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Abstract: In metazoans, Hox genes are key drivers of morphogenesis. In chordates, they play
important roles in patterning the antero-posterior (A-P) axis. A crucial aspect of their role in axial
patterning is their collinear expression, a process thought to be linked to their response to major
signaling pathways such as retinoic acid (RA) signaling. The amplification of Hox genes following
major events of genome evolution can contribute to morphological diversity. In vertebrates, RA
acts as a key regulator of the gene regulatory network (GRN) underlying hindbrain segmentation,
which includes Hox genes. This review investigates how the RA signaling machinery has evolved
and diversified and discusses its connection to the hindbrain GRN in relation to diversity. Using
non-chordate and chordate deuterostome models, we explore aspects of ancient programs of axial
patterning in an attempt to retrace the evolution of the vertebrate hindbrain GRN. In addition, we
investigate how the RA signaling machinery has evolved in vertebrates and highlight key examples
of regulatory diversification that may have influenced the GRN for hindbrain segmentation. Finally,
we describe the value of using lamprey as a model for the early-diverged jawless vertebrate group,
to investigate the elaboration of A-P patterning mechanisms in the vertebrate lineage.

Keywords: hindbrain; segmentation; A-P patterning; gene regulatory networks (GRNs); Hox genes;
retinoic acid (RA); RA signaling; vertebrate evolution; lamprey; RA synthesis and degradation; Cyp26
and Aldh1a2 enzymes

1. Introduction

In metazoans the Hox family of transcription factors (TFs) play important roles in
patterning antero-posterior (A-P) identity along the body axis [1–10]. In most organisms,
Hox genes are present in the genome in tightly linked chromosomal clusters, and display
highly conserved features in their organization, expression, and function [10–19]. An
important property of the clustered Hox genes is collinearity (Figure 1a), which refers
to their highly ordered spatial and temporal patterns of expression along the A-P axis
during embryogenesis [13,20–22]. In any given Hox cluster, the gene located on one end
of the cluster, usually Hox1, is expressed in a domain that arises early, with an anterior
boundary that maps in the head region, and each successive adjacent gene in the cluster is
progressively expressed later and more posteriorly (e.g., Hox2 to 15) [2,10–13,18,19,23–29].
This spatial and temporal program of gene expression sets up precisely ordered and nested
domains of the Hox TFs along the A-P axis which form a molecular code, referred to as the
‘Hox code’. This combinatorial Hox code is used to specify and pattern different regional
characteristics of tissues and structures along the A-P axis [1–4,24,30–32].
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Figure 1. Hox genes and vertebrate hindbrain segmentation. (a) Schematic representation of the evolution of Hox clusters 
in different chordate models-amphioxus, sea lamprey and mouse, illustrating the different ways gene families can evolve 
following major genome rearrangements. Amphioxus displays one Hox cluster, suggesting that the chordate ancestor 
likely possessed one Hox cluster. In vertebrates, multiple whole genome duplication (WGD) and/or chromosomal scale 

Figure 1. Hox genes and vertebrate hindbrain segmentation. (a) Schematic representation of the evolution of Hox clusters
in different chordate models-amphioxus, sea lamprey and mouse, illustrating the different ways gene families can evolve
following major genome rearrangements. Amphioxus displays one Hox cluster, suggesting that the chordate ancestor likely
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possessed one Hox cluster. In vertebrates, multiple whole genome duplication (WGD) and/or chromosomal scale duplica-
tion events, led to the amplification of the ancestral Hox cluster which is thought to have been important for generating
morphological diversity. Resulting Hox complements are depicted, and paralog groups (PG) are numbered 1 to 15. HoxPG1–
PG4 are color-coded to reflect their role in axial patterning of the developing brain region, including in the vertebrate
hindbrain. In the early diverged jawless vertebrate group (cyclostomes), the sea lamprey Hox complement is composed of 6
clusters denoted Hoxα to ξ and Hox clusters are displayed to reflect their putative evolutionary history [33]. In contrast, in
jawed vertebrates, the mammalian Hox complement is composed of 4 Hox clusters and denoted HoxA to D. The colinear
property of Hox gene expression is thought to be directly linked to their response to major signaling gradients acting as
morphogens such as Retinoic Acid (RA) and Fibroblast Growth Factor (FGF). In vertebrates, the colinear expression of
HoxPG1-PG4 is important for the segmentation of the hindbrain. (b) Schematic representation of the segmented verte-
brate hindbrain and important structures emanating from individual segments (rhombomeres (r)). In the hindbrain, Hox
PG1–PG4 establish a ‘Hindbrain Hox code’ in response to RA and FGF, which strongly influences hindbrain segmentation.
The Hindbrain Hox code is represented following the HoxPG1–PG4 color code, with darker shades representing higher
levels of expression in specific rhombomeres. The influence of the Hox code in segmentally derived motor neurons and
neural crest cells (NCCs) migrating into the pharyngeal arches (PA) is represented by colored arrows. Streams of NCCs
migrating into PA1 are not influenced by the Hox code (black arrows). Panel modified from [34]. (c) Diagram representing
the vertebrate hindbrain Gene Regulatory Network (GRN). The Hox code and signaling gradients constitute important
aspects of a broader GRN underlying hindbrain segmentation, composed of different color-coded modules. Colored arrows
indicate the regulatory relationships between different modules.

In vertebrates, the Hox code is tightly coupled to segmentation of the hindbrain
(Figure 1b) [35–40] and the axial skeleton [4,32,41]. Functional studies in different species
have demonstrated that, during segmentation, the Hox code sets up a molecular represen-
tation of the morphological ground plan along the A-P axis in the central nervous system
(CNS) and mesoderm that regulates patterning, differentiation and wiring of hindbrain neu-
ral programs and specification of different vertebral identities [4,32,41–63]. Pan-vertebrate
whole genome duplication (WGD) in combination with putative lineage specific WGD
and/or chromosomal duplication event(s) led to the amplification and divergence of Hox
genes in the evolution of vertebrates from a single ancestral cluster at the origin of chordates
(Figure 1a) [10,64–73]. As a result of at least one WGD (as discussed later), all vertebrates
evolved to have four or more Hox clusters organized into 14 paralog groups. In the jawed
vertebrate group, mammals have four Hox clusters while teleost fishes have 7–8 Hox
clusters [74]. In the early diverged jawless vertebrate group, the cyclostomes, lampreys
and hagfish have six Hox clusters (Figure 1a), indicating that additional duplication events
have shaped cyclostome genomes [72,75,76]. In light of their ancient and fundamental
roles in regulating morphogenesis and A-P patterning, the amplification and divergence of
Hox complements in vertebrates is thought to be a driver in the emergence of new traits
and evolutionary novelties by being integrated in gene regulatory networks underlying
morphological diversity [2,62,77,78]

Diverse molecular and cellular mechanisms are thought to contribute to the regulation
and generation of collinear domains of Hox expression [20,21,79–86]. Experimental studies
in a wide range of vertebrates and invertebrates have revealed that collinear Hox expression
arises in part through the ability of Hox clusters to integrate information from A-P signaling
centers in response to cues from major signaling pathways, such as retinoic acid (RA),
fibroblast growth factor (FGF), and Wnts [21,87–93]. For example, in vertebrate model
systems, opposing gradients of RA and FGFs have been shown to regulate nested domains
of Hox expression in the CNS and in mesodermal domains that control specification
of vertebral identities and axial elongation (Figure 1a,b) [91,94–99]. In the hindbrain,
RA signaling plays a key role in triggering the process of segmentation and establishes
segmental patterning of Hox expression [43,91,100–124]. In addition, in cultured cells
differentiated into neural fates, Hox genes display temporal collinearity in response to
treatment with RA [125–129]. This wealth of experimental data reveals a high degree of
functional coupling between Hox genes and signaling pathways and suggests that this is



Diversity 2021, 13, 398 4 of 36

a fundamental feature of their clustered organization which underlies the collinearity of
their expression patterns.

Beyond Hox gene, evolutionary analyses have revealed that the expression domains
of many genes encoding important developmental TFs and components of key signaling
pathways (FGF, Hh and Wnt) are similarly aligned along the A-P axis of hemichordates
and chordates [23,31,77,130,131]. This suggests that, despite very different morphologies
between phyla, a deeply conserved A-P patterning system, integrating axial signaling
pathways and Hox genes, may have evolved long ago in deuterostome evolution. The
diversity in morphological outcomes from this ancient axial patterning system are likely to
arise through differences in the downstream targets of the conserved TFs and in signals
that direct the terminal differentiation programs for organogenesis and morphogenesis.
Hence, the ability of vertebrate Hox clusters to coordinately respond to RA signaling
in many tissues may be related to their participation in a broader and ancient regula-
tory mechanism that underlies the patterning of regional diversity along the A-P axis in
animal development.

Understanding how Hox genes and components of the ancient A-P patterning sys-
tem are regulated by signaling pathways is important for investigating the evolution and
emergence of A-P patterning mechanisms in the vertebrate lineage. Indeed, vertebrates
may have co-opted this ancient patterning system and coupled it to novel programs of pat-
terning and differentiation, such as hindbrain segmentation, which may have contributed
to morphological diversity. The vertebrate hindbrain is an excellent model to investigate
how programs of A-P patterning are coupled to signaling gradients and to explore how
changes in this coupling during evolution may be associated with the emergence of mor-
phological diversity and complexity. In vertebrates, division of the brain into different
compartments during development shows considerable variability between species, but
the hindbrain is a complex coordination center that displays a remarkably high degree
of conservation in all vertebrates. The hindbrain contains a sophisticated network of
neural circuits that play essential roles in controlling many physiological processes and
behaviors [42,43,47,49,55–58,132–137]. It also plays a central role in organization of the
head and craniofacial tissues through the generation of cranial neural crest cells [138–140].

During embryogenesis, the basic ground plan of the hindbrain is established through
a process of segmentation, which organizes the region into a series of seven transient
segments named rhombomeres (r) (Figure 1b) [37,38,43,137,141–152]. Genes in the Hox1–4
paralog groups (Hox PG1–PG4) are coupled to the process of segmentation and
display segmentally restricted domains of expression, resulting in a ‘hindbrain Hox
code’ [36,37,115,117,149,153–166]. This code ultimately confers each rhombomere with a
unique molecular identity that regulates programs of neurogenesis and elaboration of the
neural circuitry associated with its distinct functions in the hindbrain [42,43,47,49,58,132–
137,143,167,168]. Disruption of this code results in dramatic perturbations of hindbrain
and head development [51,147,169–172]. The formation of cranial neural crest cells, whose
differentiated derivatives generate most of the bone and connective tissues of the head, is
also coupled to hindbrain segmentation [138]. The cranial neural crest cells delaminate
and migrate from the mid/hindbrain region in an organized manner [173–176], and then
differentiate to form peripheral target tissues and cranial ganglia that are in register with
the segmentally organized branchiomotor and reticulospinal neurons (Figure 1b). Hence,
hindbrain segmentation also makes an important contribution to global head development
and craniofacial patterning.

Analyses of patterns of gene expression, phenotypes arising from mutations and
perturbation of expression and characterization of cis-regulatory elements in many different
vertebrate species, particularly zebrafish, Xenopus, chicken, and mouse embryos, have
revealed that the regulatory basis for establishing the Hox code is embedded in a conserved
gene regulatory network (GRN) underlying hindbrain segmentation [34,38,42,43,100,101,
103,143,144,177,178]. For example, a detailed list of cis-regulatory modules, activities,
regulatory inputs, and species of origin used for constructing this GRN can be found in
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Table 1 of reference [34]. This GRN may be represented or visualized as a dynamic series
of progressive steps or modules associated with the respective cell and developmental
processes they regulate (Figure 1c) [43,100]. This GRN also provides a framework for
understanding how signaling gradients and TFs, such as RA and Hox, are integrated into
regulatory circuits that form and pattern hindbrain segments with distinct A-P identities.
The FGF, Wnt, and RA signaling pathways govern initial steps of the GRN for hindbrain
segmentation [93] and signaling cues from these pathways act as morphogens to dictate
the molecular identity and organization of cells along the A-P axis. The RA morphogen
is part of a well characterized signaling pathway which is of particular importance in
precisely regulating the expression of key TFs, including Hox genes, in multiple modules
in the GRN.

From an evolutionary perspective, hindbrain segmentation is a trait uniquely found
in the vertebrate group and is remarkably conserved in all characterized vertebrate lin-
eages [38,43]. Hindbrain segmentation appears to be an important vertebrate innovation
that, in concert with the ability to form neural crest cells, is wired into conserved GRNs
for developmental programs governing head development [34,100,164,179,180]. Recent
studies in jawless vertebrates, such as lamprey, have revealed that many core compo-
nents and TFs in the hindbrain GRN are deeply conserved to the base of the vertebrate
tree [164,179,181], however, much less is known about the level of conservation of the roles
of signaling pathways in the GRN of this vertebrate group. Because of their unique position
as part of an early diverged vertebrate group, jawless vertebrate models provide an impor-
tant opportunity to examine whether RA played an analogous role in different aspects of
the hindbrain GRN early in vertebrate evolution and how this role might have evolved.

In this article, we give a brief overview of the current understanding of the GRN for
vertebrate hindbrain segmentation, with a particular emphasis on the roles of RA signaling
in regulating different aspects of segmentation via this GRN. In addition, we summarize
how an RA morphogen gradient is set up in the developing hindbrain through a balance
between synthesis and degradation and discuss the connection between the evolution of
the RA signaling pathway and the hindbrain GRN in relation to diversity.

2. RA Signaling and Vertebrate Hindbrain Segmentation
2.1. RA Signaling and Its Roles in Development

RA signaling plays important roles in many fundamental biological processes. Cues
from this pathway are involved in regulation of cell growth and proliferation, differentia-
tion, and the control of homeostasis in multiple tissues. In development, RA can act as a
morphogen, i.e., a signaling molecule that forms a concentration gradient over space and
time which activates target genes in a concentration-dependent manner. In early vertebrate
embryogenesis, RA is involved in the regulation of heart development [182,183], body
axis formation [94,113,184] and the patterning and elongation of the A-P axis, through
interactions with other signaling gradients (FGF and Wnt) [94,97,185]. In addition, RA sig-
naling provides regulatory inputs into neural differentiation programs [113,186], pancreas
specification and eye, kidney, and lung development [186–188]. Furthermore, RA signaling
has a well-established role in A-P patterning of the hindbrain, where it contributes to the
dynamic regulation of the process of segmentation, which lays down a basic ground plan
for the elaboration of this key coordination center in the brain [43,100,103,144,178].

The RA signaling pathway can be broken down into three general steps: (1) RA
metabolism to generate active ligands, (2) RA signal transduction to modulate gene expres-
sion, and (3) RA degradation to control levels of active ligand (Figure 2a). Components of
the RA signaling pathway involve a Vitamin A precursor, binding proteins that mediate
its extra- and intracellular transport, metabolic enzymes that convert it to an active ligand
(e.g., all-trans RA and 9-cis RA) and enzymes that control the degradation of RA (Figure 2a).
Signal transduction is mediated by the interaction of RA with members of the nuclear hor-
mone receptor family of proteins (RAR and RXR) which bind directly to DNA regulatory
elements in the genome and modulate patterns of gene expression [189,190]. The synthesiz-
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ing and degrading enzymes, transport proteins, receptors and DNA regulatory elements
together constitute the RA machinery and provide multiple opportunities for evolving
and regulating the RA signaling pathway in various biological processes [187,188]. In this
section, we summarize what is known about components of the RA signaling pathway
and relate it to hindbrain segmentation, Hox genes, and the evolution of A-P patterning in
vertebrates. The primary focus of this review is on the canonical pathway of RA signaling.
However, there is emerging evidence concerning the non-canonical functions of certain
components of the pathway, such as the cytoplasmic function of RARγ in cell death [191].

2.1.1. RA Metabolism, Signal Transduction and Degradation

RA is a fat-soluble, Vitamin A-derived signaling ligand that is coupled to the regulation
of many processes in development, disease, and evolution. Vitamin A and its derivative
retinoids are obtained from Vitamin A precursors found in the diet, either as carotenoids
(mainly β-carotene) from plants, or retinyl esters from animals. In mammalian embryos,
retinoids are provided by the mother via the placenta and yolk sac [192], while in other
vertebrate embryos, it is mostly found in the egg yolk. In addition, the synthesis of retinal
from carotenoids by bcox enzymes is a significant source of RA and is crucial for many
biological processes, including hindbrain development [193]. With respect to the canonical
RA signaling pathway, during the first step of the RA signaling pathway (RA metabolism
in Figure 2a), RA is generated by a series of successive oxidative reactions from a Vitamin
A precursor (Figure 2a). Briefly, all-trans retinol, an alcohol form of Vitamin A, is initially
converted to all-trans retinal by retinol or alcohol dehydrogenases (Rdhs or Adhs). Retinal
is in turn converted to RA by the retinal or aldehyde dehydrogenases (Raldhs or Aldhs).
There are three main isomeric forms of RA: all-trans-RA and 9-cis-RA are associated with
signal transduction in embryogenesis, cell growth and differentiation in chordates while
11-cis-RA plays a role in vision in most animals. While the different retinoids can play
distinct roles with important physiological significance, this review will focus on roles
of all-trans- and 9-cis- RA as they are able to bind and activate RARs in the tissues and
processes most relevant to hindbrain segmentation and embryogenesis, as discussed below.

With respect to transport, retinol is delivered to cells by Retinol Binding Proteins (Rbp)
in the bloodstream and within cells, it is bound by Cellular Retinol-Binding Proteins (Crbp1
and 2). Following synthesis of RA within a cell, it is bound by Cellular RA-Binding Proteins
(Crabp1 and 2) and transported to the nucleus where it will play a key role in modulating
the expression of downstream target genes (RA signal transduction in Figure 2a). This is
achieved through the binding of RA to ligand-activated transcription factors which are
part of the large family of nuclear hormone receptors [189,190,194]. There are two classes
of receptors involved in this process, the retinoid X receptors (RXRs) and the retinoic acid
receptors (RARs) (Figure 2a). The RAR and RXR proteins interact to form a dimer and
they transduce the RA signal by binding directly to specific DNA motifs, called retinoic
acid response elements (RAREs), found in the regulatory regions of target genes. RXRs are
broadly expressed and serve as a common dimeric partner for a variety of other classes
of nuclear hormone receptors, while the RARs are specific to transduction of retinoid
signals. The RARE motifs have a consensus sequence that contains two short direct repeats
(DR) generally separated by two or five nucleotides, e.g., a DR5 consists of two identical
sequences separated by five nucleotides. However, in vivo, some RAREs display alternate
spacing where the direct repeats are separated by anywhere from 1–5 nucleotides. In the
absence of RA ligand, RARs-RXRs dimers can bind to RAREs of target genes and associate
with transcriptional repressors (e.g., SMRT/NcoR) to inhibit gene expression [195,196].
Binding of RA ligands to RAR-RXR dimers induces a conformation change which results
in the replacement of the associated repressor complexes with co-activators (NCOA) and
the activation of target genes.
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machinery in the context of the vertebrate hindbrain. Aldh1a2 is expressed in the somites where Aldh1a2 localizes and 
synthesizes RA. The spatially and temporally dynamic segmental expression of Cyp26a1, Cyp26b1, and Cyp26c1 induces 
shifting domains of Cyp26 degrading activity, which act as anterior sinks of RA activity, therefore generating a precise 

Figure 2. RA signaling pathway and RA morphogen gradient during hindbrain development. (a) Simplified schematic
representation of major steps of the RA signaling pathway and main components of the RA machinery. The RA signaling
pathway converts Vitamin A to RA following three important steps: (1) RA metabolism, (2) RA signal transduction and (3) RA
degradation. The RA machinery includes main actors of the signaling pathway: RA synthesizing and degrading enzymes
(Rdhs; Aldhs; Cyp26s), transport proteins (Rbp; Crbp; Crabp), nuclear hormone receptors (RAR-RXRs), and Retinoic Acid
Response Elements (RAREs). (b) Schematic depiction of the dynamic regulation of endogenous levels of RA during hindbrain
development. The RA morphogen gradient is set up by synthesizing and degrading enzymes of the RA machinery in the context
of the vertebrate hindbrain. Aldh1a2 is expressed in the somites where Aldh1a2 localizes and synthesizes RA. The spatially and
temporally dynamic segmental expression of Cyp26a1, Cyp26b1, and Cyp26c1 induces shifting domains of Cyp26 degrading
activity, which act as anterior sinks of RA activity, therefore generating a precise and gradual set up of the RA morphogen
gradient. The developmental time points correspond to zebrafish development. A, anterior; P, posterior; r, rhombomere.



Diversity 2021, 13, 398 8 of 36

With respect to the turn-over of RA, members of the Cytochrome P450 family 26
(Cyp26) of enzymes play an important role in the modulating the levels of RA through
degradation [101,103,197,198]. The dynamic patterns of expression of Cyp26 genes and the
resulting activity of the Cyp26 enzymes, is involved in balancing the levels of RA generated
by the synthesis pathway, shaping the range and levels of the RA morphogen gradient
(Figure 2a RA degradation).

2.1.2. Dynamic Regulation of Endogenous RA Levels during Hindbrain Development

Aspects of processes underlying the development of the vertebrate hindbrain can
illustrate how the dynamics of synthesis and degradation of RA play key roles in setting up
an RA morphogen gradient involved in initiating the process of segmentation. Aldehyde
Dehydrogenase 1a2 (Aldh1a2) (also known as Raldh2) is the major source of RA synthesis
(Figure 2a) [199]. In mouse, chick, and zebrafish, at the onset of gastrulation Aldh1a2 is
initially expressed in the presomitic mesoderm, positioned adjacent to the developing
neural tube and Aldh1a2 remains active and synthesizes RA in newly formed somites,
which will generate the axial skeleton (Figure 2b) [200–202]. RA then diffuses into the
adjacent neural tube and spreads anteriorly. The anterior limit of its signaling activity in
the neural tube is progressively restricted during development by the dynamic expres-
sion and activity of members of the Cyp26 family in the midbrain and rostral hindbrain
(Figure 2b) [101,103,197]. Experimental studies have shown that the Cyp26 enzymes play
a major role in facilitating where and when RA provides regulatory cues in the hindbrain
GRN, by precisely regulating its endogenous levels. This fine-tuning of the concentration of
RA is important as activation of many target genes, including Hox genes, display differen-
tial sensitivity to induction by RA [203,204]. Further support for the roles of synthesis and
degradation of RA have been provided by genetic and pharmacological perturbations of
endogenous Aldh1a2 and Cyp26 genes, which lead to defects in the hindbrain [103,187,197].
In multiple vertebrate models, phenotypes have shown a reduced forebrain/midbrain
and expanded hindbrain region in embryos with elevated levels of RA, and a truncated
hindbrain in embryos with low levels of RA. These phenotypes highlight the need to
maintain adequete levels of RA for proper segmentation and organization of the hindbrain.

Retinoic acid is an important morphogen and the key role of its gradient in embryoge-
nesis is widely recognized. Thus, many different approaches have been used to substantiate
and quantify RA gradients in vertebrate embryos. Direct visualization of an endogenous
RA gradient [205] and indirect evidence based on transgenic reporters for RA activity,
pharmacological inhibitors of synthesizing and degrading enzymes, as well as genetic
perturbations of key enzymes have led to the generation of different models to explain
how an RA morphogen gradient is established in the hindbrain [101,206]. There are also
examples of species-specific variations. However, consistent between models and species
is the progressive integration of cues from opposing FGF and RA signaling pathways
working in concert with the dynamic expression of Cyp26 enzymes to generate rapidly
shifting boundaries of RA activity that regulate downstream events in the establishment of
hindbrain segments [103,187,207].

2.1.3. Temporal Dynamics of Cyp26 Gene Expression in the Developing Hindbrain

There are three Cyp26 enzymes, Cyp26a1, b1, and c1, in all jawed vertebrates examined.
The genes encoding these enzymes can display subtle differences in timing and domains of
expression between species, but all three Cyp26 genes are dynamically expressed during
hindbrain development (Figure 2b). Analyses of their patterns of expression and function
in the hindbrain have been most extensively characterized in zebrafish and mouse models.
In zebrafish, Cyp26a1 is first induced in the mesendoderm, adjacent to the future hindbrain,
by low levels of RA [207]. At later stages of gastrulation (6–9 hpf), FGF signaling from the
midbrain induces Cyp26a1 expression in the future r1–r2 domain of the hindbrain. This
leads to degradation of RA in r1 and r2 and initially establishes a sharp anterior limit
of RA activity at the r2/r3 boundary of the hindbrain (Figure 2b) [101,178,197]. Slightly
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later in development (9 to 10 hpf), Cyp26b1 is induced in r3 and r4 and Cyp26c1 in r2 to
r4, which resets the anterior limit of RA activity to the r4/r5 boundary. By 11–13 hpf, the
Cyp26b1 and Cyp26c1 expression domains expand and collectively cover the region from r2
to r6, resulting in a shift of the anterior limit of RA activity to the r6/r7 boundary [152,197].
Globally similar patterns of Cyp26 expression and regulation have been demonstrated
in mouse, with the exception that RA has been shown to activate Cyp26c1 in r4 [103].
This illustrates how spatiotemporal changes in the expression of Cyp26s, with regulatory
input from both FGF and RA signaling, can induce progressive changes in the pattern
of degradation of RA, setting up shifting gradients and domains of RA which ultimately
influence the formation of rhombomeric segments.

2.2. The Role of RA Signaling in the GRN for Hindbrain Segmentation

Studies have shown that the conserved functional properties of the vertebrate hind-
brain are generated in part through a conserved program of segmentation, which organizes
the ground plan for the development of this region. Comparative studies between jawed
vertebrate species have aided our understanding of the genes, signals, and regulatory
circuits that control the progressive steps of hindbrain segmentation [42,43,100]. These
findings have been used as a basis to build a GRN that provides a core framework for
understanding how the dynamic and progressive steps of hindbrain segmentation and
A-P patterning are established and regulated (Figure 3) [34,93,100,179]. In addition, the
GRN provides a foundation for exploring the evolution of hindbrain segmentation and A-P
patterning systems in chordates. While multiple aspects of this GRN are highly conserved,
there are some interesting differences between species, particularly with respect to the
synthesis and degradation of RA, which will be discussed later in this review. This section
focuses on the role that RA plays in different modules of the hindbrain GRN and explores
the conservation of the relationship between RA signaling and the GRN.

2.2.1. RA Plays a Pivotal Role in Multiple Aspects of the Jawed Vertebrate Hindbrain GRN

RA initially impacts the GRN by providing input into the A-P signaling module,
which along with Wnts and FGFs trigger the process of segmentation (Figure 3a). The A-P
signaling module integrates signaling gradients and genes that respond to them, setting
up spatially restricted domains of a set of TFs that begin to subdivide the hindbrain. For
example, Gbx genes are upregulated caudally during gastrulation in response to poste-
riorizing Wnt signals, where they play a key role in positioning the midbrain–hindbrain
boundary (MHB) by restricting Otx2 to the presumptive fore- and midbrain. The interface
between Otx and Gbx expression domains is refined by mutual repression and sets the
anterior limit of the hindbrain [208,209]. In addition, extensive analyses have revealed a
downstream regulatory cascade involving members of the Pax2, En, FGF, and Wnt gene
families that leads to lineage restriction between mid- and hindbrain territories and creates
the MHB organizer, which acts as an influential signaling center for anterior hindbrain
patterning [210–215].

The A-P signaling module also includes genes encoding key enzymes, such as Aldh1a2
and Cyp26a1, that shape the RA morphogen gradient and ultimately predefine future
rhombomere territories. RA is then involved in the early spatial positioning of key posterior
hindbrain patterning genes (vHnf1 and Cdx), as well as activating Hox genes of the first
paralogous group (HoxPG1), Hoxa1 and Hoxb1 [163,168], whose expression domains are
subsequently shaped by interactions with other patterning genes. For instance, Cyp26a1 is
very important in setting up an anterior limit of RA activity at the future r2/r3 boundary,
which in turn defines the expression domain of HoxPG1. Similarly, the mutual repressive
relationship between Irx3/iro7 and vHnf1 is important for positioning the future r4/r5
boundary, which is later maintained by the expression of Cyp26b1 and Cyp26c1 in a domain
abutting the anterior limit of vHnf1 expression [103,216].
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Figure 3. Regulatory interactions underlying the GRN for hindbrain segmentation. Diagram depicting regulatory
interactions between major components of the GRN for hindbrain segmentation. (a) The A-P signaling module (pink box),
defined by major signaling pathways (FGF, RA, Wnt) and their initial A-P patterning target genes, initiate the process of
segmentation. The spatial organization of these transcription factor (TFs)-encoding genes (e.g., Otx2, Gbx2, Irx3) and their
regulatory interactions (red and green arrows signify negative and positive regulatory interaction respectively) define the
future hindbrain territory. RA, in association with key genes of the RA machinery (Aldh1a2, Cyp26a1), is also part of this
module and plays a particularly important initial role in the hindbrain GRN by triggering the expression of many of the
A-P genes (e.g., HoxPG1, vHnf1, Cdx1) (blue arrows). (b) In the segmental subdivision module (lime green box), RA will
maintain the expression of many of these same genes, that together with additional important TF-encoding patterning
genes (Krox20, Kreisler) will subdivide the hindbrain into nested territories prefiguring future rhombomeric expression
domains. This process is tightly controlled by additional mechanisms of cross-repression, activation, and autoregulation (*).
(c) In the segmental patterning module (purple box), further regulatory interactions between different patterning genes will
set up and maintain the segmental Hox code, important for dictating hindbrain differentiation programs. RA maintains an
important role in this module. (d) In the boundary formation module (orange box), members of different modules (Krox20,
Hoxb1) together with Eph/ephrin, coordinate the establishment and maintenance of sharp boundaries between adjacent
rhombomeres. Importantly, the segmental expression of Cyp26b1 and Cyp26c1 allows RA to modulate this module. Colored
arrows indicate the regulatory interactions between different modules. Gene names are based on mouse and zebrafish
models. Adapted from [43].

In the next step of the process, the segmental subdivision module regulates the process
of sub-dividing the hindbrain into segmental compartments which represent repeating
metameric units. RA regulates genes encoding TFs implicated in the segmental subdivision
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of the presumptive hindbrain (Figure 3b) [34,43]. These segmentation genes (Krox20,
Kreisler, vHnf1, HoxPG1, and HoxPG4 (Hoxb4 and Hoxd4)) are initially expressed in broad,
partially overlapping domains that become progressively refined into distinct territories
which define the future rhombomeric segments. In the next step, the segmental patterning
module regulates the process which confers each segmental unit with a distinct molecular
identity and set of characters (Figure 3c). In this module, many of these same TFs will
contribute to the A-P patterning of individual segments in the hindbrain. In the segmental
patterning module, a network of regulatory interactions sets up the hindbrain Hox code,
where Hox genes are expressed and maintained in a rhombomeric-restricted fashion,
providing regulatory information to direct differentiation programs in the hindbrain. RA
further participates in the maintenance of some of these Hox expression domains.

In the boundary formation module, RA, via the activity of Cyp26b1 and Cyp26c1,
plays a key role in mechanisms controlling cell segregation and boundary formation be-
tween segments, which involve inputs from Eph/Ephrin signaling, Krox20, and Hoxb1
(Figure 3d) [34,43,152,217,218]. Therefore, the GRN is defined by tightly coordinated inter-
actions between Hox genes, their upstream segmental regulators, RA, and mechanisms
controlling cell segregation and border formation. The coordination of these regulatory cir-
cuits generates precisely positioned domains of expression with sharp boundaries between
adjacent rhombomeres, ensuring no overlap of cellular identity at the interface between
cells in adjacent segments. RA plays a central and multifaceted role in this dynamic process.

In addition, feedback loops have an integral role in modulating RA signaling. For
example, some targets of RA provide feedback to RA signaling itself, such as Hoxa1 and
Hoxb1, which are transcriptionally activated by RA and contribute to the transcriptional
control of Aldh1a2 expression, which is at the origin of RA synthesis [219]. In mouse, there
is also evidence for a feedback circuit between HoxPG4 and rarβ, encoding for RARβ: rarβ
is initially induced by RA and later upregulated by Hoxb4 and Hoxd4, which limits its
expression posterior to the r6/r7 boundary. In addition, other RARs can indirectly maintain
the expression of HoxPG4. These feedback loops between Hox and RARs are important for
fine tuning expression domains and aligning the segmental expression borders of genes
initially induced by RA [220]. Collectively, this work clearly illustrates that RA signaling
plays diverse roles in different modules underlying the hindbrain GRN.

2.2.2. Retracing the Evolution of the Hindbrain GRN Using Jawless Vertebrates

Analyses of gene expression, functional perturbation experiments, and regulatory
studies have revealed that many aspects of the GRN governing hindbrain segmentation
are deeply conserved within the jawed vertebrate group [34]. For example, conserved
cis-regulatory elements in segmental enhancers are similarly embedded in modules of the
hindbrain GRN in different species, as illustrated by Krox20 element A [221] and the Hoxa2
r4 enhancer [222]. Moreover, several conserved RAREs have been identified in different
modules of the GRN, such as in an enhancer of vHnf1 [223] as well as in many Hox loci;
e.g., an RARE adjacent to Hoxb1 is required for restricting its expression to r4 [115,163].
This shows that many regulatory inputs to the GRN, including aspects of the machinery
involved in their response to RA, i.e., RAREs, are deeply conserved in jawed vertebrates.

The conservation of the GRN across jawed vertebrates raises the question of whether
these regulatory programs are also deployed earlier in the evolution of vertebrates. Recent
studies have begun to investigate developmental GRNs in cyclostomes (lamprey and
hagfish), which constitute the only extant group of jawless vertebrates, a sister group to
jawed vertebrates [224]. Jawless vertebrate species have followed their own evolutionary
paths since the split from the lineage that led to jawed vertebrates, and therefore represent
a patchwork of ancestral and derived features [225]. Nevertheless, aspects of development
that are shared across jawed and jawless vertebrates can point towards features of the
vertebrate common ancestor. Thus, jawless vertebrates are valuable models to explore
the origin and evolution of vertebrate-specific traits. Comparative studies with jawed
vertebrates have shown that, despite their relatively simple and diverged morphology, e.g.,
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lacking a jaw and paired limbs, they share many pan-vertebrate features with the jawed
vertebrates. For example, lampreys possess a true neural crest and a core GRN governing
neural crest development in jawed vertebrates is conserved in lamprey [180,226–229].

The characterization of the germline genome of the sea lamprey, Petromyzon mar-
inus, has provided insights into major evolutionary events, such as pan-vertebrate or
lineage-specific whole genome and chromosomal duplication events that occurred in verte-
brates [71,72,230]. Of relevance to A-P patterning and the hindbrain GRN, comparative
phylogenic studies have suggested that the six Hox clusters in the sea lamprey appear to be
the result of at least one WGD event that occurred early in vertebrate evolution, before the
divergence of the jawless vertebrate lineage. This was likely followed by chromosomal-scale
and/or additional whole genome duplication event(s) and selective losses that occurred
in the jawless vertebrate lineage (Figure 1a). Indeed, sea lamprey Hoxα and δ, and Hoxβ
and ε are thought to be paralogous clusters derived from putative ancestral Hoxα/δ and
Hoxβ/ε clusters respectively [71,72,230]. The sea lamprey Hox complement illustrates
how major evolutionary events can influence the evolution of important gene families,
providing various opportunities for molecular and morphological diversity.

Early studies in the Japanese lamprey, Lethenteron japonicum, revealed a transient
period of hindbrain segmentation, with a segmental organization of reticulo-spinal neurons
and cranial nerve roots positioned in similar arrangement to jawed vertebrates [231,232].
However, unlike in jawed vertebrates, these experiments demonstrated that some motor
nuclei and Hox expression domains appeared not to be in register with rhombomeres,
suggesting that Hox genes were not coupled to hindbrain segmentation. In addition,
these early experiments did not reveal an apparent role of RA signaling in hindbrain
segmentation in lamprey [231,233]. This led to the idea that lamprey might represent an in-
termediate organism between jawed vertebrates and non-vertebrate chordates, possessing
an ‘early type’ of segmented hindbrain, independent of Hox genes and RA, which had not
fully integrated aspects of the ancient A-P patterning system and coupled it to hindbrain
segmentation [231].

The early data on lamprey Hox expression focused on later stages with a few selected
Hox genes. More recent studies, taking advantage of the accessible genome sequence to
systematically evaluate expression of Hox genes over a broad range of early stages, have
revealed that the expression of the HoxPG1–4 complement in the sea lamprey is tightly
coupled to hindbrain segments. This showed that Hox genes are part of an ancestral core
hindbrain GRN which arose in the evolution of vertebrates, prior to the divergence of extant
jawed and jawless vertebrate lineages (Figure 4) [33,164,179,181]. For instance, many key
TFs involved in different modules of the jawless vertebrate hindbrain GRN are expressed
in similar restricted segmental domains in the lamprey hindbrain, such as Kreisler, Krox20,
vHnf1, and HoxPG1 [33,231,234–236]. In addition, aspects of the boundary formation
module appear to be conserved in jawless vertebrates, such as LjEphC, expressed in r3 and
r5, reminiscent of the jawed vertebrate EphA4 [231]. Other examples of Eph/ephrin genes
have been identified in the sea lamprey genome, but it is currently unknown whether they
have rhombomeric expression [237]. Moreover, despite early similarities in rhombomeric
gene expression between lamprey and jawed vertebrates, lamprey exhibits divergent Hox
expression at later stages, with some Hox genes escaping rhombomeric restriction. This
may reflect divergent regulatory inputs and patterning roles at these later stages [33,238].

In summary, many aspects of the GRN underlying hindbrain segmentation and
segmental Hox expression can be traced to the base of vertebrates [33,164,180]. However,
the precise roles of RA signaling in the lamprey hindbrain GRN are still unclear, and it is
unknown whether it is integrated into the GRN in a manner analogous to jawed vertebrates.
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Figure 4. Origins and evolution of the hindbrain GRN. Schematic phylogenetic tree representing a model for the evolution
of the vertebrate hindbrain GRN based on comparative evolutionary analyses of key components of the axial patterning
GRN in deuterostomes, in relation to major events of genome rearrangement. Examples of patterning genes that display
homologous expression domains with respect to vertebrates are depicted and considered to be part of a putative ancestral
axial GRN (e.g., Cdx, Otx). Color-coded dotted box are used to illustrate the putative evolutionary history of these conserved
genes with respect to the module they belong to in the vertebrate hindbrain GRN (in accordance with Figure 3). Ancestral
roles of RA in regulating aspects of the axial GRN, including Hox genes, (blue arrow) and presumptive roles of RA (blue
arrow-question mark) are depicted. Important evolutionary events with respects to this GRN are indicated, such as the
emergence of the Hox/RA hierarchy. Prototypical axial GRN models with respect to different evolutionary time points are
summarized at the bottom. Jawed vertebrate gene names are based on mouse and zebrafish models. Ci, Ciona; Amphi,
Amphioxus. Cartoons of different model organisms are adapted from [34].

2.3. Origins and Evolution of the Role of RA in the Hindbrain GRN

In light of the presence of Hox genes in most metazoans, evidence for an ancient
A-P patterning system in chordates, and the high degree of conservation of aspects of the
hindbrain GRN in vertebrates, it is interesting to question (1) when the RA/Hox regulatory
hierarchy emerged during the course of evolution and (2) when this RA/Hox hierarchy
become integrated into the GRN underlying hindbrain segmentation. This section describes
efforts to understand its origin. Comparative analyses in various invertebrate models have
sought to investigate the nature of the hindbrain GRN and how it relates to RA signaling
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in evolution. There is little clear evidence that RA is required for the development of
protostomes, and in instances where developmental roles have been inferred, such as in
neural differentiation in the marine annelid Platynereis dumerilii, these are not connected to
Hox gene expression and A-P patterning [239]. Thus, in this review, we focus on chordates
and non-chordate deuterostomes.

A Prototypical Axial GRN Integrating RA Can Be Rooted to the Base of Chordates

Despite having different anatomies and simpler brains, i.e., no segmented hindbrain,
urochordates and cephalochordates both have a CNS that develops from a neural plate,
as in vertebrates [240,241]. Analyses of embryonic gene expression domains in these
models have provided evidence for some ancestral aspects of A-P brain regionalization
at the molecular level, including equivalent forebrain, midbrain, hindbrain, and spinal
territories [242,243]. These conserved A-P programs include aspects of the GRN involved
in Hox-dependent patterning of the vertebrate hindbrain. For example, anterior neural
expression of the forebrain–midbrain specifier Otx has been found in urochordates [242]
and cephalochordates (Figure 4) [244], while both groups express Cdx in posterior tissues,
including the neural tube [245,246]. Together, the A-P expression territories of these genes
delimit a putative hindbrain-like region. Additionally, drug treatments in the cephalochor-
date amphioxus Branchiostoma floridae have revealed that perturbation of RA has a dramatic
influence upon A-P patterning via these genes, although it is unclear whether they are
direct targets of RA [246,247].

Studies in non-vertebrate chordate models support the idea that there is an ances-
tral role for RA signaling in patterning the nervous system via the Hox genes, which is
conserved across many chordates. Urochordates, the closest phylogenetic group to ver-
tebrates [248], possess a broken Hox cluster with only nine orthologs and partial spatial
collinearity (Figure 4) [249]. Interestingly, Hox genes are up regulated in response to
RA in Ciona intestinalis embryos, and CiHox1 was shown to respond to RA via upstream
RAREs [250–252]. However, RA appears to have relatively minor influence on neural Hox
expression in urochordates compared to vertebrates. Indeed, the larvacean Oikopleura
dioica seems to have lost the ability to transduce RA signaling based on treatments with
exogenous RA and the absence of multiple components of the RA machinery, such as
Cyp26s and RARs. This suggests that some chordates can use mechanisms other than RA
signaling to maintain their body plan, which may be linked to the altered organization of
their Hox cluster [253].

Cephalochordates possess a single Hox cluster with 15 Hox genes (AmphiHox)
(Figure 1a), that globally show colinear nested domains of expression along the A-P
axis [254–258]. In amphioxus, RA also influences Hox expression along the A-P axis and in
the nervous system (Figure 4). Ectopic RA treatment influences not only Hox expression,
but motoneuron specification, reminiscent of what happens in vertebrates [247,258–261].
Cross-species regulatory analyses have uncovered the presence of two conserved DR5
RAREs located near AmphiHox1 and AmphiHox3 that are able to mediate reporter expres-
sion in the neural tube and neural crest of chicken and mouse embryos [262,263]. There are
equivalent RAREs located in similar positions around the vertebrate Hox1 and Hox4 genes
which are involved in neural and segmental expression [117,163,168,264]. This suggests
that pre-existing RAREs in chordate Hox clusters may have been part of the ancient A-P
patterning system and could have evolved new roles in Hox-dependent patterning of
vertebrate innovations, such as the hindbrain. The apparent retention of RAREs in con-
served locations within the Hox clusters may be important for both mediating conserved
regulatory functions and establishing new roles [263].

In light of these similarities in the RA-regulated expression of Hox genes, amphioxus is
generally considered to most closely represent the putative ancestral chordate state, which
already integrated RA signaling as part of a mechanism for A-P patterning of the nervous
system. Therefore, the evolution of the RA/Hox hierarchy is not specific to vertebrates but
likely constitutes part of an ancient mechanism that shaped A-P patterning of the nervous
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system of the chordate ancestor. This roots Hox regulation by RA in the nervous system to
the base of chordates.

In contrast to the conserved role of RA in regulating A-P Hox patterning, these inver-
tebrate chordate models have revealed that certain aspects of the hindbrain GRN seem to
have evolved later in the vertebrate group (Figure 4). Examples of such aspects include
the cooption of key TFs such as Krox20 and Kreisler to the segmental subdivision mod-
ule [265,266] and the cooption of the Eph/ephrin family in the evolution of the boundary
formation module [237]. It seems likely that the role of these genes in the formation of
rhombomeres and in the hindbrain GRN arose through new regulatory interactions and
was an innovation of the vertebrate lineage [34,267,268].

In summary, a prototypical chordate axial GRN was likely composed of some early
patterning genes, such as Otx and Cdx, that delimit a hindbrain-like territory by responding
to graded A-P signaling inputs, including RA, combined with a nested deployment of Hox
genes within this territory in response to RA signaling (Figure 4).

2.4. Evolution of the RA Signaling Pathway in Chordates

The ancestral role of RA in axial patterning in chordates raises the question of the
degree to which the RA signaling pathway has been conserved or diversified in different
chordate lineages in relation to A-P patterning. Assessing components of the RA machin-
ery across chordates can help in exploring this issue. Comparing all components across
numerous chordate models is beyond the scope of this review and others have already
reviewed the status of this machinery extensively across bilaterians [269,270]. Here, we
focus on the evolutionary status of a few critical, conserved, and well characterized com-
ponents, as little is known about the evolution of several components, such as the Crbps
and Crabps, in metazoans. In other instances, some components of the RA machinery are
thought to be more ancient and deeply conserved in all metazoans, including cnidarians
and bilaterians [269,271]. This is the case for the RXR nuclear receptors, which represent
an essential component of the signal transduction pathway and are dimeric partners for
many other classes of nuclear hormone receptors [189]. We do not ignore the possibility
that such highly conserved components could have important evolving roles in the RA
machinery but choose to focus on changes in aspects of the RA machinery related to the
metabolic pathway (Rdh10 and Aldh1a2), the signal transduction pathway (RARs), and
RA degradation (Cyp26s).

2.4.1. The Metabolic Pathway

The first step in metabolism involves the activity of enzymes in the Adh and Rdh
families. Rdh10 is particularly important in vertebrates and is required for proper em-
bryonic patterning and morphogenesis [272,273]. Rdh10 homologs have been detected
in amphioxus, BfRdh10 [274], and Ciona, CiRdh10 [275], and shown to function as retinol
dehydrogenases (Figure 5).

Aldh1a enzymes direct the next step of the pathway, converting retinal to different
isomeric forms of RA. In vertebrates, tetrapods have 3–4 Aldh1a genes (Aldh1a1,2,3 and
Aldh1a4/7), while teleosts appear to only have two (Aldh1a2 and Aldh1a3). Aldh1a2
is generally considered to be the primary RA generating enzyme in the developing
trunk [199–201,276], while Aldh1a1 and Aldh1a3 play important roles in the develop-
ing optic vesicle and retina [277–279]. There are six putative Aldh1s in the cephalochordate
amphioxus (BfAldh1a to f ) and four in the urochordate Ciona (CiAldh1a to d) [280–282]
(Figure 5). These duplicates are thought to have arisen from an ancestral Aldh1 gene
via multiple duplication events that occurred independently in each of these chordate
lineages. In both amphioxus and Ciona, only one Aldh1 (BfAldh1a and CiAldh1a) appears
to be expressed in an equivalent spatiotemporal manner to vertebrate Aldh1a2, while the
other paralogous Aldh1 genes display divergent expression patterns [280–282]. In addition
to differences in expression between paralogs, it has been shown that some of the dupli-
cates have evolved different protein structures, which appear to confer distinct functions.
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CiAldh1a, BfAldh1a, and vertebrate Aldh1a2 are involved in retinaldehyde processing
and A-P patterning, while the other amphioxus and Ciona Aldh1s (BfAldh1b,c,e,f and
CiAldh1b,c,d) have adopted a structure more similar to the vertebrate Aldh2s, which is
important for detoxification of small aldehydes [280]. Thus, the duplication of the Aldh1
genes in chordate lineages appears to have been accompanied by divergence in their
spatiotemporal expression as well as their biochemical functions, including roles beyond
RA signaling.
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of the RA machinery in deuterostomes in relation to major events of genome rearrangement. This diagram combines
components of the RA machinery that have been functionally characterized with some previously published in silico work.
Gene families of the major components of the RA machinery that this review focuses on—the Rdh10, Aldh1, RAR and Cyp26
families—are color-coded in accordance with Figure 2. Genes found in silico that have not been functionally validated are
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RA-dependent regulation (blue arrow), e.g., Cyp26a1, and presumptive RA-dependent regulation (blue arrow-question
mark) of certain components of the RA machinery are indicated. Important events in the evolution and elaboration of the
RA machinery, i.e., independent lineage-specific duplications of certain components, are indicated in the tree. Inferred
models for the RA machinery with respect to different evolutionary time points are summarized at the bottom. Jawed
vertebrate gene names are based on mouse and zebrafish models. Lv, L. variegatus; Sp, S. purpuratus; Sk, S. kowalevskii; Ci, C.
intestinalis; Bf, B. floridae; Amphi, Amphioxus. Cartoons of different model organisms are adapted from [34].
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2.4.2. RARs and the RA Signal Transduction Pathway

While vertebrates possess three RARs (RARα, RARβ and RARγ), each with various
isoforms, only one RAR homolog has been identified in invertebrate chordate lineages,
such as in Amphioxus [283] and in Ciona [284] (Figure 5). Both CiRAR and AmphiRAR
have been shown to transduce RA signaling and activate transcription in the presence of
RA in a broadly similar way to vertebrates [283,285]. Furthermore, AmphiRAR is expressed
in the amphioxus nervous system and displays sensitivity to exogenous RA and RA
antagonists, similar to the vertebrate RARs [283]. Interestingly, comparisons of ligand-
binding specificities between vertebrate and invertebrate chordate RARs revealed that
AmphiRAR has an RAR-α/β-like specificity while RAR–γ has a divergent ligand-binding
capacity [286]. While the developmental significance of this divergence in vertebrates
remains to be determined, this suggests that RARs may have acquired new functions that
shaped their roles in RA signal transduction during vertebrate evolution.

2.4.3. RA Degradation by Cyp26s

The three vertebrate Cyp26 genes, Cyp26a1, Cyp26b1, and Cyp26c1 have a complex
evolutionary history linked to whole-genome and tandem duplication events. Two Cyp26
genes have been identified in Ciona, CiCyp26a and CiCyp26b, including one that responds
to exogenous levels of RA, but the evolutionary history of the Cyp26 family in this lin-
eage remains unclear [284,287] (Figure 5). Three Cyp26 genes have been reported in two
cephalochordate representatives, B. floridae [274] and B. lanceolatum. The Cyp26-1, Cyp26-2,
and Cyp26-3 genes are clustered in the genome and are thought to have evolved via a
cephalochordate-specific tandem duplication event from a single ancestral Cyp26 gene. The
cephalochordate Cyp26 family has evolved two independent functions, the first being a role
in initiating RA-dependent patterning of the A-P axis assumed by CYP26-2, reminiscent
of the vertebrate Cyp26a1. A second role of the Cyp26 family is in homeostasis, where it
maintains fluctuating levels of RA in the embryo, assumed by CYP26-1 and CYP26-3. These
are more reactive to fluctuations in endogenous RA levels than CYP26-2 is, reminiscent of
the vertebrate Cyp26a1 [101,197,207,287]. This suggests that an ancestral chordate Cyp26
may have been involved in both regulating RA-dependent nervous system patterning
and maintaining RA homeostasis. It is possible that multiple lineage-specific duplication
events of that gene, followed by sub-functionalization led to this dual activity being split
between different members of the Cyp26 family in both cephalochordates and vertebrates.
An alternative scenario is that an ancestral Cyp26 only possessed a single function and that
the additional functions evolved independently in both lineages following the duplication
of the ancestral gene. Investigating these two functions in non-chordate deuterostomes
could help to clarify the origin of the different roles played by the Cyp26s in shaping the
RA morphogen gradient in chordates.

In summary, a potential core ancestral RA machinery in the early evolution of chor-
dates likely included at least one copy of each component—Rdh10, Aldh1a, RAR, and
Cyp26. While fundamentals of the core RA signaling pathway are well conserved within
chordates, it is clear that some aspects of the RA machinery have diversified indepen-
dently in different chordate lineages, including in vertebrates. This is exemplified by the
multiple lineage-specific duplications of the ancestral Aldh1 and Cyp26 genes, as well
as the vertebrate-specific duplication and diversification of the RARs and Aldh1as. This
may have provided many opportunities for altering the regulation of RA signaling and its
incorporation into diverse biological processes during evolution.

2.5. Origins and Evolution of RA Signaling beyond Chordates—Insights from
Non-Chordate Deuterostomes

Non-chordate deuterostomes have been investigated in an attempt to understand the
evolution of chordate hindbrain patterning, the evolution of the RA signaling pathway,
and when they might have become integrated.
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2.5.1. Nervous System Patterning in Hemichordates and Echinoderms

Hemichordates and echinoderms, as sister groups to the chordates, are highly relevant
for understanding the origins and coupling of A-P signaling gradients to nervous system
development. A distinctive feature of hemichordates, including Saccoglossus kowalevskii
(Sk), is the presence of a diffuse nerve net, as opposed to a more restricted dorsal CNS in
chordates [288]. Multiple TFs and signaling components of the vertebrate A-P patterning
GRN also play a role in the patterning of the hemichordate body axis (Figure 4). They also
possess a single Hox cluster, with at least 11 Hox genes that display colinear expression,
including in their nervous system (Figure 4) [131,289,290]. However, a role for RA as part
of the hemichordate GRN for A-P patterning of the nerve-net has yet to be determined.

Echinoderms have many representatives, including sea urchins and sea stars, which
usually display larval bilateral symmetry and adult radial symmetry. In these animals,
the Hox complement can sometimes be disorganized, making these models difficult to
relate to chordates with regard to axial patterning [290]. However, since recent research has
revealed that a Hox-Gbx network controls radial segmentation of the larval endoderm in
the sea anemone Nematostella vectensis, it seems that an axial Hox code may have controlled
body patterning and segmentation before the evolution of the bilaterian A-P axis [291,292].
Additionally, there are examples of highly conserved A-P expression domains of patterning
genes such as En or Otx, anterior to Hox domains in echinoderms (Figure 4) [293]. While
RA seems to be involved in the metamorphosis of Sea Stars and Feather Stars [294,295],
it has not been clearly implicated in the organization of the nervous system and/or in
regulating Hox genes and is an area of interest for future research.

2.5.2. Hemichordates and Echinoderms Models and the Evolution of the RA Machinery

Despite the absence of a known role for RA in patterning the CNS of non-chordate
deuterostomes and considering the conservation of a core RA machinery toolkit at the base
of chordates, it is worth considering the origins and evolution of the RA machinery to
explore whether some components are unique to chordates.

Searches for Rdh10 homologs in non-chordate deuterostomes have uncovered three
isoforms, Rdh10A, Rdh10B, and Rdh10C, in the echinoderm Lumbriculus variegatus (Lv) [275]
which have been shown to function as retinol dehydrogenases (Figure 5). These genes are
expressed early in development, consistent with early roles in retinol metabolism. It is
unclear if there is an Rdh10 homolog in hemichordates, but another enzyme belonging to a
sister clade of the short chain dehydrogenases, DhrS3s, has been found in S. kowalevskii.
Five predicted Aldh1s (SkAldh1a to e) have been found in S.kowalevskii while there is only
evidence for a closely related Aldh2 in echinoderms [281]. Putative homologous RARs with
a remarkably high degree of conservation in their amino acid sequence have been found
in both S. kowalevskii and in the echinoderm Strongylocentrotus purpuratus (Sp) [270]. Two
putative Cyp26 orthologs (SkCyp26a and SkCyp26b) and a single putative Cyp26 (SpCyp26)
have been identified in S. kowalevskii and in S. purpuratus respectively [287].

These results indicate that multiple aspects of the RA machinery are more ancient
than the chordate lineage and were likely already present at the origin of deuterostomes.
The RA machinery of the deuterostome ancestor is for the most part presumptive, but
potentially included at least one copy of the main components of the RA machinery, namely
Rdh10, Aldh1, RAR, and Cyp26. Furthermore, these non-chordate deuterostome models
provide further examples of lineage-specific duplication of these components, such as
Aldhs and Cyp26s in S. kowalevskii, indicating that the duplication and diversification of RA
machinery may be a widespread phenomenon across many taxa. Considering the putative
presence of primary components of the RA machinery in non-chordate deuterostomes, it
would be interesting to explore its role in the hemichordate nervous system, as this could
provide insight into when the RA machinery became coupled to ancient Hox-dependent
A-P patterning systems.
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2.6. Regulatory Diversification of the RA Machinery and Evolution of the Vertebrate
Hindbrain GRN

The deep conservation of the basic RA machinery toolkit (Rdh10, Aldh1, RAR, Cyp26),
offers the opportunity to explore and speculate on the putative evolutionary history of
its components. Despite the apparent deep conservation of many aspects of this machin-
ery across chordates and even more ancient aspects present in all deuterostomes, some
important features of how RA signaling components are regulated and deployed during
hindbrain development appear to be unique to jawed vertebrates. This suggests that these
may have evolved following the split between vertebrate and invertebrate chordates. These
notably include novel expression domains of key components of the RA machinery with
the potential to influence features of the RA gradient along the A-P axis, as well as evolving
mechanisms of RA signal transduction, including the integration of new RAREs that could
influence how downstream targets respond to RA.

2.6.1. Evolving Roles of RAREs

In the context of Hox genes, efforts have been made to characterize RAREs in multiple
chordate lineages as these are important transducers of RA signaling in the regulation of
gene expression. The data indicate an interesting degree of plasticity in their evolution,
with instances where new RAREs appear in Hox clusters while ancestral ones may be re-
tained [84,85,148,163,168,296–300]. Indeed, evidence indicates that many new RAREs have
emerged in the vertebrate lineage, with some arising following WGD events. The jawed
vertebrate Hox complement illustrates the diverse ways in which RAREs can evolve in a
lineage (Figure 6a). The mouse HoxB cluster has retained ancestral RAREs, such as the one
located in the early neural enhancer (ENE) region (ENE-RARE) of Hoxb4, that appears to be
conserved in invertebrate chordates [117,262] (Figure 6a). In addition, 4U-RARE is present
in the 5′ region of each Hox4 paralog of the mammalian Hox complement (a4u, b4u, c4u,
d4u), suggesting that it is also present in the single Hox cluster of ancestral vertebrates and
has been retained in each cluster through the multiple rounds of genome duplication [84].
In contrast, some RAREs appear to have evolved only in specific Hox clusters, such as the
one present in the DE neural enhancer (DE-RARE), important for the regulation of Hoxb4
and Hoxb5, which is unique to the mammalian HoxB cluster [84,301,302]. Remarkably,
some RAREs are unique to placental mammals [85,297]. This illustrates how the emergence
and evolution of changes in cis-regulatory regions, such as RAREs, make it possible to
integrate novel roles for RA in regulating Hox genes and other targets in the hindbrain
GRN as well as other tissues. This could have emerged via the co-option of pre-existing
RAREs or via the emergence of new RAREs during chordate evolution. Future efforts to
identify the direct downstream targets of RA signaling during hindbrain development in
vertebrates and invertebrate deuterostomes promise to elucidate how and when novel RA
targets have been integrated into the hindbrain GRN during chordate evolution [303].

2.6.2. Regulatory Evolution of the Cyp26, Rar, and Crabp Gene Families

In addition to the evolution of new regulatory inputs of RA into gene expression, via
novel or co-opted RAREs, the evolving roles of RA in the hindbrain GRN also seem to have
emerged through the evolution of new expression domains of genes, such as Cyp26s, rars,
and Crabps, that are important for shaping and interpreting the concentration of RA along
the A-P axis and in many tissues.

Cyp26 Genes

Comparisons of Cyp26 gene expression patterns between vertebrates and amphioxus
reveal both shared and derived features. These point toward an ancestral A-P patterning
role for Cyp26s in chordates, as well as the elaboration of their inputs into hindbrain
patterning in the vertebrate lineage.
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Figure 6. Diversification of the RA machinery and evolution of the vertebrate hindbrain GRN. (a) Evolving roles of
RAREs in Hox clusters. Schematic illustrating different ways RAREs can evolve using the context of the mammalian HoxB
cluster. Black boxes represent HoxB genes (HoxB1–B9). RAREs are represented on the cluster and color coded in accordance
with their known evolutionary history. (b) Schematic phylogenetic tree summarizing important evolutionary changes in the
regulation of major components of the RA machinery, represented in colored boxes, in accordance with the color code used
in Figures 2 and 5. Important remaining evolutionary questions are indicated. Cartoons of different model organisms are
adapted from [34]. (c) Diagram summarizing known inputs from different components of the vertebrate RA machinery on
different modules of vertebrate hindbrain GRN (colored arrows) in addition to further possible ways other components of
the RA machinery could have influenced and contributed to the elaboration of this GRN (colored arrows-question mark).

The shared aspect of their expression is illustrated by an initial deployment at the
anterior end of the presumptive hindbrain territory. In vertebrates, Cyp26a1 initially plays
a fundamental role in delimiting the future anterior hindbrain, and Cyp26-2 is similarly
expressed in an anterior domain of neural ectoderm during gastrulation in amphioxus.
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This suggests a conserved role for Cyp26s in setting up an anterior sink for lowering levels
of RA that helps to position the future hindbrain-like territory. Consistent with this, the
pharmacological manipulation of Cyp26 activity suggests roles for amphioxus Cyp26s
in A-P patterning of the CNS [304]. In addition, it appears that the conserved aspect of
Cyp26 expression is identifiable at the cis-regulatory level. In vertebrates, RA induces the
embryonic expression of Cyp26a1 via a conserved upstream RARE [305,306] and in silico
analyses have revealed that this RARE is conserved upstream of Cyp26-2 in amphioxus
and binds RAR/RXR heterodimers in vitro [287]. Equivalent RARE sequences have been
identified upstream of Cyp26s in a hemichordate (SkCyp26a) and in an echinoderm (Sp-
Cyp26) [287]. Thus, the RA-dependent regulation of Cyp26s via this element might be a
conserved ancestral feature of deuterostomes. In vivo functional validation of this RARE
in amphioxus and in hemichordates will help determine whether they have equivalent
roles in driving early anterior Cyp26 expression during embryogenesis and could shed
light on the evolutionary origin of such RA-dependent negative feedback mechanisms
via Cyp26 RAREs (Figure 6b). Alternatively, they may have different roles in invertebrate
deuterostomes and could have been co-opted to A-P patterning during chordate evolution.
The evolution of such a robust feedback system for balancing endogenous fluctuations in
levels of RA and protecting against toxic RA levels might have contributed to the establish-
ment of a finely tuned system for precisely regulating cellular RA concentrations. Such a
robust regulatory system may have facilitated its use in more complex patterning contexts
in chordates.

Beyond an ancestral role for Cyp26s acting as anterior sinks for shaping the RA
gradient in chordates, there are differences in their expression between vertebrates and am-
phioxus which suggest other roles. In vertebrates, the Cyp26s display dynamic segmental
expression at multiple stages of hindbrain development, including during rhombomere
formation (Figure 2b). This later expression is linked to their activity in generating shifting
domains of RA degradation that set the anterior limit of expression of key genes that
prefigure the future rhombomere boundaries. They are also involved in creating segmental
variation in RA levels across odd and even rhombomeres, which influences signaling events
important for the formation of sharp segmental boundaries (Figure 3d). In contrast, none
of the amphioxus Cyp26s seem to be expressed in the developing hindbrain-like region
itself [304]. This suggests that these later roles for Cyp26s which are coupled to hindbrain
patterning might have evolved independently in the vertebrate lineage (Figure 6b). The
dynamic, rhombomere-specific expression of vertebrate Cyp26 genes presumably evolved
through the acquisition of new regulatory inputs from segmentally expressed genes, such
as Krox20. However, relatively little is known about how Cyp26 genes are regulated in the
hindbrain, which is an important topic for future research. Current evidence suggests that
regulatory inputs into Cyp26 expression may vary between different vertebrate models.
For example, in mouse, Cyp26c1 is induced by RA in r4 and plays an important role in
maintaining adequate levels of RA, necessary for the induction of Hoxb1 [103], while ze-
brafish Cyp26c1 expression is not regulated by RA [197]. This suggests that the expression
and regulation of Cyp26s during hindbrain development has continued to diversify in
vertebrate evolution, potentially contributing to morphological diversity.

Rar Genes

In the vertebrate hindbrain, it has been suggested that the segmental expression of
rars could be critical for the correct segmental expression of genes regulated by RA, such as
the Hox genes [101,307]. In jawed vertebrates, the expression of multiple rars is regulated
by RA (Figure 6b) and RAREs have been characterized in the regulatory region of these
genes [308,309]. AmphiRAR is upregulated by RA [283], but no RARE has yet been found
near this gene (Figure 6b). Similar to members of the Cyp26 family, some rars display
a rhombomere-restricted expression pattern, e.g., murine rarα and rarβ (Figure 6b) [307].
These segmental expression domains arise in part through feedback circuits between
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RA target genes and rars, which serve to align the expression of multiple RA targets at
segmental boundaries [220].

Crabp Genes

The evolution and diversification of the transport proteins, Crbps and Crabps, may
have enabled further inputs into the diversification and fine-tuning of the RA signaling
pathway in vertebrates. Crabp genes exhibit rhombomeric expression domains during de-
velopment that are broadly conserved across vertebrate models [310,311]. They have been
shown to be sensitive to RA and may be direct RA targets [311–313]. Crabp2a is essential for
hindbrain patterning and segmental Hox expression in zebrafish, where it maintains the
robustness of RA signaling by transporting RA to Cyp26 enzymes for degradation [311].
These features are analogous to the importance of the segmental expression of Cyp26 and
rar genes in hindbrain segmentation. Thus, it is of value to understand when these roles
for Crabp genes evolved. While a putative protostome Crabp-like receptor has previously
been identified [314], this protein family has not been well-characterized beyond jawed
vertebrates and therefore it is unclear whether the role of these transport proteins in the
RA machinery is an innovation of vertebrates [269,315].

Thus, the co-option of the core vertebrate RA machinery to the process of hindbrain
segmentation, together with the elaboration of robust feedback mechanisms from key
components of the RA machinery to precisely maintain the levels of RA and shape the RA
gradient, may have been a driving force in the evolution of the complex segmented structure
of the vertebrate hindbrain. Furthermore, the acquisition of new downstream targets of RA
signaling, via changes in the cohort of RAREs (Figure 6c), could have played an important
role in setting up and maintaining the regulatory circuits in the different modules of the
hindbrain GRN. Considering the segmental expression and the RA-dependent regulation
of multiple core components of the RA machinery, it is interesting to consider the origin
of mechanisms driving such regulatory feedbacks, as well as these segmental expression
patterns. While very little is known about the evolution of these regulatory feedback
loops, it is tempting to think that the segmental expression of components of the RA
machinery could have been facilitated by their integration into the hindbrain GRN, e.g., via
the influence of key members of the segmental patterning module, such as Krox20 and/or
Hox proteins. This integration may have been important for building robustness and for
the evolution of novel roles of RA in the hindbrain GRN.

In summary, the Cyp26s and RARs, with their complex evolutionary history, dynamic
segmental expression patterns, and evolving roles, and the RAREs, with their evolutionary
plasticity and potential for cooption into new functions, provide many opportunities for
generating new interactions (Figure 6c). We favor the idea that the coupling of RA signaling
to the vertebrate hindbrain GRN, together with the evolution of core aspects of the RA
machinery, could have been major drivers of vertebrate hindbrain-related innovations
by modulating the shape and timing of the RA morphogen gradient and modifying its
regulatory output upon target genes (Figure 6c).

2.7. Lamprey as a Model for Understanding the Origin of the Hindbrain RA/Segmentation
Hierarchy in Vertebrates

The important phylogenetic position of the sea lamprey as an extant jawless vertebrate,
coupled to its relative tractability as a model organism, make it a prime model for inves-
tigating when and how the RA signaling pathway became integrated into the hindbrain
GRN during vertebrate evolution. As described above, the precise roles for RA in hind-
brain segmentation and Hox patterning in lamprey remain unclear, and it has previously
been suggested that it may represent an intermediate state in which RA influences Hox
expression but not hindbrain segmentation. Now that the Hox complement has been fully
described, and the timing of hindbrain segmentation and rhombomeric gene expression
are better understood, it is worth considering in more detail the role of RA in hindbrain
patterning in lamprey [33]. The availability of a more complete lamprey germline genome
assembly now enables a more thorough examination of the RA machinery, to further
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elucidate the evolution of RA signaling in relation to the vertebrate hindbrain. Duplication
and reorganization of the genome, as exemplified by the six Hox clusters, has provided an
opportunity for the amplification and divergence of the RA machinery in lamprey.

Previous studies in lamprey have identified components of the RA machinery. For
example, in silico analyses predicted three Cyp26s, namely Cyp26a1, Cyp26b1/c1a, and
Cyp26b1/c1b, but their evolutionary history remains unclear in different lamprey species,
and their expression profiles have yet to be characterized (Figure 5) [287]. With respect to
RA metabolism, while no Rdh10 has been reported in lamprey, an Aldh1a2 homolog has
been identified and shown to be regulated in the spinal cord via the activity of a highly
conserved intronic enhancer [316].

The rars have been relatively well studied in lamprey, with regards to their biochemical
properties in RA signal transduction. Phylogenetic analyses and functional characterization
of these receptors and their counterparts from jawed vertebrates and invertebrate chordates
have suggested that duplication and divergence of the rar genes has led to functional
changes in the RAR receptors during vertebrate evolution [286,317]. Four rars (rar1–4)
have been characterized, but their relationships to the jawed vertebrate rars have not
been unambiguously resolved (Figure 5) [317,318]. RAR3 is the putative ortholog of the
jawed vertebrate RARα and amongst all vertebrate RARs these are thought to be the most
similar to the ancestral vertebrate RAR in terms of sequence and function. Interestingly,
these analyses indicate that none of the lamprey RARs show an RARγ-like ligand-binding
specificity, suggesting RARγ has diverged in the gnathostome lineage. Collectively, these
findings constitute examples of neofunctionalization and plasticity of the RA machinery
in the vertebrate lineage and suggest an evolutionary scenario in which there were at
least two rar paralogs in the vertebrate common ancestor, rarα/3 and rarβ/γ/1/2/4 (Figure 5).
Subsequently, the RAR family diversified further in structure and ligand-binding specificity
in the jawless and jawed vertebrate lineages. While the functional significance of this
diversification remains unclear, such changes could be important for selectively transducing
signals from different kinds of retinoids or different concentrations of RA. This would imply
that aspects of RA/retinoid signaling may differ between jawed and jawless vertebrates
and highlights the value of lamprey as a model for investigating steps in the evolution of
RA signaling in vertebrates.

In summary, early vertebrates likely possessed two rars, at least two Cyp26s, and
it is probable that the early vertebrate had at least one Aldh1a2 gene. However, the
evolution of Rdh10 in vertebrates remains unclear (Figure 5). Considering the important
roles of Cyp26b1 and c1 in hindbrain development in jawed vertebrates, characterizing
the expression and function of Cyp26s in hindbrain development in the sea lamprey will
be important to understand how and when these roles evolved. Examples of important
remaining evolutionary questions that lamprey could help to answer include: (1) When
did Cyp26b1/Cyp26c1 become involved in hindbrain development? (2) When were they
coupled to hindbrain segmentation? It will be worth examining whether the RA-dependent
feedback mechanisms characterized for some of the jawed vertebrate Cyp26 and rar genes
are also active in lamprey.

3. Conclusions

The vertebrate hindbrain is a complex structure and represents an important example
of how the integration of conserved signaling pathways and regulatory networks of axial
patterning genes can influence the evolution of new traits. Hindbrain development in
vertebrates is governed by a network of genetic interactions that orchestrates the formation
and patterning of rhombomeres. The hindbrain GRN model provides a framework for
interpreting data from multiple experimental sources and examining conservation of
developmental mechanisms between species. RA signaling plays crucial roles at multiple
stages of hindbrain development. An RA gradient initiates the early deployment of
nested gene expression domains to subdivide the A-P axis. Subsequently, segment-specific
variation in RA signaling influences the cross-regulation of these genes to pre-figure
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rhombomeres and mediates community signaling that refines rhombomere boundaries. RA
signaling performs these roles by being wired into multiple modules of the GRN, either via
RAREs in RA target genes, or through the segmental regulation of important components
of the RA machinery, including Cyp26, rar, and Crabp genes.

From an evolutionary perspective, the GRN appears to be highly conserved across
jawed vertebrates and studies on the sea lamprey have revealed that a segmented hindbrain
with an underlying Hox code was an ancestral vertebrate feature. While multiple aspects
of the hindbrain GRN appear to be conserved in lamprey, the roles for RA signaling in
this process are currently poorly characterized and may have diverged between jawed
and jawless vertebrates. Further studies of RA signaling in the context of hindbrain
segmentation in lamprey promise to reveal how and when the roles for RA signaling in the
hindbrain GRN evolved and diversified in the vertebrate lineage.

Looking deeper in evolution, studies in invertebrate models suggest that many compo-
nents of the RA signaling machinery can be traced back to early metazoans, suggesting that
RA signaling is an evolutionarily ancient mechanism. While a core RA signaling machinery
appears to be present in deuterostomes, evidence suggests that the lineage-specific duplica-
tion of multiple RA signaling components may have enabled its functional diversification
across deuterostome lineages. While the functional and evolutionary significance of such
diversification is unclear, it is possible that major genome rearrangements, such as the
whole genome duplication events that occurred in vertebrate evolution, may have provided
important contexts for facilitating diversification in the role/s of RA signaling. Further
functional characterization of the RA machinery in vertebrates and invertebrates, as well
as the spatiotemporal detection of RA levels during hindbrain development, will reveal the
contributions of these conserved and divergent aspects of RA signaling to the evolution of
the hindbrain GRN.

Furthermore, the A-P deployment of cohorts of patterning genes, such as Hox genes,
is highly conserved and probably dates to the bilaterian ancestor. However, the cou-
pling of RA signaling to Hox genes and A-P patterning appears to have occurred in the
deuterostome lineage. Indeed, comparisons with invertebrate chordates have revealed
that the ancestral chordate employed an RA-Hox hierarchy to pattern the hindbrain ter-
ritory, although the hindbrain GRN appears to have been modified/elaborated in early
vertebrates by the evolution of novel regulatory interactions for segmental subdivision and
rhombomeric segmentation. These could include the regulation of the RA machinery by
segmentally restricted factors, as well as RA-dependent regulatory feedback mechanisms
into the RA machinery. Comparisons of RA targets and the regulatory inputs into the RA
machinery between vertebrate and invertebrate models promise to identify the nature of
these novel regulatory interactions and how RA signaling became coupled to rhombomere
formation and segment identity during vertebrate evolution.
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