Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = Holzapfel–Gasser–Ogden model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
43 pages, 3654 KB  
Article
A Block-Coupled Finite Volume Method for Incompressible Hyperelastic Solids
by Anja Horvat, Philipp Milović, Igor Karšaj and Željko Tuković
Appl. Sci. 2025, 15(23), 12660; https://doi.org/10.3390/app152312660 - 28 Nov 2025
Viewed by 368
Abstract
This work introduces a block-coupled finite volume method for simulating the large-strain deformation of incompressible hyperelastic solids. Conventional displacement-based finite-volume solvers for incompressible materials often exhibit stability and convergence issues, particularly on unstructured meshes and in finite-strain regimes typical of biological tissues. To [...] Read more.
This work introduces a block-coupled finite volume method for simulating the large-strain deformation of incompressible hyperelastic solids. Conventional displacement-based finite-volume solvers for incompressible materials often exhibit stability and convergence issues, particularly on unstructured meshes and in finite-strain regimes typical of biological tissues. To address these issues, a mixed displacement–pressure formulation is adopted and solved using a block-coupled strategy, enabling simultaneous solution of displacement and pressure increments. This eliminates the need for under-relaxation and improves robustness compared to segregated approaches. The method incorporates several enhancements, including temporally consistent Rhie–Chow interpolation, accurate treatment of traction boundary conditions, and compatibility with a wide range of constitutive models, from linear elasticity to advanced hyperelastic laws such as Holzapfel–Gasser–Ogden and Guccione. Implemented within the solids4Foam toolbox for OpenFOAM, the solver is validated against analytical and finite-element benchmarks across diverse test cases, including uniaxial extension, simple shear, pressurised cylinders, arterial wall, and idealised ventricle inflation. Results demonstrate second-order spatial and temporal accuracy, excellent agreement with reference solutions, and reliable performance in three-dimensional scenarios. The proposed approach establishes a robust foundation for fluid–structure interaction simulations in vascular and soft tissue biomechanics. Full article
(This article belongs to the Special Issue Applied Numerical Analysis and Computing in Mechanical Engineering)
Show Figures

Figure 1

13 pages, 3541 KB  
Article
The Impact of Collagen Fiber and Slit Orientations on Meshing Ratios in Skin Meshing Models
by Masoumeh Razaghi Pey Ghaleh and Denis O’Mahoney
Biomimetics 2025, 10(11), 771; https://doi.org/10.3390/biomimetics10110771 - 14 Nov 2025
Cited by 1 | Viewed by 520
Abstract
Skin meshing facilitates the greater expansion of donor skin through patterned slits and is widely used for treating extensive burn injuries. However, the actual expansion often falls below manufacturers’ claims. Previous computational analyses using the isotropic Yeoh model have shown that Langer’s line [...] Read more.
Skin meshing facilitates the greater expansion of donor skin through patterned slits and is widely used for treating extensive burn injuries. However, the actual expansion often falls below manufacturers’ claims. Previous computational analyses using the isotropic Yeoh model have shown that Langer’s line orientation and slit direction significantly affect induced stress and meshing ratios, yet the use of nonlinear anisotropic models that represent collagen fiber alignment corresponding to Langer’s lines remains unexplored. This study employs a nonlinear anisotropic Gasser–Ogden–Holzapfel (GOH) model with slit orientations of 0°, 45°, and 90°, consistent with geometries reported in the literature, to quantify induced stress in skin meshing by incorporating collagen fibers within the dermis layer. The GOH parameters were calibrated to human back skin data uniaxially stretched parallel and perpendicular to Langer’s lines using Levenberg–Marquardt optimization in the GIBBON toolbox (MATLAB R2023a) coupled with FEBio v4.0, achieving a standard deviation of 3% relative to experimental data. The GOH model predicted the highest induced stress at 100% strain for the 45° slit parallel to Langer’s lines and the lowest for the 90° slit perpendicular, exceeding 40 MPa due to absence of damage and rupture modeling but accurately representing anisotropic mesh behavior. Full article
Show Figures

Figure 1

17 pages, 1920 KB  
Article
Addressing Parameter Variability in Corneal Biomechanical Models: A Stepwise Approach for Parameters’ Optimization
by José González-Cabrero, Carmelo Gómez, Manuel Paredes and Francisco Cavas
Biomimetics 2025, 10(10), 683; https://doi.org/10.3390/biomimetics10100683 - 10 Oct 2025
Viewed by 651
Abstract
Biomechanical modeling of the cornea is crucial for understanding the progression of some ocular diseases and optimizing surgical treatments. However, hyperelastic non-linear material models, such as those used for corneal tissue, often yield highly variable parameter sets in the scientific literature, influenced by [...] Read more.
Biomechanical modeling of the cornea is crucial for understanding the progression of some ocular diseases and optimizing surgical treatments. However, hyperelastic non-linear material models, such as those used for corneal tissue, often yield highly variable parameter sets in the scientific literature, influenced by factors like the chosen optimization intervals and differences between tensile and inflation test curve optimization, both of which are addressed in this study. This variability complicates the understanding of corneal mechanical properties. In this research, the aim is to optimize and calibrate the key parameters of the corneal material model, particularly focusing on c1, c2, k1 and k2, using the Holzapfel–Gasser–Ogden (HGO) hyperelastic model, and a novel methodology is proposed that separately estimates the isotropic and anisotropic components in a stepwise manner, addressing the issue of multiple parameter sets fitting experimental curves similarly. This approach helps to standardize corneal material models and improve the reliability of parameter estimations. Moreover, accurate biomechanical characterization within this framework contributes not only to clinical applications but also to biomimetics, inspiring the design of artificial corneal substitutes and bioengineered materials. Full article
(This article belongs to the Special Issue Advances in Computational Methods for Biomechanics and Biomimetics)
Show Figures

Graphical abstract

20 pages, 7144 KB  
Article
Biodynamic Characteristics and Blood Pressure Effects of Stanford Type B Aortic Dissection Based on an Accurate Constitutive Model
by Yiwen Wang, Libo Xin, Lijie Zhou, Xuefeng Wu, Jinong Zhang and Zhaoqi Wang
Appl. Sci. 2025, 15(11), 5853; https://doi.org/10.3390/app15115853 - 23 May 2025
Viewed by 956
Abstract
Aortic dissection (AD) is a highly lethal cardiovascular emergency, and clinical studies have found that a high percentage of AD patients are hypertensive. In previous studies, the AD model was simplified, such as by treating the vessel wall as a single-layer rigid material, [...] Read more.
Aortic dissection (AD) is a highly lethal cardiovascular emergency, and clinical studies have found that a high percentage of AD patients are hypertensive. In previous studies, the AD model was simplified, such as by treating the vessel wall as a single-layer rigid material, ignoring the complex biomechanical factors of the vascular lumen. This study elucidates key biomechanical mechanisms by which hypertension promotes primary AD progression using multiscale modeling. First, based on experimental data from longitudinal and circumferential uniaxial tensile testing of porcine aortic walls (5–7-month-old specimens), a constitutive model of the aortic wall was developed using the Holzapfel–Gasser–Ogden (HGO) framework. The material parameters were calibrated via inverse optimization in ABAQUS-ISIGHT, achieving close alignment with mechanical properties of the human aorta. Using this validated model to define the hyperelastic properties of the aortic wall, a multiphysics coupling platform was constructed in COMSOL Multiphysics 6.2, integrating computational fluid dynamics (CFD) and fluid–structure interaction (FSI) algorithms. This framework systematically quantified the effects of blood pressure (bp) fluctuations on compressive stresses, von Mises stresses, and deformation of the intimal flap within the AD lesion region. With constant blood rheology, elevated blood pressure enhances wall stresses (compressive and von Mises), and intima-media sheet deformation, this can trigger initial rupture tears, false lumen dilation, and branch arterial flow obstruction, ultimately deteriorating end-organ perfusion. Full article
Show Figures

Figure 1

21 pages, 6809 KB  
Article
Improved Mechanical Characterization of Soft Tissues Including Mounting Stretches
by Toni Škugor, Lana Virag, Gerhard Sommer and Igor Karšaj
Math. Comput. Appl. 2024, 29(4), 55; https://doi.org/10.3390/mca29040055 - 12 Jul 2024
Viewed by 1606
Abstract
Finite element modeling has become one of the main tools necessary for understanding cardiovascular homeostasis and lesion progression. The accuracy of such simulations significantly depends on the precision of material parameters, which are obtained via the mechanical characterization process, i.e., experimental testing and [...] Read more.
Finite element modeling has become one of the main tools necessary for understanding cardiovascular homeostasis and lesion progression. The accuracy of such simulations significantly depends on the precision of material parameters, which are obtained via the mechanical characterization process, i.e., experimental testing and material parameter estimation using the optimization process. The process of mounting specimens on the machine often introduces slight preloading to avoid sagging and to ensure perpendicular orientation with respect to the loading axes. As such, the reference configuration proposes non-zero forces at zero-state displacements. This error further extends to the material parameters’ estimation where initial loading is usually manually annulled. In this work, we have developed a new computational procedure that includes prestretches during mechanical characterization. The verification of the procedure was performed on the series of simulated virtual planar biaxial experiments using the Gasser–Ogden–Holzapfel material model where the exact material parameters could be set and compared to the obtained ones. Furthermore, we have applied our procedure to the data gathered from biaxial experiments on aortic tissue and compared it with the results obtained through standard optimization procedure. The analysis has shown a significant difference between the material parameters obtained. The rate of error increases with the prestretches and decreases with an increase in maximal experimental stretches. Full article
Show Figures

Figure 1

13 pages, 4648 KB  
Article
Data-Driven Anisotropic Biomembrane Simulation Based on the Laplace Stretch
by Alexey Liogky and Victoria Salamatova
Computation 2024, 12(3), 39; https://doi.org/10.3390/computation12030039 - 22 Feb 2024
Cited by 1 | Viewed by 2224
Abstract
Data-driven simulations are gaining popularity in mechanics of biomaterials since they do not require explicit form of constitutive relations. Data-driven modeling based on neural networks lacks interpretability. In this study, we propose an interpretable data-driven finite element modeling for hyperelastic materials. This approach [...] Read more.
Data-driven simulations are gaining popularity in mechanics of biomaterials since they do not require explicit form of constitutive relations. Data-driven modeling based on neural networks lacks interpretability. In this study, we propose an interpretable data-driven finite element modeling for hyperelastic materials. This approach employs the Laplace stretch as the strain measure and utilizes response functions to define constitutive equations. To validate the proposed method, we apply it to inflation of anisotropic membranes on the basis of synthetic data for porcine skin represented by Holzapfel-Gasser-Ogden model. Our results demonstrate applicability of the method and show good agreement with reference displacements, although some discrepancies are observed in the stress calculations. Despite these discrepancies, the proposed method demonstrates its potential usefulness for simulation of hyperelastic biomaterials. Full article
(This article belongs to the Special Issue 10th Anniversary of Computation—Computational Biology)
Show Figures

Figure 1

20 pages, 3186 KB  
Article
Computational Study of Abdominal Aortic Aneurysm Walls Accounting for Patient-Specific Non-Uniform Intraluminal Thrombus Thickness and Distinct Material Models: A Pre- and Post-Rupture Case
by Platon Sarantides, Anastasios Raptis, Dimitrios Mathioulakis, Konstantinos Moulakakis, John Kakisis and Christos Manopoulos
Bioengineering 2024, 11(2), 144; https://doi.org/10.3390/bioengineering11020144 - 31 Jan 2024
Cited by 3 | Viewed by 3399
Abstract
An intraluminal thrombus (ILT) is present in the majority of abdominal aortic aneurysms, playing a crucial role in their growth and rupture. Although most computational studies do not include the ILT, in the present study, this is taken into account, laying out the [...] Read more.
An intraluminal thrombus (ILT) is present in the majority of abdominal aortic aneurysms, playing a crucial role in their growth and rupture. Although most computational studies do not include the ILT, in the present study, this is taken into account, laying out the whole simulation procedure, namely, from computed tomography scans to medical image segmentation, geometry reconstruction, mesh generation, biomaterial modeling, finite element analysis, and post-processing, all carried out in open software. By processing the tomography scans of a patient’s aneurysm before and after rupture, digital twins are reconstructed assuming a uniform aortic wall thickness. The ILT and the aortic wall are assigned different biomaterial models; namely, the first is modeled as an isotropic linear elastic material, and the second is modeled as the Mooney–Rivlin hyperelastic material as well as the transversely isotropic hyperelastic Holzapfel–Gasser–Ogden nonlinear material. The implementation of the latter requires the designation of local Cartesian coordinate systems in the aortic wall, suitably oriented in space, for the proper orientation of the collagen fibers. The composite aneurysm geometries (ILT and aortic wall structures) are loaded with normal and hypertensive static intraluminal pressure. Based on the calculated stress and strain distributions, ILT seems to be protecting the aneurysm from a structural point of view, as the highest stresses appear in the thrombus-free areas of the aneurysmal wall. Full article
(This article belongs to the Special Issue Advances in Computational Modelling of Abdominal Aortic Aneurysm)
Show Figures

Graphical abstract

23 pages, 1281 KB  
Article
Anisotropic Hyperelastic Material Characterization: Stability Criterion and Inverse Calibration with Evolutionary Strategies
by Claudio Canales, Claudio García-Herrera, Eugenio Rivera, Demetrio Macías and Diego Celentano
Mathematics 2023, 11(4), 922; https://doi.org/10.3390/math11040922 - 11 Feb 2023
Cited by 9 | Viewed by 3687
Abstract
In this work, we propose a reliable and stable procedure to characterize anisotropic hyperelastic materials. For this purpose, a metaheuristic optimization method known as evolutionary strategies is used. The advantage of this technique with respect to traditional methods used for non-linear optimization, such [...] Read more.
In this work, we propose a reliable and stable procedure to characterize anisotropic hyperelastic materials. For this purpose, a metaheuristic optimization method known as evolutionary strategies is used. The advantage of this technique with respect to traditional methods used for non-linear optimization, such as the Levenberg–Marquardt Method, is that this metaheuristic algorithm is oriented to the global optimization of a problem, is independent of gradients and allows to solve problems with constraints. These features are essential when characterizing hyperelastic materials that have non-linearities and are conditioned to regions of stability. To characterize the mechanical behavior of the arteries analyzed in this work, the anisotropic hyperelastic models of Holzapfel–Gasser–Ogden and Gasser–Holzapfel–Ogden are used. An important point of the analysis is that these models may present a non-physical behavior: this drawback is overcome by defining a new criterion of stabilization in conjunction with the evolutionary strategies. Finally, the finite element simulations are used in conjunction with the evolutionary strategies to characterize experimental data of the artery pressurization test, ensuring that the parameters obtained are stable and representative of the material response. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

20 pages, 6201 KB  
Article
Virgin Passive Colon Biomechanics and a Literature Review of Active Contraction Constitutive Models
by Aroj Bhattarai, Andreas Johannes Horbach, Manfred Staat, Wojciech Kowalczyk and Thanh Ngoc Tran
Biomechanics 2022, 2(2), 138-157; https://doi.org/10.3390/biomechanics2020013 - 22 Mar 2022
Cited by 4 | Viewed by 5082
Abstract
The objective of this paper is to present our findings on the biomechanical aspects of the virgin passive anisotropic hyperelasticity of the porcine colon based on equibiaxial tensile experiments. Firstly, the characterization of the intestine tissues is discussed for a nearly incompressible hyperelastic [...] Read more.
The objective of this paper is to present our findings on the biomechanical aspects of the virgin passive anisotropic hyperelasticity of the porcine colon based on equibiaxial tensile experiments. Firstly, the characterization of the intestine tissues is discussed for a nearly incompressible hyperelastic fiber-reinforced Holzapfel–Gasser–Ogden constitutive model in virgin passive loading conditions. The stability of the evaluated material parameters is checked for the polyconvexity of the adopted strain energy function using positive eigenvalue constraints of the Hessian matrix with MATLAB. The constitutive material description of the intestine with two collagen fibers in the submucosal and muscular layer each has been implemented in the FORTRAN platform of the commercial finite element software LS-DYNA, and two equibiaxial tensile simulations are presented to validate the results with the optical strain images obtained from the experiments. Furthermore, this paper also reviews the existing models of the active smooth muscle cells, but these models have not been computationally studied here. The review part shows that the constitutive models originally developed for the active contraction of skeletal muscle based on Hill’s three-element model, Murphy’s four-state cross-bridge chemical kinetic model and Huxley’s sliding-filament hypothesis, which are mainly used for arteries, are appropriate for numerical contraction numerical analysis of the large intestine. Full article
(This article belongs to the Topic Trends and Prospects in Biomechanics)
Show Figures

Figure 1

18 pages, 5552 KB  
Article
Determination of the Material Parameters in the Holzapfel-Gasser-Ogden Constitutive Model for Simulation of Age-Dependent Material Nonlinear Behavior for Aortic Wall Tissue under Uniaxial Tension
by Up Huh, Chung-Won Lee, Ji-Hun You, Chan-Hee Song, Chi-Seung Lee and Dong-Man Ryu
Appl. Sci. 2019, 9(14), 2851; https://doi.org/10.3390/app9142851 - 17 Jul 2019
Cited by 25 | Viewed by 12855
Abstract
In this study, computational simulations and experiments were performed to investigate the mechanical behavior of the aorta wall because of the increasing occurrences of aorta-related diseases. The study focused on the deformation and strength of porcine and healthy human abdominal aortic tissues under [...] Read more.
In this study, computational simulations and experiments were performed to investigate the mechanical behavior of the aorta wall because of the increasing occurrences of aorta-related diseases. The study focused on the deformation and strength of porcine and healthy human abdominal aortic tissues under uniaxial tensile loading. The experiments for the mechanical behavior of the arterial tissue were conducted using a uniaxial tensile test apparatus to validate the simulation results. In addition, the strength and stretching of the tissues in the abdominal aorta of a healthy human as a function of age were investigated based on the uniaxial tensile tests. Moreover, computational simulations using the ABAQUS finite element analysis program were conducted on the experimental scenarios based on age, and the Holzapfel–Gasser–Ogden (HGO) model was applied during the simulation. The material parameters and formulae to be used in the HGO model were proposed to identify the failure stress and stretch correlation with age. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

Back to TopTop