Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (9)

Search Parameters:
Keywords = Hox gene collinearity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1362 KiB  
Review
Hox Gene Collinearity with Pulling Physical Forces Creates a Hox Gene Clustering in Embryos of Vertebrates and Invertebrates: Complete or Split Clusters
by Spyros Papageorgiou
Symmetry 2024, 16(5), 594; https://doi.org/10.3390/sym16050594 - 10 May 2024
Viewed by 1790
Abstract
Hox gene clusters are crucial in embryogenesis. It was observed that some Hox genes are located in order along the telomeric to centromeric direction of the DNA sequence: Hox1, Hox2, Hox3…. These genes are expressed in the same order in the ontogenetic units [...] Read more.
Hox gene clusters are crucial in embryogenesis. It was observed that some Hox genes are located in order along the telomeric to centromeric direction of the DNA sequence: Hox1, Hox2, Hox3…. These genes are expressed in the same order in the ontogenetic units of the Drosophila embryo along the anterior–posterior axis. The two entities (genome and embryo) differ significantly in linear size and in-between distance. This strange phenomenon was named spatial collinearity (SP). Later, it was observed that, particularly in the vertebrates, a temporal collinearity (TC) coexists: first Hox1 is expressed, later Hox2, and later on Hox3…. According to a biophysical model (BM), pulling forces act at the anterior end of the cluster while a cluster fastening applies at the posterior end. Hox clusters are irreversibly elongated along the force direction. During evolution, the elongated Hox clusters are broken at variable lengths, thus split clusters may be created. An empirical rule was formulated, distinguishing development due to a complete Hox cluster from development due to split Hox clusters. BM can explain this empirical rule. In a spontaneous mutation, where the cluster fastening is dismantled, a weak pulling force automatically shifts the cluster inside the Hox activation domain. This cluster translocation can probably explain the absence of temporal collinearity in Drosophila. Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Life Sciences: Feature Papers 2024)
Show Figures

Figure 1

20 pages, 3996 KiB  
Review
Seeking Sense in the Hox Gene Cluster
by Stephen J. Gaunt
J. Dev. Biol. 2022, 10(4), 48; https://doi.org/10.3390/jdb10040048 - 15 Nov 2022
Cited by 14 | Viewed by 5114
Abstract
The Hox gene cluster, responsible for patterning of the head–tail axis, is an ancestral feature of all bilaterally symmetrical animals (the Bilateria) that remains intact in a wide range of species. We can say that the Hox cluster evolved successfully only once since [...] Read more.
The Hox gene cluster, responsible for patterning of the head–tail axis, is an ancestral feature of all bilaterally symmetrical animals (the Bilateria) that remains intact in a wide range of species. We can say that the Hox cluster evolved successfully only once since it is commonly the same in all groups, with labial-like genes at one end of the cluster expressed in the anterior embryo, and Abd-B-like genes at the other end of the cluster expressed posteriorly. This review attempts to make sense of the Hox gene cluster and to address the following questions. How did the Hox cluster form in the protostome-deuterostome last common ancestor, and why was this with a particular head–tail polarity? Why is gene clustering usually maintained? Why is there collinearity between the order of genes along the cluster and the positions of their expressions along the embryo? Why do the Hox gene expression domains overlap along the embryo? Why have vertebrates duplicated the Hox cluster? Why do Hox gene knockouts typically result in anterior homeotic transformations? How do animals adapt their Hox clusters to evolve new structural patterns along the head–tail axis? Full article
Show Figures

Figure 1

7 pages, 841 KiB  
Communication
Disappearance of Temporal Collinearity in Vertebrates and Its Eventual Reappearance
by Spyros Papageorgiou
Biology 2021, 10(10), 1018; https://doi.org/10.3390/biology10101018 - 9 Oct 2021
Cited by 1 | Viewed by 1702
Abstract
It was observed that a cluster of ordered genes (Hox1, Hox2, Hox3…) in the genome are activated in the ontogenetic units (1, 2, 3 …) of an embryo along the Anterior/Posterior axis following the same order of the Hox genes. This Spatial Collinearity [...] Read more.
It was observed that a cluster of ordered genes (Hox1, Hox2, Hox3…) in the genome are activated in the ontogenetic units (1, 2, 3 …) of an embryo along the Anterior/Posterior axis following the same order of the Hox genes. This Spatial Collinearity (SC) is very strange since it correlates events of very different spatial dimensions. It was later observed in vertebrates, that, in the above ordering, first is Hox1expressed in ontogenetic unit 1, followed later by Hox2 in unit 2 and even later Hox3 in unit 3. This temporal collinearity (TC) is an enigma and even to-day is explored in depth. In 1999 T. Kondo and D. Duboule, after posterior upstream extended DNA excisions, concluded that the Hox cluster behaves ‘as if’ TC disappears. Here the consideration of TC really disappearing is taken face value and its repercussions are analyzed. Furthermore, an experiment is proposed to test TC disappearance. An outcome of this experiment could be the reappearance (partial or total) of TC. Full article
Show Figures

Figure 1

36 pages, 2556 KiB  
Review
Retinoic Acid Signaling in Vertebrate Hindbrain Segmentation: Evolution and Diversification
by Alice M. H. Bedois, Hugo J. Parker and Robb Krumlauf
Diversity 2021, 13(8), 398; https://doi.org/10.3390/d13080398 - 23 Aug 2021
Cited by 7 | Viewed by 7461
Abstract
In metazoans, Hox genes are key drivers of morphogenesis. In chordates, they play important roles in patterning the antero-posterior (A-P) axis. A crucial aspect of their role in axial patterning is their collinear expression, a process thought to be linked to their response [...] Read more.
In metazoans, Hox genes are key drivers of morphogenesis. In chordates, they play important roles in patterning the antero-posterior (A-P) axis. A crucial aspect of their role in axial patterning is their collinear expression, a process thought to be linked to their response to major signaling pathways such as retinoic acid (RA) signaling. The amplification of Hox genes following major events of genome evolution can contribute to morphological diversity. In vertebrates, RA acts as a key regulator of the gene regulatory network (GRN) underlying hindbrain segmentation, which includes Hox genes. This review investigates how the RA signaling machinery has evolved and diversified and discusses its connection to the hindbrain GRN in relation to diversity. Using non-chordate and chordate deuterostome models, we explore aspects of ancient programs of axial patterning in an attempt to retrace the evolution of the vertebrate hindbrain GRN. In addition, we investigate how the RA signaling machinery has evolved in vertebrates and highlight key examples of regulatory diversification that may have influenced the GRN for hindbrain segmentation. Finally, we describe the value of using lamprey as a model for the early-diverged jawless vertebrate group, to investigate the elaboration of A-P patterning mechanisms in the vertebrate lineage. Full article
(This article belongs to the Special Issue Evolution, Development, and Diversification of Vertebrates)
Show Figures

Graphical abstract

15 pages, 2877 KiB  
Review
Physical Laws Shape Up HOX Gene Collinearity
by Spyros Papageorgiou
J. Dev. Biol. 2021, 9(2), 17; https://doi.org/10.3390/jdb9020017 - 6 May 2021
Cited by 5 | Viewed by 3851
Abstract
Hox gene collinearity (HGC) is a multi-scalar property of many animal phyla particularly important in embryogenesis. It relates entities and events occurring in Hox clusters inside the chromosome DNA and in embryonic tissues. These two entities differ in linear size by more than [...] Read more.
Hox gene collinearity (HGC) is a multi-scalar property of many animal phyla particularly important in embryogenesis. It relates entities and events occurring in Hox clusters inside the chromosome DNA and in embryonic tissues. These two entities differ in linear size by more than four orders of magnitude. HGC is observed as spatial collinearity (SC), where the Hox genes are located in the order (Hox1, Hox2, Hox3 …) along the 3′ to 5′ direction of DNA in the genome and a corresponding sequence of ontogenetic units (E1, E2, E3, …) located along the Anterior—Posterior axis of the embryo. Expression of Hox1 occurs in E1, Hox2 in E2, Hox3 in E3, etc. Besides SC, a temporal collinearity (TC) has been also observed in many vertebrates. According to TC, first Hox1 is expressed in E1; later, Hox2 is expressed in E2, followed by Hox3 in E3, etc. Lately, doubt has been raised about whether TC really exists. A biophysical model (BM) was formulated and tested during the last 20 years. According to BM, physical forces are created which pull the Hox genes one after the other, driving them to a transcription factory domain where they are transcribed. The existing experimental data support this BM description. Symmetry is a physical–mathematical property of matter that was explored in depth by Noether who formulated a ground-breaking theory (NT) that applies to all sizes of matter. NT may be applied to biology in order to explain the origin of HGC in animals developing not only along the A/P axis, but also to animals with circular symmetry. Full article
(This article belongs to the Special Issue Hox Genes in Development: New Paradigms)
Show Figures

Figure 1

11 pages, 1536 KiB  
Article
Hox Gene Collinearity May Be Related to Noether Theory on Symmetry and Its Linked Conserved Quantity
by Spyros Papageorgiou
J 2020, 3(2), 151-161; https://doi.org/10.3390/j3020013 - 24 Apr 2020
Viewed by 3246
Abstract
Hox Gene Collinearity (HGC) is a fundamental property that controls the development of many animal species, including vertebrates. In the Hox gene clusters, the genes are located in a sequential order Hox1, Hox2, Hox3, etc., along the 3’ to 5’ direction of the [...] Read more.
Hox Gene Collinearity (HGC) is a fundamental property that controls the development of many animal species, including vertebrates. In the Hox gene clusters, the genes are located in a sequential order Hox1, Hox2, Hox3, etc., along the 3’ to 5’ direction of the cluster in the chromosome. During Hox cluster activation, the Hox genes are expressed sequentially in the ontogenetic units D1, D2, D3, etc., along the anterior–posterior axis (A-P) of the early embryo. This collinearity, first observed by E.B. Lewis, is surprising because the spatial collinearity of these structures (Hox clusters and embryos) correlates entities that differ by about four orders of magnitude. Biomolecular mechanisms alone cannot explain such correlations. Long-range physical interactions, such as diffusion or electric attractions, should be involved. A biophysical model (BM) was formulated, which, in alignment with the biomolecular processes, successfully describes the existing vertebrate genetic engineering data. One hundred years ago, Emmy Noether made a fundamental discovery in mathematics and physics. She proved, rigorously, that a physical system obeying a symmetry law (e.g., rotations or self-similarity) is followed by a conserved physical quantity. It is argued here that HGC obeys a ‘primitive’ self-similarity symmetry. In this case, the associated primitive conserved quantity is the irreversibly increasing ‘ratchet’-like Hoxgene ordering where some genes may be missing. The genes of a vertebrate Hox clusterare located along a finite straight line. The same order follows the ontogenetic unitsof the vertebrate embryo. Therefore, HGC is a manifestation of a primitive Noether Theory (NT). NT may be applied to other than the vertebrate case, for instance, to animals with a circular topological symmetry. For example, the observed abnormal Hox gene ordering of the echinoderm Hox clusters may be reproduced by a double-strand break of the circular Hox gene ordering and its subsequent incorporation in the flanking chromosome. Full article
Show Figures

Figure 1

20 pages, 632 KiB  
Review
Paralogous HOX13 Genes in Human Cancers
by Gerardo Botti, Clemente Cillo, Rossella De Cecio, Maria Gabriella Malzone and Monica Cantile
Cancers 2019, 11(5), 699; https://doi.org/10.3390/cancers11050699 - 20 May 2019
Cited by 13 | Viewed by 4576
Abstract
Hox genes (HOX in humans), an evolutionary preserved gene family, are key determinants of embryonic development and cell memory gene program. Hox genes are organized in four clusters on four chromosomal loci aligned in 13 paralogous groups based on sequence homology (Hox gene [...] Read more.
Hox genes (HOX in humans), an evolutionary preserved gene family, are key determinants of embryonic development and cell memory gene program. Hox genes are organized in four clusters on four chromosomal loci aligned in 13 paralogous groups based on sequence homology (Hox gene network). During development Hox genes are transcribed, according to the rule of “spatio-temporal collinearity”, with early regulators of anterior body regions located at the 3’ end of each Hox cluster and the later regulators of posterior body regions placed at the distal 5’ end. The onset of 3’ Hox gene activation is determined by Wingless-type MMTV integration site family (Wnt) signaling, whereas 5’ Hox activation is due to paralogous group 13 genes, which act as posterior-inhibitors of more anterior Hox proteins (posterior prevalence). Deregulation of HOX genes is associated with developmental abnormalities and different human diseases. Paralogous HOX13 genes (HOX A13, HOX B13, HOX C13 and HOX D13) also play a relevant role in tumor development and progression. In this review, we will discuss the role of paralogous HOX13 genes regarding their regulatory mechanisms during carcinogenesis and tumor progression and their use as biomarkers for cancer diagnosis and treatment. Full article
(This article belongs to the Special Issue HOX Genes in Cancer)
Show Figures

Figure 1

9 pages, 1688 KiB  
Communication
Physical Forces May Cause the HoxD Gene Cluster Elongation
by Spyros Papageorgiou
Biology 2017, 6(3), 32; https://doi.org/10.3390/biology6030032 - 23 Jun 2017
Cited by 7 | Viewed by 4464
Abstract
Hox gene collinearity was discovered be Edward B. Lewis in 1978. It consists of the Hox1, Hox2, Hox3 ordering of the Hox genes in the chromosome from the telomeric to the centromeric side of the chromosome. Surprisingly, the spatial activation of the Hox [...] Read more.
Hox gene collinearity was discovered be Edward B. Lewis in 1978. It consists of the Hox1, Hox2, Hox3 ordering of the Hox genes in the chromosome from the telomeric to the centromeric side of the chromosome. Surprisingly, the spatial activation of the Hox genes in the ontogenetic units of the embryo follows the same ordering along the anterior-posterior embryonic axis. The chromosome microscale differs from the embryo macroscale by 3 to 4 orders of magnitude. The traditional biomolecular mechanisms are not adequate to comprise phenomena at so divergent spatial domains. A Biophysical Model of physical forces was proposed which can bridge the intermediate space and explain the results of genetic engineering experiments. Recent progress in constructing instruments and achieving high resolution imaging (e.g., 3D DNA FISH, STORM etc.) enable the assessment of the geometric structure of the chromatin during the different phases of Hox gene activation. It is found that the mouse HoxD gene cluster is elongated up to 5–6 times during Hox gene transcription. These unexpected findings agree with the BM predictions. It is now possible to measure several physical quantities inside the nucleus during Hox gene activation. New experiments are proposed to test further this model. Full article
Show Figures

Figure 1

15 pages, 1579 KiB  
Review
An Overview of Hox Genes in Lophotrochozoa: Evolution and Functionality
by Marco Barucca, Adriana Canapa and Maria Assunta Biscotti
J. Dev. Biol. 2016, 4(1), 12; https://doi.org/10.3390/jdb4010012 - 19 Mar 2016
Cited by 21 | Viewed by 9786
Abstract
Hox genes are regulators of animal embryonic development. Changes in the number and sequence of Hox genes as well as in their expression patterns have been related to the evolution of the body plan. Lophotrochozoa is a clade of Protostomia characterized by several [...] Read more.
Hox genes are regulators of animal embryonic development. Changes in the number and sequence of Hox genes as well as in their expression patterns have been related to the evolution of the body plan. Lophotrochozoa is a clade of Protostomia characterized by several phyla which show a wide morphological diversity. Despite that the works summarized in this review emphasize the fragmentary nature of the data available regarding the presence and expression of Hox genes, they also offer interesting insight into the evolution of the Hox cluster and the role played by Hox genes in several phyla. However, the number of genes involved in the cluster of the lophotrochozoan ancestor is still a question of debate. The data presented here suggest that at least nine genes were present while two other genes, Lox4 and Post-2, may either have been present in the ancestor or may have arisen as a result of duplication in the Brachiopoda-Mollusca-Annelida lineage. Spatial and temporal collinearity is a feature of Hox gene expression which was probably present in the ancestor of deuterostomes and protostomes. However, in Lophotrochozoa, it has been detected in only a few species belonging to Annelida and Mollusca. Full article
(This article belongs to the Special Issue Hox Genes and Development)
Show Figures

Figure 1

Back to TopTop