Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = Hypericum perforatum L.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1689 KiB  
Article
Effects of Culture Period and Plant Growth Regulators on In Vitro Biomass Production and Phenolic Compounds in Seven Species of Hypericum
by Doina Clapa, Monica Hârţa, Ana Maria Radomir, Adrian George Peticilă, Loredana Leopold, Floricuţa Ranga and Dorin Ioan Sumedrea
Plants 2025, 14(15), 2437; https://doi.org/10.3390/plants14152437 (registering DOI) - 6 Aug 2025
Abstract
This study evaluated biomass accumulation and phenolic compound production in seven Hypericum species (H. androsaemum, H. calycinum, H. hirsutum, H. kalmianum, H. olympicum, H. perforatum, and H. triquetrifolium) cultivated in vitro under varying growth regulator [...] Read more.
This study evaluated biomass accumulation and phenolic compound production in seven Hypericum species (H. androsaemum, H. calycinum, H. hirsutum, H. kalmianum, H. olympicum, H. perforatum, and H. triquetrifolium) cultivated in vitro under varying growth regulator treatments and culture periods. Shoots were grown on Murashige and Skoog (MS) medium supplemented with benzyladenine (BA) or meta-topoline (mT) and analyzed after 40 and 60 days. MS medium supplemented with 0.2 mg/L BA was the most effective condition for promoting biomass across all species, with shoot fresh weight increasing significantly at 60 days, particularly in H. olympicum, H. perforatum, and H. triquetrifolium. High-performance liquid chromatography coupled with diode array detection and electrospray ionization mass spectrometry (HPLC-DAD-ESI-MS) identified 13 phenolic compounds, including flavonols, hydroxycinnamic acids, anthocyanins, phloroglucinols, and naphthodianthrones. Phenolic profiles were species-specific and influenced by culture period. H. kalmianum accumulated the highest total phenolic content (37.6 mg/g DW), while H. olympicum was the top producer of hypericin and pseudohypericin. These results highlight the crucial role of culture conditions in regulating both biomass and phytochemical production and provide a promising approach for producing bioactive metabolites in Hypericum species through in vitro systems. Full article
(This article belongs to the Special Issue Plant Tissue Culture V)
Show Figures

Figure 1

15 pages, 1612 KiB  
Brief Report
A Simple High-Throughput Procedure for Microscale Extraction of Bioactive Compounds from the Flowers of Saint John’s Wort (Hypericum perforatum L.)
by Mila Rusanova, Krasimir Rusanov, Marina Alekova, Liliya Georgieva, Pavlina Georgieva, Tzvetelina Zagorcheva and Ivan Atanassov
Appl. Sci. 2025, 15(13), 7334; https://doi.org/10.3390/app15137334 - 30 Jun 2025
Viewed by 282
Abstract
We report the development of a procedure for ultrasound-assisted microscale extraction of metabolites from the flowers of Saint John’s wort (Hypericum perforatum L.), designed for comparative metabolite analysis of plants from genetic resource collections and natural and segregating populations. The procedure involves [...] Read more.
We report the development of a procedure for ultrasound-assisted microscale extraction of metabolites from the flowers of Saint John’s wort (Hypericum perforatum L.), designed for comparative metabolite analysis of plants from genetic resource collections and natural and segregating populations. The procedure involves high-throughput methanol extraction of metabolites from ground-frozen flowers at a selected stage of flower development, which is carried out in a standard 2 mL Eppendorf tube. A total of 18 compounds, including chlorogenic acid, catechins, glycosylated flavonoids, hypericins, and hyperforin, were identified based on LC/DAD/QTOF analysis, of which 16 could be detected in the UV-Vis spectrum. Two alternative versions of the procedure were evaluated: the “single-flower” procedure, including repeated collection and analysis of single flowers from the tested plant, and the “bulk-flower” procedure, employing the collection of a bulk flower sample from the tested plant and analysis of a portion of the ground sample. The results showed excellent technical reproducibility of the “single-flower” procedure when used with the suggested combination of the peak areas for the proto- and stable forms of pseudohypericin and hypericin. Application of the developed “single-flower” procedure for comparison of the plants derived from seed progeny of the apomictic line Hp93 revealed significantly lower metabolite variation among the apomictic progeny plants compared to the variation observed among plants belonging to different genotypes. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
Show Figures

Figure 1

28 pages, 6773 KiB  
Article
Nanoemulsion Hydrogel Delivery System of Hypericum perforatum L.: In Silico Design, In Vitro Antimicrobial–Toxicological Profiling, and In Vivo Wound-Healing Evaluation
by Ahmet Arif Kurt, Bashar Ibrahim, Harun Çınar, Ayşe Nilhan Atsü, Ertuğrul Osman Bursalıoğlu, İsmail Bayır, Özlem Özmen and İsmail Aslan
Gels 2025, 11(6), 431; https://doi.org/10.3390/gels11060431 - 3 Jun 2025
Viewed by 827
Abstract
Hypericum perforatum L. (H.P.), a plant renowned for its wound-healing properties, was investigated for antioxidant/antimicrobial efficacy, toxicological safety, and in vivo wound-healing effects in this research to develop and characterize novel nanoemulsion hydrogel (NG) formulations. NG were prepared via emulsion diffusion–solvent evaporation and [...] Read more.
Hypericum perforatum L. (H.P.), a plant renowned for its wound-healing properties, was investigated for antioxidant/antimicrobial efficacy, toxicological safety, and in vivo wound-healing effects in this research to develop and characterize novel nanoemulsion hydrogel (NG) formulations. NG were prepared via emulsion diffusion–solvent evaporation and polymer hydration using Cremophor RH40 and Ultrez 21/30. A D-optimal design optimized oil/surfactant ratios, considering particle size, PDI, and drug loading. Antioxidant activity was tested via DPPH, ABTS+, and FRAP. Toxicological assessment followed HET-CAM (ICH-endorsed) and ICCVAM guidelines. The optimized NG-2 (NE-HPM-10 + U30 0.5%) demonstrated stable and pseudoplastic flow, with a particle size of 174.8 nm, PDI of 0.274, zeta potential of −23.3 mV, and 99.83% drug loading. Release followed the Korsmeyer–Peppas model. H.P. macerates/NEs showed potent antioxidant activity (DPPH IC50: 28.4 µg/mL; FRAP: 1.8 mmol, Fe2+/g: 0.3703 ± 0.041 mM TE/g). Antimicrobial effects against methicillin-resistant S. aureus (MIC: 12.5 µg/mL) and E. coli (MIC: 25 µg/mL) were significant. Stability studies showed no degradation. HET-CAM tests confirmed biocompatibility. Histopathology revealed accelerated re-epithelialization/collagen synthesis, with upregulated TGF-β1. The NG-2 formulation demonstrated robust antioxidant, antimicrobial, and wound-healing efficacy. Enhanced antibacterial activity and biocompatibility highlight its therapeutic potential. Clinical/pathological evaluations validated tissue regeneration without adverse effects, positioning H.P.-based nanoemulsions as promising for advanced wound care. Full article
Show Figures

Figure 1

2 pages, 408 KiB  
Correction
Correction: Khalil et al. Hypericum perforatum L. Nanoemulsion Mitigates Cisplatin-Induced Chemobrain via Reducing Neurobehavioral Alterations, Oxidative Stress, Neuroinflammation, and Apoptosis in Adult Rats. Toxics 2023, 11, 159
by Heba M. A. Khalil, Hanan M. A. El Henafy, Islam A. Khalil, Alaa F. Bakr, Mohamed I. Fahmy, Nancy S. Younis and Riham A. El-Shiekh
Toxics 2025, 13(6), 437; https://doi.org/10.3390/toxics13060437 - 26 May 2025
Viewed by 301
Abstract
Error in Figure [...] Full article
(This article belongs to the Section Neurotoxicity)
Show Figures

Figure 7

33 pages, 2775 KiB  
Article
Phytochemical Profile and Biological Activities of Rtanj’s Hypericum perforatum Infusion Tea and Methanolic Extracts: Insights from LC-MS/MS and HPTLC–Bioautography
by Sofija Kilibarda, Marko D. Jović, Danijel D. Milinčić, Sandra Vuković, Jelena Đ. Trifković, Mirjana B. Pešić and Aleksandar Ž. Kostić
Plants 2025, 14(9), 1377; https://doi.org/10.3390/plants14091377 - 1 May 2025
Cited by 1 | Viewed by 937
Abstract
This study aimed to examine wild-growing Hypericum perforatum L. tea (Hyperici herba) collected from Rtanj Mountain (Serbia). This research includes the following approaches: phytochemical and antioxidant characterization of H. perforatum infusion tea to determine its realistic composition (What do we consume [...] Read more.
This study aimed to examine wild-growing Hypericum perforatum L. tea (Hyperici herba) collected from Rtanj Mountain (Serbia). This research includes the following approaches: phytochemical and antioxidant characterization of H. perforatum infusion tea to determine its realistic composition (What do we consume when drinking the tea?), as well as a detailed examination of methanol(ic) extracts as the optimal extraction system. Due to the broad spectrum of both polar and nonpolar metabolites, 80% methanolic and pure methanol extracts were prepared for ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC Q-ToF) characterization through untargeted metabolomics analysis. Given the high diversity of compounds identified, the 80% methanolic extract was selected for further antioxidant examination and bioautographic characterization, including an antimicrobial activity assessment. UHPLC Q-ToF analysis identified 35 phenolics in the methanolic extract, compared to 25 metabolites in the infusion tea. The main differences were observed in flavonol/flavan-3-ol aglycones, xantones, and coumestans, which are more nonpolar compounds found only in the methanol(ic) system. Notably, specific H. perforatum metabolites were entirely absent in the infusion tea. Specifically, pseudohypericin, pseudoprotohypricin, and adhyperfirin were detected in the pure methanol extract, whereas hyperfirin was present in both methanol(ic) extracts. Additionally, eight furano-polycyclic polyprenylated acilphloroglucinols (FPPAPs) were identified in the methanol(ic) extracts as possible products of the thermal degradation and/or oxidation of hypericin/hyperforin. Both the infusion tea and methanolic extracts exhibited excellent antioxidant properties, with variations depending on the applied assay. High-performance thin-layer chromatography (HPTLC) analysis also confirmed the presence of a wide spectrum of phytochemical classes. Bioautography confirmed a promising activity of methanolic extracts against both Staphylococcus aureus and Klebsiella pneumoniae. Full article
Show Figures

Figure 1

18 pages, 2870 KiB  
Article
Tocopherol and Tocotrienol Content in the Leaves of the Genus Hypericum: Impact of Species and Drying Technique
by Ieva Miķelsone, Elise Sipeniece, Dalija Segliņa and Paweł Górnaś
Plants 2025, 14(7), 1079; https://doi.org/10.3390/plants14071079 - 1 Apr 2025
Cited by 1 | Viewed by 417
Abstract
α-Tocopherol (α-T) predominates in photosynthetic tissues, while tocotrienols (T3s) are reported very rarely. The genus Hypericum stands out as one of the few exceptions. Given the potential health benefits associated with tocotrienols, sourcing them from natural origins is of interest. The proper selection [...] Read more.
α-Tocopherol (α-T) predominates in photosynthetic tissues, while tocotrienols (T3s) are reported very rarely. The genus Hypericum stands out as one of the few exceptions. Given the potential health benefits associated with tocotrienols, sourcing them from natural origins is of interest. The proper selection of plant material and the drying conditions are crucial steps in this process. Therefore, in the present study, we investigated the effects of four different drying techniques (freeze-drying, microwave–vacuum-, infrared oven and air-drying) on the tocochromanol content in leaves of three Hypericum species: H. androsaemum, H. pseudohenryi, and H. hookerianum and one hybrid H. × inodorum. The total tocochromanol content in the freeze-dried leaves harvested in September was 68.1–150.6 mg/100 g dry weight. α-T constituted 66.7–85.9% (w/w), while tocotrienols constituted 13–32% (w/w). H. pseudohenryi was characterized by the lowest tocotrienol content, while H. androsaemum and H. hookerianum had the highest, with δ-T3 and γ-T3, respectively, being predominant. Tocotrienols were more stable during drying than α-T. The greatest decrease in α-T content was observed during air-drying in the presence of sunlight, with a 27% difference compared to the absence of sunlight. The species and harvest time are factors that more strongly affect the tocotrienol content in the Hypericum leaves than the selected drying method. Full article
(This article belongs to the Special Issue Bio-Active Compounds in Horticultural Plants)
Show Figures

Graphical abstract

19 pages, 7441 KiB  
Article
Neuroprotective Effect of Nor-Prenylated Acylphloroglucinols from Hypericum perforatum L. (St John’s Wort) in the MPTP-Induced Zebrafish Model
by Wuyang Liu, Peng Zhao, Yihan Liu, Xiangyan Meng, Jinyan Xie, Junmian Tian and Jinming Gao
Int. J. Mol. Sci. 2025, 26(7), 3096; https://doi.org/10.3390/ijms26073096 - 27 Mar 2025
Viewed by 636
Abstract
Hypericum perforatum L. (St John’s wort) has been widely studied and used for antidepressant treatment, as well as, rarely, featuring in studies on its chemical composition for Parkinson’s disease (PD) treatment. Five new nor-prenylated acylphloroglucinols with a cyclohexanone core, norperforatums A–E ( [...] Read more.
Hypericum perforatum L. (St John’s wort) has been widely studied and used for antidepressant treatment, as well as, rarely, featuring in studies on its chemical composition for Parkinson’s disease (PD) treatment. Five new nor-prenylated acylphloroglucinols with a cyclohexanone core, norperforatums A–E (15), together with four known analogs [(2R,3R,4S,6R)-3-methyl-4,6-di(3-methyl-2-butenyl)-2-(2-methyl-1-oxopropyl)-3-(4-methyl-3-pentenyl)cyclohexanone (6), hyperscabrin B (7), (2R,3R,4S,6R)-6-methoxycarbonyl-3-methyl-4,6-di(3-methyl-2-butenyl)-2-(2-methyl-1-oxopropyl)-3-(4-methyl-3-pentenyl)cyclohexanone (8), and hyperscabin K (9)], were isolated from the aerial parts of H. perforatum. The structures and absolute configurations of the new compounds were characterized by multiple spectroscopic means, including nuclear magnetic resonance (NMR), high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), ultraviolet visible absorption spectroscopy (UV), infrared spectroscopy (IR), calculated electronic circular dichroism (ECD) data, and X-ray signal crystal diffraction. In addition, the efficacy of these isolations was evaluated against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD in zebrafish larvae. Compound 9 had the best therapeutic effect, by significantly increasing the total distance traveled and the mean speed of movement in PD dyskinesia zebrafish larvae. Moreover, it enhanced superoxide dismutase (SOD) activity and inhibited reactive oxygen species (ROS) production in a dose-dependent manner. These results suggest that compound 9 may have ameliorative effects on PD symptoms by inhibiting oxidative stress. This study provides new insights into the treatment of H. perforatum for PD. Full article
(This article belongs to the Special Issue Natural Products with Anti-neuroinflammatory Activity)
Show Figures

Figure 1

14 pages, 3844 KiB  
Article
Cultivated St. John’s Wort Flower Heads Accumulate Tocotrienols over Tocopherols, Regardless of the Year of the Plant
by Ieva Miķelsone, Elise Sipeniece, Inga Mišina, Elvita Bondarenko and Paweł Górnaś
Plants 2025, 14(6), 852; https://doi.org/10.3390/plants14060852 - 9 Mar 2025
Cited by 2 | Viewed by 698
Abstract
St. John’s wort (Hypericum perforatum L.) has been extensively utilized across various traditional medicinal systems, including ancient Greek medicine, traditional Chinese medicine, and Islamic medicine. H. perforatum is a well-known medicinal plant due to the presence of hypericin and hyperforin, which are [...] Read more.
St. John’s wort (Hypericum perforatum L.) has been extensively utilized across various traditional medicinal systems, including ancient Greek medicine, traditional Chinese medicine, and Islamic medicine. H. perforatum is a well-known medicinal plant due to the presence of hypericin and hyperforin, which are natural antidepressants. Recent studies indicate that the inflorescences of wild H. perforatum are a source of rare tocotrienols, primarily δ-T3. Similar studies are lacking for cultivated species. H. perforatum was grown for three years. At full bloom each year, the plant was cut and separated into its parts: stems, leaves, flower buds, and flowers. Tocotrienols (T3s) were present in each part of the H. perforatum. The lowest concentration of tocotrienols was recorded in stems and the highest in flower buds (1.7–4.2 and 88.2–104.7 mg/100 g dry weight, respectively). Flower buds and flowers were the main source of α-T3 and δ-T3 tocotrienols. The plant part has a significant impact on the tocochromanol profile and concentration, while the year of harvest/plant aging does not. The present study demonstrates that cultivated H. perforatum flower heads are the first known flowers with relatively high concentrations of tocotrienols. St. John’s wort flower buds accumulate tocotrienols over tocopherols, regardless of the year of the plant. Full article
Show Figures

Figure 1

14 pages, 10702 KiB  
Article
Antimicrobial and Antiherpetic Properties of Nanoencapsulated Hypericum perforatum Extract
by Yoana Sotirova, Nadezhda Ivanova, Neli Ermenlieva, Neli Vilhelmova-Ilieva, Lora Simeonova, Miroslav Metodiev, Viliana Gugleva and Velichka Andonova
Pharmaceuticals 2025, 18(3), 366; https://doi.org/10.3390/ph18030366 - 4 Mar 2025
Cited by 1 | Viewed by 1165
Abstract
Background/Objectives: This study aims to gain insights into the antimicrobial and antiherpetic activity of hyperforin-rich Hypericum perforatum L. (HP) extract using nanostructured lipid carriers (NLCs) as delivery platforms. Methods: Two established NLC specimens, comprising glyceryl behenate and almond oil or borage oil, [...] Read more.
Background/Objectives: This study aims to gain insights into the antimicrobial and antiherpetic activity of hyperforin-rich Hypericum perforatum L. (HP) extract using nanostructured lipid carriers (NLCs) as delivery platforms. Methods: Two established NLC specimens, comprising glyceryl behenate and almond oil or borage oil, and their extract-loaded counterparts (HP-NLCs) were utilized. Their minimal bactericidal/fungicidal concentrations (MBC; MFC) were investigated against Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, Pseudomonas aeruginosa ATCC 10145, Klebsiella pneumoniae ATCC 10031, and Candida albicans ATCC 10231. The anti-herpesvirus (HSV-1) potential was evaluated concerning antiviral and virucidal activity and impact on viral adsorption. Results: The borage oil-based extract-loaded nanodispersion (HP-NLC2) exhibited pronounced microbicidal activity against S. aureus (MBC 6.3 mg/mL), K. pneumoniae (MBC 97.7 µg/mL), and C. albicans (MFC < 48.8 µg/mL), unlike the almond oil-containing sample (HP-NLC1), which showed only weak inhibition of the fungal growth. HP-NLC2 was found to be less cytotoxic and to suppress HSV-1 replication slightly more than HP-NLC1, but generally, the effects were weak. Neither the empty lipid nanoparticles nor the HP extract-loaded carriers expressed activity against E. coli, P. aeruginosa, the HSV-1 extracellular virions, or viral adhesion. Conclusions: It could be concluded that both HP-NLC samples revealed only minor antiherpetic potential of the hyperforin-rich extract, but HP-NLC2 demonstrated significant antibacterial and antimycotic activity. Therefore, the latter was featured as a more convenient HP-carrier system for nano-designed dermal pharmaceutical formulations. Such a thorough investigation of hyperforin-determined anti-HSV-1 effects and antibacterial and antimycotic properties, being the first of its kind, contributes to the fundamental knowledge of HP and reveals new perspectives for the utilization, limitations, and therapeutic designation of its non-polar components. Full article
Show Figures

Graphical abstract

12 pages, 3471 KiB  
Article
Tocotrienols in Different Parts of Wild Hypericum perforatum L. Populations in Poland
by Paweł Górnaś and Edyta Symoniuk
Molecules 2025, 30(5), 1137; https://doi.org/10.3390/molecules30051137 - 2 Mar 2025
Cited by 2 | Viewed by 997
Abstract
St. John’s wort (Hypericum perforatum L.) is a well-known medicinal plant widely used in phytotherapy due to its abundant secondary metabolites with bioactive properties. Research on tocochromanols conducted in nine populations of St. John’s wort using reverse-phase high performance liquid chromatography with [...] Read more.
St. John’s wort (Hypericum perforatum L.) is a well-known medicinal plant widely used in phytotherapy due to its abundant secondary metabolites with bioactive properties. Research on tocochromanols conducted in nine populations of St. John’s wort using reverse-phase high performance liquid chromatography with fluorescent light detector (RP-HPLC-FLD) has provided new insights into their diverse composition in different aerial parts of the plant. Flower buds displayed the most diverse tocochromanol profile, while stems contained the lowest levels of these compounds. In most of the examined tissues, δ-T3 was the predominant tocochromanol (34–69%), except in leaves, where α-T dominated. The highest concentration of total tocotrienols was recorded in flower buds (48.5–74.1 mg/100 g dry weight), with δ-T3 (56%) and α-T3 (38%) as the dominant compounds. The highest δ-T3 content was found in unripe seed pods (29.6–45.1 mg/100 g dw). Principal Component Analysis (PCA) revealed distinct differences in tocochromanol composition among the aerial parts of H. perforatum. The findings highlight that H. perforatum has higher potential applications in the food, pharmaceutical, and medical industries than previously assumed, due to its relatively high content of tocotrienols, mainly δ-T3, in different plant organs. Full article
Show Figures

Graphical abstract

14 pages, 499 KiB  
Article
Polyphenol and Flavonoid Content and Antioxidant Activity of Hypericum perforatum L. (St. John’s Wort) Extracts for Potential Pharmaceutical and Cosmetic Applications
by Ewelina Błońska-Sikora, Agnieszka Zielińska, Natalia Dobros, Katarzyna Paradowska and Monika Michalak
Appl. Sci. 2025, 15(5), 2590; https://doi.org/10.3390/app15052590 - 27 Feb 2025
Cited by 1 | Viewed by 1762
Abstract
St. John’s wort (Hypericum perforatum) has been used for centuries in traditional medicine owing to its high content of various bioactive metabolites and wide geographic occurrence. Nowadays, it plays an important role in the pharmaceutical industry and is increasingly significant in [...] Read more.
St. John’s wort (Hypericum perforatum) has been used for centuries in traditional medicine owing to its high content of various bioactive metabolites and wide geographic occurrence. Nowadays, it plays an important role in the pharmaceutical industry and is increasingly significant in modern cosmetology. The objective of this study was to assess the antioxidant activity and compare the content of polyphenolic compounds in two commercial extracts of H. perforatum, glycerol–water and propylene glycol–water, which are used as cosmetic raw materials. The HPLC method was used to determine phenolic compounds. The total polyphenol content and total flavonoid content of H. perforatum extracts were determined using spectrophotometric methods. Free radical-scavenging properties were analyzed using a 2,2-diphenyl-1-picrylhydrazyl radical assay with electron paramagnetic resonance spectroscopy (DPPH-EPR assay), as well as the ferric reducing antioxidant power (FRAP) method. St. John’s wort extracts were able to scavenge free radicals, indicating beneficial cellular protection against oxidative stress. The use of non-toxic extractants makes it possible to obtain extracts with high antioxidant potential, which can be safely used in the pharmaceutical and cosmetics industries. The results of this study, i.e., the values for TPC, TFC, and antioxidant activity (DPPH and FRAP), suggest that Hypericum perforatum, especially the glycerol–water extract, has antioxidant potential. Full article
(This article belongs to the Special Issue Advanced Phytochemistry and Its Applications)
Show Figures

Figure 1

25 pages, 10662 KiB  
Article
A Novel Liposomal In-Situ Hydrogel Formulation of Hypericum perforatum L.: In Vitro Characterization and In Vivo Wound Healing Studies
by Ahmet Arif Kurt and İsmail Aslan
Gels 2025, 11(3), 165; https://doi.org/10.3390/gels11030165 - 26 Feb 2025
Cited by 2 | Viewed by 1107
Abstract
Hypericum perforatum L. (H.P.) is a species with a well-documented history of use in wound healing practices across the globe. The objective of this study was twofold: firstly, to evaluate the in vivo efficacy of liposomal in situ gel formulations in wound healing, [...] Read more.
Hypericum perforatum L. (H.P.) is a species with a well-documented history of use in wound healing practices across the globe. The objective of this study was twofold: firstly, to evaluate the in vivo efficacy of liposomal in situ gel formulations in wound healing, both clinically and histopathologically, and secondly, to determine the physicochemical characterization of liposomal in situ gel formulations. The in vitro studies will be assessed in terms of particle size, zeta potential, release kinetics, rheological behaviors, and antioxidant and antimicrobial properties. The in vivo studies will be evaluated in clinical animal experiments and pathology studies. The in-situ hydrogel formulations were prepared using the physical cross-linking method with Poloxamer 188, Poloxamer 407, Ultrez 21, and Ultrez 30. The liposome formulations phospholipid 90H and lipoid S100 were prepared using the thin film solvent evaporation method. The antioxidant activity of the samples was evaluated through in vitro studies employing the DPPH antioxidant activity, ABTS+ test, and FRAP test. The antimicrobial activity of the samples was evaluated through the determination of MIC and MBC values employing the 96-well plate method. In vivo, 36 male New Zealand rabbits aged 32–36 weeks were utilized, with six rabbits in each group. The groups were composed of six distinct groups, including conventional and in situ gel liposome formulations of HHPM, three different commercial preparations, and a control group (n = 6). The HHPM-LG8 formulation developed in this study was found to be applicable in terms of all its properties. The new liposomal in situ hydrogel formulation demonstrated notable wound healing activity, a result that was supported by the formulation itself. Full article
Show Figures

Figure 1

12 pages, 1310 KiB  
Article
Residues of St. John’s Wort (Hypericum perforatum) Tea Infusions/Water Extracts as a Valuable Source of Tocotrienols: An Extraction Study
by Inga Mišina, Ingus Perkons, Aleksander Siger, Arianne Soliven and Paweł Górnaś
Appl. Sci. 2025, 15(4), 2047; https://doi.org/10.3390/app15042047 - 15 Feb 2025
Cited by 4 | Viewed by 924
Abstract
Hypericum perforatum L., commonly known as St. John’s wort, is a widely distributed herbaceous plant utilized in traditional and phytomedicinal applications, particularly for its hydrophilic bioactive compounds. It is often used for treating early depressive states. In this study, we focused on reporting [...] Read more.
Hypericum perforatum L., commonly known as St. John’s wort, is a widely distributed herbaceous plant utilized in traditional and phytomedicinal applications, particularly for its hydrophilic bioactive compounds. It is often used for treating early depressive states. In this study, we focused on reporting the tocotrienols—lipophilic phytochemicals with health-promoting properties—in St. John’s wort. H. perforatum flowerheads predominantly contained tocotrienols compared with tocopherols (54 and 30 mg/100 g dry weight, respectively). The major tocotrienols (T3) were δ-T3 and α-T3 (34.0 and 17.6 mg/100 g dry weight, respectively). Tocopherols and tocotrienols are lipophilic phytochemicals that cannot be present in St. John’s wort water extracts (tea infusions), but they can be recovered from the remaining residues of H. perforatum tea infusions by using hydroethanolic solutions. A 50.0% (v/v) hydroethanolic solution was not effective in the recovery of tocochromanols. The greatest increase in the extractability of tocochromanols was observed for 70.0–80.0% (v/v) hydroethanolic extracts, while increasing the ethanol concentration from 90.0% to 96.2% (v/v) only slightly improved extractability (not statistically significant). For each ethanol concentration, the recovery was proportionally higher for tocotrienols than for tocopherols. Residues of H. perforatum tea infusions can be proposed as valuable by-products rich in tocotrienols. Full article
(This article belongs to the Special Issue Biological Activities of Plant Extracts and Their Applications)
Show Figures

Figure 1

16 pages, 1871 KiB  
Article
Characterization of Tocochromanols in Wild Hypericum perforatum Populations in Latvia
by Paweł Górnaś, Inga Mišina, Ingus Perkons, Dalija Segliņa and Magdalena Czlapka-Matyasik
Horticulturae 2025, 11(2), 205; https://doi.org/10.3390/horticulturae11020205 - 15 Feb 2025
Cited by 3 | Viewed by 462
Abstract
St. John’s wort (Hypericum perforatum L.) is an ornamental and medical plant, distributed worldwide, which is rich in diverse secondary metabolites. The discovery of the presence of tocotrienols (rare prenyllipids) in H. perforatum marks a new chapter demanding a deeper understanding of [...] Read more.
St. John’s wort (Hypericum perforatum L.) is an ornamental and medical plant, distributed worldwide, which is rich in diverse secondary metabolites. The discovery of the presence of tocotrienols (rare prenyllipids) in H. perforatum marks a new chapter demanding a deeper understanding of the accumulation of these lipophilic biomolecules. Three wild St. John’s wort populations were harvested in Latvia at three different locations from 2022 to 2024 and separated into stems, leaves, flower buds, and flowers. Plant samples were freeze-dried, ground, saponified, and analyzed for tocochromanol profiles using RP-LC-FLD and confirmed by an LC-MS system. Eight tocochromanols, four tocopherols (Ts), and four tocotrienols (T3s), were identified and confirmed in H. perforatum. Leaves were dominated by α-T (82%), and flower buds and flowers by δ-T3 (44%); thus, the lowest concentrations of tocotrienols were recorded in leaves and the highest in flower buds. The other tocotrienols were present as follows: α-T3 > γ-T3 > β-T3. The location of H. perforatum, the year of harvest, the aerial part of the plant, and their interactions all significantly influenced the content of tocochromanols (p < 0.05). The present study demonstrates relevant discoveries regarding the accumulation of tocotrienols in various St. John’s wort organs and their variability. Full article
Show Figures

Graphical abstract

18 pages, 3524 KiB  
Article
Viability and Radiosensitivity of Human Tumor Cells from Breast and Colon Are Influenced by Hypericum perforatum Extract HP01
by Linda Rebecca Haake, Ahmed El Menuawy, Hannes Rennau, Frank Marthe, Urs Hähnel, Felix Bock, Guido Hildebrandt and Katrin Manda
Int. J. Mol. Sci. 2025, 26(2), 622; https://doi.org/10.3390/ijms26020622 - 13 Jan 2025
Viewed by 1042
Abstract
To enhance the treatment of tumors that are resistant to radio- and chemotherapy while minimizing the side effects of radiochemotherapy, researchers are continuously seeking new active compounds for use in combination with radiotherapy. Therefore, the aim of our study was to examine the [...] Read more.
To enhance the treatment of tumors that are resistant to radio- and chemotherapy while minimizing the side effects of radiochemotherapy, researchers are continuously seeking new active compounds for use in combination with radiotherapy. Therefore, the aim of our study was to examine the cytotoxic and radiosensitizing effects of an extract from St. John’s Wort (Hypericum perforatum), referred to as HP01, on human epithelial tumor cells in vitro. The growth of MCF-7 (breast carcinoma) and HT-29 (colon carcinoma) cells was examined under the influence of HP01. In combination with radiation, the effects of HP01 on cytotoxicity and long-term survival were assessed using a colony formation assay. The number of DNA double-strand breaks was analyzed using the γH2AX assay, while cell cycle distribution was examined via flow cytometry. A growth-inhibiting and cytotoxic effect was observed for both tumor cell lines starting at a concentration of 10 µg/mL HP01. Treatment with HP01 resulted in an inhibition of clonogenic survival of tumor cells after ionizing radiation (6 Gy). The number of DNA double-strand breaks (DSBs) in tumor cells increased with HP01 treatment, but the repair of radiation-induced DNA DSBs was not affected. Cell cycle analysis revealed that HP01, in addition to radiation, enhanced G2/M arrest in MCF-7 and HT-29 cells. Overall, HP01 not only showed a growth-inhibiting effect but also demonstrated a radiosensitizing effect on human tumor cells for the first time. We conclude that the HP01-induced G2/M accumulation of cells may be the main rationale for the drug-induced radiosensitivity. It is therefore a promising candidate for combined therapy in tumor diseases and warrants further investigation. Full article
(This article belongs to the Special Issue Biological Research on Plant Bioactive Compounds)
Show Figures

Figure 1

Back to TopTop