceous; (2) the geochemical characteristics indicate that these rocks belong to the calc-alkaline series and peraluminous, classified as highly fractionated I-type granites with adakite features; (3) the Sr-Nd isotopic data show that the εNd(t) values of Gegenmiao granitic rocks are 2.8 and 2.1, while those of Taonan granitic rocks range from −1.5 to 0.7; (4) the Zircon εHf(t) values of the granitic rocks from Gegenmiao and Taonan vary from 2.11 to 6.48 and 0.90 to 8.25, respectively. They are interpreted to have formed through partial melting of thickened lower crustal material during the Meso-Neoproterozoic. The Gegenmiao and Taonan granitic rocks were formed in a transitional environment from post-orogenic compression to extension, which is closely associated with the Mongolia–Okhotsk tectonic system. Full article
(This article belongs to the Special Issue Selected Papers from the 7th National Youth Geological Congress)
Show Figures

Figure 1

24 pages, 40890 KB  
Article
Contrasts in Two-Stage Superimposed Magmatism of the Shizhuzi Magmatic Complex-Mo-Cu-Au System, Liaodong Peninsula, North China Craton
by Jinjian Wu, Jinzhong Yang, Jinhui Yang and Qingdong Zeng
Minerals 2025, 15(6), 631; https://doi.org/10.3390/min15060631 - 10 Jun 2025
Cited by 1 | Viewed by 814
Abstract
The North China Craton (NCC) experienced extensive destruction and modification of its subcontinental lithospheric mantle during the Mesozoic, a period marked by intensive tectonism, magmatism, and mineralization. Among the key manifestations of this event are the Shizhuzi magmatic complex (SMC) and related Mo-Cu-Au [...] Read more.
The North China Craton (NCC) experienced extensive destruction and modification of its subcontinental lithospheric mantle during the Mesozoic, a period marked by intensive tectonism, magmatism, and mineralization. Among the key manifestations of this event are the Shizhuzi magmatic complex (SMC) and related Mo-Cu-Au deposits in the Liaodong Peninsula. This study presents new zircon U-Pb ages and Hf isotope data, along with whole-rock major and trace element geochemical data. Meanwhile, by incorporating published datasets, the magmatism and mineralization of the SMC are discussed. Two-stage magmatic activity is identified in the SMC as follows: (1) Stage I (130–126 Ma) associated with mineralization, and (2) Stage II (121–117 Ma), both corresponding to the peak destruction of the NCC. The mineralized granitoids exhibit I-type affinities and formed in an extension setting. Quartz diorites within this suite were derived from the partial melting of an enriched mantle source, and the high-temperature thermal underplating associated with this process subsequently triggered partial melting of the basaltic lower crust, leading to the generation of granodiorites and monzonitic granites. These rocks experienced limited fractional crystallization (dominated by plagioclase + biotite) and are linked to Mo-Cu-Au mineralization. In contrast, the non-mineralized granitoids are high-K calc-alkaline, peraluminous A-type granites, which developed in an extremely extensional tectonic setting. They were derived from partial melting of ancient lower crust and display characteristics of highly fractionated granites, having undergone extensive crystallization differentiation involving plagioclase + K-feldspar during magmatic evolution. The mineralized and non-mineralized granitoids exhibit distinct differences in lithology, major/trace element characteristics, Hf isotopes, and degree of fractional crystallization. Our proposed two-stage magmatic model—coupled with a mineralization phase—provides significant insights into both magmatic processes and metallogenesis in the Liaodong Peninsula. It further offers key perspectives into the Early Cretaceous decratonization of the NCC in terms of its tectonic–magmatic–mineralization evolution. Full article
Show Figures

Figure 1

37 pages, 17692 KB  
Article
Geological, Mineralogical, Geochemical, and Petrogenetic Characteristics of Plutonic Rocks in Çiftehan (Ulukışla-Niğde) Area, South-Central Türkiye: Implication for Genetic Link with Fe-Zn Skarn Mineralization
by Emmanuel Daanoba Sunkari and Abdurrahman Lermi
Minerals 2025, 15(6), 578; https://doi.org/10.3390/min15060578 - 29 May 2025
Viewed by 1424
Abstract
Globally, most skarn deposits show a direct relationship with magmatic activity, indicating a genetic link between the geochemical composition of causative plutons and the metal content of associated skarns. Therefore, this study investigated the Early–Middle Eocene plutonic rocks and their relationship with Fe-Zn [...] Read more.
Globally, most skarn deposits show a direct relationship with magmatic activity, indicating a genetic link between the geochemical composition of causative plutons and the metal content of associated skarns. Therefore, this study investigated the Early–Middle Eocene plutonic rocks and their relationship with Fe-Zn skarn deposits in the Esendemirtepe-Koçak and Horoz areas of south-central Türkiye. Despite the regional significance, previous studies have not adequately addressed the petrogenetic evolution of these intrusions and the geochemical characteristics of the related skarns. In particular, the fluid-aided mobility of elements at the contact between the causative plutons and the volcano-sedimentary country rocks remains poorly understood. Therefore, in this study, field studies, petrographic and mineralogical analysis, and whole-rock geochemical analysis were conducted to investigate the genetic link between the plutonic rocks and the skarn deposits. Field studies reveal that the skarn zones are within volcano-sedimentary sequences and marble-schist units intruded by four distinct plutonic bodies: (1) Esendemirtepe diorite, (2) Koçak diorite, (3) Horoz granodiorite, and (4) Çifteköy monzogabbro. These rocks exhibit calc-alkaline, I-type, and metaluminous signatures, except for the Çifteköy monzogabbro, which shows I-type, tholeiitic, and alkaline characteristics. All the plutonic rocks associated with the skarn formation display steep LREE-enriched REE patterns with minor positive Eu anomalies (Eu/Eu* = 0.98–1.35), suggesting a subduction-related volcanic arc setting similar to other granitoids in the Ulukışla Basin. The Horoz skarn exhibits both endoskarn and exoskarn features, while the Esendemirtepe-Koçak deposit is characterized by typical exoskarn features. Dominant ore minerals in both skarn deposits include magnetite, hematite, sphalerite, chalcopyrite, and pyrite, with minor arsenopyrite, galena, and cobaltite. The mineral composition of the skarn also shows the dominance of Na-rich and Mg-rich minerals in both locations. The geochemical compositions of the I-type, metaluminous Esendemirtepe-Koçak, and Horoz plutonic rocks are compatible with Fe-Zn skarn type deposits based on the moderate MgO (0.36–4.44 wt.%) and K2O (1.38–7.99 wt.%), and Rb/Zr and Sr/Zr ratios. They also show typical volcanic arc features, and the variation in various trace element concentrations shows similarity with Fe-Zn skarn type granitoids. These findings support a strong genetic relationship between the mineralization and the geochemical and mineralogical characteristics of the associated plutonic rocks. Full article
(This article belongs to the Special Issue Igneous Rocks and Related Mineral Deposits)
Show Figures

Figure 1

17 pages, 7715 KB  
Article
Petrogenesis and Tectonic Implications of the Early–Middle Ordovician Granodiorites in the Yaogou Area of the North Qilian Orogenic Belt
by Dechao Li, Yang Yang, Yao Xiao, Pengde Liu, Xijun Liu, Gang Chen, Xiao Liu, Rongguo Hu, Hao Tian and Yande Liu
Minerals 2025, 15(6), 551; https://doi.org/10.3390/min15060551 - 22 May 2025
Viewed by 736
Abstract
A diverse range of granitoids in the North Qilian Orogenic Belt (NQOB) offers valuable insights into the region’s tectonomagmatic evolution. In this study, we undertook a geochronological, mineralogical, geochemical, and zircon Hf isotopic analysis of granodiorites from the Yaogou area of the NQOB. [...] Read more.
A diverse range of granitoids in the North Qilian Orogenic Belt (NQOB) offers valuable insights into the region’s tectonomagmatic evolution. In this study, we undertook a geochronological, mineralogical, geochemical, and zircon Hf isotopic analysis of granodiorites from the Yaogou area of the NQOB. Zircon U-Pb dating reveals that the Yaogou granodiorites formed during the Early–Middle Ordovician (473–460 Ma). The Yaogou granodiorites have high SiO2 (63.3–71.1 wt.%), high Al2O3 (13.9–15.8 wt.%) contents, and low Zr (96–244 ppm), Nb (2.9–18 ppm), as well as low Ga/Al ratios (10,000 × Ga/Al ratios of 1.7–2.9) and FeOT/MgO ratios (1.9–3.2), and are characterized by elevated concentrations of light rare earth elements and large-ion lithophile elements such as Rb, Th, and U, coupled with significant depletion in heavy rare earth elements and high-field-strength elements including Nb, Ta, and Ti. Additionally, the presence of negative europium anomalies further reflects geochemical signatures typical of I-type granitic rocks. The zircon grains from these rocks display negative εHf(t) values (−14.6 to −10.7), with two-stage Hf model ages (TDM2) from 2129 to 1907 Ma. These characteristics suggest that the magmatic source of the Yaogou granodiorites likely originated from the partial melting of Paleoproterozoic basement-derived crustal materials within a tectonic environment associated with subduction in the North Qilian Ocean. Integrating regional geological data, we suggest that during the Early Paleozoic, the North Qilian Oceanic slab underwent double subduction: initially southward, followed by a northward shift. Due to the deep northward subduction of the Qaidam continental crust and oceanic crust along the southern margin of the Qilian Orogenic Belt, the southward subduction of the North Qilian ocean was obstructed, triggering a reversal in subduction polarity. This reversal likely decelerated the southward subduction and initiated northward subduction, ultimately leading to the formation of the Yaogou granodiorites. These findings enhance our understanding of the complex tectonic processes that shaped the North Qilian Orogenic Belt during the Early Paleozoic, emphasizing the role of subduction dynamics and continental interactions in the region’s geological evolution. Full article
(This article belongs to the Special Issue Geochronology and Geochemistry of Alkaline Rocks)
Show Figures

Figure 1

24 pages, 12852 KB  
Article
Zircon U-Pb Geochronology and Geochemical Constraints of Tiancang Granites, Southern Beishan Orogenic Belt: Implications for Early Permian Magmatism and Tectonic Evolution
by Chao Teng, Meiling Dong, Xinjie Yang, Deng Xiao, Jie Shao, Jun Cao, Yalatu Su and Wendong Lu
Minerals 2025, 15(4), 426; https://doi.org/10.3390/min15040426 - 19 Apr 2025
Cited by 1 | Viewed by 914
Abstract
The Beishan Orogenic Belt, situated along the southern margin of the Central Asian Orogenic Belt, represents a critical tectonic domain that archives the prolonged subduction–accretion processes and Paleo-Asian Ocean closure from the Early Paleozoic to the Mesozoic. Early Permian magmatism, exhibiting the most [...] Read more.
The Beishan Orogenic Belt, situated along the southern margin of the Central Asian Orogenic Belt, represents a critical tectonic domain that archives the prolonged subduction–accretion processes and Paleo-Asian Ocean closure from the Early Paleozoic to the Mesozoic. Early Permian magmatism, exhibiting the most extensive spatial-temporal distribution in this belt, remains controversial in its geodynamic context: whether it formed in a persistent subduction regime or was associated with mantle plume activity or post-collisional extension within a rift setting. This study presents an integrated analysis of petrology, zircon U-Pb geochronology, in situ Hf isotopes, and whole-rock geochemistry of Early Permian granites from the Tiancang area in the southern Beishan Orogenic Belt, complemented by regional comparative studies. Tiancang granites comprise biotite monzogranite, monzogranite, and syenogranite. Zircon U-Pb dating of four samples yields crystallization ages of 279.3–274.1 Ma. These granites are classified as high-K calc-alkaline to calc-alkaline, metaluminous to weakly peraluminous I-type granites. Geochemical signatures reveal the following: (1) low total rare earth element (REE) concentrations with light REE enrichment ((La/Yb)N = 3.26–11.39); (2) pronounced negative Eu anomalies (Eu/Eu* = 0.47–0.71) and subordinate Ce anomalies; (3) enrichment in large-ion lithophile elements (LILEs: Rb, Th, U, K) coupled with depletion in high-field-strength elements (HFSEs: Nb, Ta, P, Zr, Ti); (4) zircon εHf(t) values ranging from −10.5 to −0.1, corresponding to Hf crustal model ages (TDMC) of 1.96–1.30 Ga. These features collectively indicate that the Tiancang granites originated predominantly from partial melting of Paleoproterozoic–Mesoproterozoic crustal sources with variable mantle contributions, followed by extensive fractional crystallization. Regional correlations demonstrate near-synchronous magmatic activity across the southern/northern Beishan and eastern Tianshan Orogenic belts. The widespread Permian granitoids, combined with post-collisional magmatic suites and rift-related stratigraphic sequences, provide compelling evidence for a continental rift setting in the southern Beishan during the Early Permian. This tectonic regime transition likely began with lithospheric delamination after the Late Carboniferous–Early Permian collisional orogeny, which triggered asthenospheric upwelling and crustal thinning. These processes ultimately led to the terminal closure of the Paleo-Asian Ocean’s southern branch, followed by intracontinental evolution. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Graphical abstract

30 pages, 15713 KB  
Article
Magma Mixing Origin for the Menyuan Granodioritic Pluton in the North Qilian Orogenic Belt, China
by Shugang Xia, Yu Qi, Shengyao Yu, Xiaocong Jiang, Xiangyu Gao, Yue Wang, Chuanzhi Li, Qian Wang, Lintao Wang and Yinbiao Peng
Minerals 2025, 15(4), 391; https://doi.org/10.3390/min15040391 - 8 Apr 2025
Cited by 1 | Viewed by 1234
Abstract
Magma mixing or mingling is not just a geological phenomenon that widely occurs in granitoid magmatism, but a complex dynamic process that influences the formation of mafic microgranular enclaves (MMEs) and the diversity of granitic rocks. Herein, we carried out a comprehensive study [...] Read more.
Magma mixing or mingling is not just a geological phenomenon that widely occurs in granitoid magmatism, but a complex dynamic process that influences the formation of mafic microgranular enclaves (MMEs) and the diversity of granitic rocks. Herein, we carried out a comprehensive study that encompassed the petrology, mineral chemistry, zircon U-Pb ages, Lu-Hf isotopes, whole-rock elements, and Sr-Nd isotope compositions of the Menyuan Granodioritic Pluton in the northern margin of the Qilian Block, to elucidate the petrogenesis and physical and chemical processes occurring during magma mixing. The Menyuan Granodioritic Pluton is mainly composed of granodiorites accompanied by numerous mafic microgranular enclaves (MMEs) and is intruded by minor gabbro dikes. LA-ICP-MS zircon U-Pb dating reveals that these rocks possess a similar crystallization age of ca. 456 Ma. The Menyuan host granodiorites, characterized as metaluminous to weakly peraluminous, belong to subduction-related I-type calc-alkaline granites. The MMEs and gabbroic dikes have relatively low SiO2 contents and high Mg# values, probably reflecting a mantle-derived origin. They are enriched in large ion lithophile elements (LILEs) and light, rare earth elements (LREEs) but are depleted in high field strength elements (HFSEs), indicating continental arc-like geochemical affinities. The host granodiorites yield relatively enriched whole-rock Sr-Nd and zircon Hf isotopic compositions (87Sr/86Sri = 0.7072–0.7158; εNd(t) = −9.21 to −4.23; εHf(t) = −8.8 to −1.2), implying a derivation from the anatexis of the ancient mafic lower continental crust beneath the Qilian Block. The MMEs have similar initial Sr isotopes but distinct whole-rock Nd and zircon Hf isotopic compositions compared with the host granodiorites (87Sr/86Sri = 0.7078–0.7089; εNd(t) = −3.88 to −1.68; εHf(t) = −0.1 to +4.1). Field observation, microtextural and mineral chemical evidence, geochemical characteristics, and whole-rock Nd and zircon Hf isotopic differences between the host granodiorites and MMEs suggest insufficient magma mixing of lithospheric mantle mafic magma and lower continental crust felsic melt. In combination with evidence from regional geology, we propose that the anatexis of the ancient mafic lower continental crust and subsequent magma mixing formed in an active continental arc setting, which was triggered by the subducted slab rollback and mantle upwelling during the southward subduction of the Qilian Proto-Tethys Ocean during the Middle-Late Ordovician. Full article
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)
Show Figures

Figure 1

28 pages, 9297 KB  
Article
Petrogenesis and Tectonic Setting of Late Permian Granitoids in the East Kunlun Orogenic Belt, NW China: Constraints from Petrology, Geochemistry and Zircon U-Pb-Lu-Hf Isotopes
by Chao Hui, Fengyue Sun, Tao Wang, Yanqian Yang, Yun Chai, Jiaming Yan, Bakht Shahzad, Bile Li, Yajing Zhang, Tao Yu, Xingsen Chen, Chengxian Liu, Xinran Zhu, Yuxiang Wang, Zhengsong Wang, Haoran Li, Renyi Song and Desheng Dou
Minerals 2025, 15(4), 381; https://doi.org/10.3390/min15040381 - 4 Apr 2025
Cited by 3 | Viewed by 793
Abstract
Permian magmatic rocks are extensively distributed in the East Kunlun Orogenic Belt (EKOB), yet controversies persist regarding the petrogenesis of granitoid rocks and the tectonic evolution of the Buqingshan-A’nyemaqing Ocean (BAO), which is a part of the Paleo-Tethys. This study addresses these debates [...] Read more.
Permian magmatic rocks are extensively distributed in the East Kunlun Orogenic Belt (EKOB), yet controversies persist regarding the petrogenesis of granitoid rocks and the tectonic evolution of the Buqingshan-A’nyemaqing Ocean (BAO), which is a part of the Paleo-Tethys. This study addresses these debates through petrological analyses, whole-rock geochemistry and zircon U-Pb-Lu-Hf isotopic investigations of newly identified granitoids in the EKOB. Monzogranite (MG) and quartz porphyry (QP) yield weighted mean ages of 254.7 ± 1.1 Ma and 254.3 ± 1.1 Ma, respectively. Geochemically, the MG shows metaluminous to weakly peraluminous low-K calc-alkaline I-type affinity, characterized by high SiO2 and low K2O, MgO and FeOT contents, as well as marked enrichment in light rare earth elements (LREEs), but depletion in Eu, Ba, Sr, P and Ti anomalies. In contrast, the QP exhibits a peraluminous high-K calc-alkaline I-type affinity, displaying high SiO2 but low Na2O and P2O5 contents. It is enriched in LREEs and Rb but displays negative Nb, Sr, P and Ti anomalies. Zircon εHf(t) values range from −1.6 to 2.6 for MG and −4.4 to 1.5 for QP. We suggest that both MG and QP were derived from the partial melting of juvenile mafic lower crust, and that MG underwent a high degree of fractional crystallization. A synthesis of multiscale geological evidence allows us to propose a five-stage tectonic evolution for the BAO in the EKOB: (1) oceanic basin initiation before ca. 345 Ma; (2) incipient northward subduction commencing at ca. 278 Ma; (3) slab rollback stage (263–240 Ma); (4) syn-collisional compression (240–230 Ma); (5) post-collisional extension (230–195 Ma). Full article
Show Figures

Graphical abstract

30 pages, 7272 KB  
Article
A Genetic Model for the Biggenden Gold-Bearing Fe Skarn Deposit, Queensland, Australia: Geology, Mineralogy, Isotope Geochemistry, and Fluid Inclusion Studies
by Mansour Edraki, Alireza K. Somarin and Paul M. Ashley
Minerals 2025, 15(1), 95; https://doi.org/10.3390/min15010095 - 20 Jan 2025
Cited by 1 | Viewed by 2610
Abstract
The Biggenden gold-bearing Fe skarn deposit in southeast Queensland, Australia, is a calcic magnetite skarn that has been mined for Fe and gold (from the upper portion of the deposit). Skarn has replaced volcanic and sedimentary rocks of the Early Permian Gympie Group, [...] Read more.
The Biggenden gold-bearing Fe skarn deposit in southeast Queensland, Australia, is a calcic magnetite skarn that has been mined for Fe and gold (from the upper portion of the deposit). Skarn has replaced volcanic and sedimentary rocks of the Early Permian Gympie Group, which formed in different tectonic settings, including island arc, back arc, and mid-ocean ridge. This group has experienced a hornblende-hornfels grade of contact metamorphism due to the intrusion of the Late Triassic Degilbo Granite. The intrusion is a mildly oxidized I-type monzogranite that has geochemical characteristics intermediate between those of granitoids typically associated with Fe-Cu-Au and Sn-W-Mo skarn deposits. The skarn mineralogy indicates that there was an evolution from prograde to various retrograde assemblages. Prograde garnet (Adr11-99Grs1-78Alm0-8Sps0-11), clinopyroxene (Di30-92Hd7-65Jo0-9), magnetite, and scapolite formed initially. Epidote and Cl-bearing amphibole (mainly ferropargasite) were the early retrograde minerals, followed by chlorite, calcite, actinolite, quartz, and sulfides. Late-stage retrograde reactions are indicated by the development of nontronite, calcite, and quartz. Gold is mainly associated with sulfide minerals in the retrograde sulfide stage. The fluids in equilibrium with the ore-stage calcites had δ13C and δ18O values that indicate deposition from magmatically derived fluids. The calculated δ18O values of the fluids in equilibrium with the skarn magnetite also suggest a magmatic origin. However, the fluids in equilibrium with epidote were a mixture of magmatic and meteoric water, and the fluids that deposited chlorite were at least partly meteoric. δD values for the retrograde amphibole and epidote fall within the common range for magmatic water. Late-stage chlorite was deposited from metasomatic fluids depleted in deuterium (D), implying a meteoric water origin. Sulfur isotopic compositions of the Biggenden sulfides are similar to other skarn deposits worldwide and indicate that sulfur was most probably derived from a magmatic source. Based on the strontium (87Sr/86Sr) and lead (206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb) isotope ratios, the volcanic and sedimentary rocks of the Gympie Group may have contributed part of the metals to the hydrothermal fluids. Lead isotope data are also consistent with a close age relationship between the mineralization at Biggenden and the crystallization of the Degilbo Granite. Microthermometric analysis indicates that there is an overall decrease in fluid temperature and salinity from the prograde skarn to retrograde alterations. Fluid inclusions in prograde skarn calcite and garnet yield homogenization temperatures of 500 to 600 °C and have salinities up to 45 equivalent wt % NaCl. Fluid inclusions in quartz and calcite from the retrograde sulfide-stage homogenized between 280 and 360 °C and have lower salinities (5–15 equivalent wt % NaCl). In a favored genetic model, hydrothermal fluids originated from the Degilbo Granite at depth and migrated through the shear zone, intrusive contact, and permeable Gympie Group rocks and leached extra Fe and Ca and deposited magnetite upon reaction with the adjacent marble and basalt. Full article
(This article belongs to the Special Issue Geochemistry and Genesis of Hydrothermal Ore Deposits)
Show Figures

Figure 1

24 pages, 6880 KB  
Article
Petrogenesis of Granitoids from the Waxing Mo Polymetallic Deposit, NE China: Implications for Magma Fertility and Mineralization
by Yang Liu, De-You Sun, Yang Gao, Hong-Chao Wang, Yu-Xin Ma, Jun Xu and Xin-Tong Liu
Minerals 2024, 14(11), 1104; https://doi.org/10.3390/min14111104 - 29 Oct 2024
Viewed by 1242
Abstract
The Waxing Mo polymetallic deposit is located in the central part of the Lesser Xing’an–Zhangguangcai Range (LXZR), NE China. The Mo (Cu) mineralization in the deposit is dominantly hosted by quartz veinlets and stockworks and is closely related to silicification and potassic alteration, [...] Read more.
The Waxing Mo polymetallic deposit is located in the central part of the Lesser Xing’an–Zhangguangcai Range (LXZR), NE China. The Mo (Cu) mineralization in the deposit is dominantly hosted by quartz veinlets and stockworks and is closely related to silicification and potassic alteration, while the W mineralization is most closely related to greisenization. Zircon samples from granodiorite, biotite monzogranite, granodiorite porphyry, and syenogranite in the Waxing deposit yielded U-Pb ages of 172.3 Ma, 172.8 Ma, 173.0 Ma, and 171.4 Ma, respectively. Six molybdenite samples from porphyry Mo ores yielded a Re-Os isochron age of 172.0 ± 1.1 Ma. The granitoids in the ore district are relatively high in total alkali (Na2O + K2O), are metaluminous to weakly peraluminous, and are classified as I-type granitoids. The zircon samples from all granitoids showed a relatively consistent Hf isotopic composition, as shown by positive εHf(t) values (3.1–8.3) and young TDM2 ages (0.69–1.25 Ga). These results, combined with the whole-rock geochemistry, suggest that the magma source of these rocks most likely derived from partial melting of a juvenile middle-lower continental crust, with a minor contribution from the mantle. These granitoids have compositional characteristics of adakites such as relatively high Sr contents (e.g., >400 ppm) and Sr/Y ratios (e.g., >33), as well as weak Eu anomalies (e.g., Eu/Eu* = 0.8–1.1), indicating extensive fractionation crystallization of a hydrous magma. The apatite geochemistry indicates that the ore-related magma in Waxing is F-rich and has a relatively low content of sulfur. The zircon geochemistry reveals that the granodiorite, biotite monzogranite, and granodiorite porphyry have relatively high oxygen fugacity (i.e., ΔFMQ = +1.1~1.3), whereas the fO2 values of the granite porphyry and syenogranite are relatively low (i.e., ΔFMQ = +0.1~0.5). The whole-rock and mineral geochemistry suggest that the Mo mineralization in Waxing is probably genetically related to granitoids (i.e., granodiorite, biotite monzogranite, and granodiorite porphyry), with higher oxygen fugacity and a high water content, whereas the magmatic S concentration is not the key factor controlling the mineralization. A comparison of the geochemical compositions of ore-forming and barren stocks for porphyry Mo deposits in the LXZR showed that geochemical ratios, including Eu/Eu* (>0.8), 10,000*(Eu/Eu*)/Y (>600), Sr/Y (>33), and V/Sc (>8), could be effective indicators in discriminating fertile granitoids for porphyry Mo deposits from barren ones in the region. Full article
(This article belongs to the Special Issue Recent Developments in Rare Metal Mineral Deposits)
Show Figures

Figure 1

Back to TopTop