Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (101)

Search Parameters:
Keywords = Himawari-8 Advanced Himawari Imager (AHI)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 7358 KiB  
Article
On the Hybrid Algorithm for Retrieving Day and Night Cloud Base Height from Geostationary Satellite Observations
by Tingting Ye, Zhonghui Tan, Weihua Ai, Shuo Ma, Xianbin Zhao, Shensen Hu, Chao Liu and Jianping Guo
Remote Sens. 2025, 17(14), 2469; https://doi.org/10.3390/rs17142469 - 16 Jul 2025
Viewed by 240
Abstract
Most existing cloud base height (CBH) retrieval algorithms are only applicable for daytime satellite observations due to their dependence on visible observations. This study presents a novel algorithm to retrieve day and night CBH using infrared observations of the geostationary Advanced Himawari Imager [...] Read more.
Most existing cloud base height (CBH) retrieval algorithms are only applicable for daytime satellite observations due to their dependence on visible observations. This study presents a novel algorithm to retrieve day and night CBH using infrared observations of the geostationary Advanced Himawari Imager (AHI). The algorithm is featured by integrating deep learning techniques with a physical model. The algorithm first utilizes a convolutional neural network-based model to extract cloud top height (CTH) and cloud water path (CWP) from the AHI infrared observations. Then, a physical model is introduced to relate cloud geometric thickness (CGT) to CWP by constructing a look-up table of effective cloud water content (ECWC). Thus, the CBH can be obtained by subtracting CGT from CTH. The results demonstrate good agreement between our AHI CBH retrievals and the spaceborne active remote sensing measurements, with a mean bias of −0.14 ± 1.26 km for CloudSat-CALIPSO observations at daytime and −0.35 ± 1.84 km for EarthCARE measurements at nighttime. Additional validation against ground-based millimeter wave cloud radar (MMCR) measurements further confirms the effectiveness and reliability of the proposed algorithm across varying atmospheric conditions and temporal scales. Full article
Show Figures

Graphical abstract

18 pages, 4812 KiB  
Article
A Novel Aerosol Optical Depth Retrieval Method Based on SDAE from Himawari-8/AHI Next-Generation Geostationary Satellite in Hubei Province
by Shiquan Deng, Ting Bai, Zhe Chen and Yepei Chen
Remote Sens. 2025, 17(8), 1396; https://doi.org/10.3390/rs17081396 - 14 Apr 2025
Viewed by 472
Abstract
Atmospheric aerosols play an important role in the ecological environment, climate change, and human health. Aerosol optical depth (AOD) is the main measurement of aerosols. The next-generation geostationary satellite Himawari-8, loaded with the Advanced Himawari Imager (AHI), provides observation-based estimates of the hourly [...] Read more.
Atmospheric aerosols play an important role in the ecological environment, climate change, and human health. Aerosol optical depth (AOD) is the main measurement of aerosols. The next-generation geostationary satellite Himawari-8, loaded with the Advanced Himawari Imager (AHI), provides observation-based estimates of the hourly AOD. However, a highly accurate evaluation of AOD using AHI is still limited. In this paper, we establish a Stacked Denoising AutoEncoder (SDAE) model to retrieve highly accurate AOD using AHI. We explore the SDAE to retrieve AOD by taking the ground-observed AOD as the output and taking the AHI image, the month, hour, latitude, and longitude as the input data. This approach was tested in the Hubei province of China. Traditional machine learning methods such as Extreme Learning Machines (ELMs), BackPropagation Neural Networks (BPNNs), and Support Vector Machines (SVMs) are also used to evaluate model performance. The results show that the proposed method has the highest accuracy. We also compare the proposed method with ground-observed AOD measurements at the Wuhan University site, showing good consistency between the satellite-retrieved AOD and the ground-observed value. The study of the spatiotemporal change pattern of the hourly AOD in the Hubei province shows that the algorithm has good stability in the face of changes in the angle and intensity of sunlight. Full article
(This article belongs to the Special Issue Near Real-Time Remote Sensing Data and Its Geoscience Applications)
Show Figures

Figure 1

33 pages, 21153 KiB  
Article
South China Sea SST Fronts, 2015–2022
by Igor M. Belkin and Yi-Tao Zang
Remote Sens. 2025, 17(5), 817; https://doi.org/10.3390/rs17050817 - 27 Feb 2025
Viewed by 1091
Abstract
High-resolution (2 km), high-frequency (hourly) SST data of the Advanced Himawari Imager (AHI) flown onboard the Japanese Himawari-8 geostationary satellite were used to derive the monthly climatology of temperature fronts in the South China Sea. The SST data from 2015 to 2022 were [...] Read more.
High-resolution (2 km), high-frequency (hourly) SST data of the Advanced Himawari Imager (AHI) flown onboard the Japanese Himawari-8 geostationary satellite were used to derive the monthly climatology of temperature fronts in the South China Sea. The SST data from 2015 to 2022 were processed with the Belkin–O’Reilly algorithm to generate maps of SST gradient magnitude GM. The GM maps were log-transformed to enhance contrasts in digital maps and reveal additional features (fronts). The combination of high-resolution, cloud-free, four-day-composite SST imagery from AHI, the advanced front-preserving gradient algorithm BOA, and digital contrast enhancement with the log-transformation of SST gradients allowed us to identify numerous mesoscale/submesoscale fronts (including a few fronts that have never been reported) and document their month-to-month variability and spatial patterns. The spatiotemporal variability of SST fronts was analyzed in detail in five regions: (1) In the Taiwan Strait, six fronts were identified: the China Coastal Front, Taiwan Bank Front, Changyun Ridge Front, East Penghu Channel Front, and Eastern/Western Penghu Islands fronts; (2) the Guangdong Shelf is dominated by the China Coastal Front in winter, with the eastern and western Guangdong fronts separated by the Pearl River outflow in summer; (3) Hainan Island is surrounded by upwelling fronts of various nature (wind-driven coastal and topographic) and tidal mixing fronts; in the western Beibu Gulf, the Red River Outflow Front extends southward as the Vietnam Coastal Front, while the northern Beibu Gulf features a tidal mixing front off the Guangxi coast; (4) Off SE Vietnam, the 11°N coastal upwelling gives rise to a summertime front, while the Mekong Outflow and associated front extend seasonally toward Cape Camau, close to the Gulf of Thailand Entrance Front; (5) In the Luzon Strait, the Kuroshio Front manifests as a chain of three fronts across the Babuyan Islands, while west of Luzon Island a broad offshore frontal zone persists in winter. The summertime eastward jet (SEJ) off SE Vietnam is documented from five-day mean SST data. The SEJ emerges in June–September off the 11°N coastal upwelling center and extends up to 114°E. The zonally oriented SEJ is observed to be located between two large gyres, each about 300 km in diameter. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

29 pages, 12829 KiB  
Article
Evaluating the Relationship Between Vegetation Status and Soil Moisture in Semi-Arid Woodlands, Central Australia, Using Daily Thermal, Vegetation Index, and Reflectance Data
by Mauro Holzman, Ankur Srivastava, Raúl Rivas and Alfredo Huete
Remote Sens. 2025, 17(4), 635; https://doi.org/10.3390/rs17040635 - 13 Feb 2025
Cited by 1 | Viewed by 1235
Abstract
Wet rainfall pulses control vegetation growth through evapotranspiration in most dryland areas. This topic has not been extensively analyzed with respect to the vast semi-arid ecosystems of Central Australia. In this study, we investigated vegetation water responses to in situ root zone soil [...] Read more.
Wet rainfall pulses control vegetation growth through evapotranspiration in most dryland areas. This topic has not been extensively analyzed with respect to the vast semi-arid ecosystems of Central Australia. In this study, we investigated vegetation water responses to in situ root zone soil moisture (SM) variations in savanna woodlands (Mulga) in Central Australia using satellite-based optical and thermal data. Specifically, we used the Land Surface Water Index (LSWI) derived from the Advanced Himawari Imager on board the Himawari 8 (AHI) satellite, alongside Land Surface Temperature (LST) from MODIS Terra and Aqua (MOD/MYD11A1), as indicators of vegetation water status and surface energy balance, respectively. The analysis covered the period from 2016 to 2021. The LSWI increased with the magnitude of wet pulses and showed significant lags in the temporal response to SM, with behavior similar to that of the Enhanced Vegetation Index (EVI). By contrast, LST temporal responses were quicker and correlated with daily in situ SM at different depths. These results were consistent with in situ relationships between LST and SM, with the decreases in LST being coherent with wet pulse magnitude. Daily LSWI and EVI scores were best related to subsurface SM through quadratic relationships that accounted for the lag in vegetation response. Tower flux measures of gross primary production (GPP) were also related to the magnitude of wet pulses, being more correlated with the LSWI and EVI than LST. The results indicated that the vegetation response varied with SM depths. We propose a conceptual model for the relationship between LST and SM in the soil profile, which is useful for the monitoring/forecasting of wet pulse impacts on vegetation. Understanding the temporal changes in rainfall-driven vegetation in the thermal/optical spectra associated with increases in SM can allow us to predict the spatial impact of wet pulses on vegetation dynamics in extensive drylands. Full article
Show Figures

Graphical abstract

30 pages, 13659 KiB  
Article
Spatial Gap-Filling of Himawari-8 Hourly AOD Products Using Machine Learning with Model-Based AOD and Meteorological Data: A Focus on the Korean Peninsula
by Youjeong Youn, Seoyeon Kim, Seung Hee Kim and Yangwon Lee
Remote Sens. 2024, 16(23), 4400; https://doi.org/10.3390/rs16234400 - 25 Nov 2024
Cited by 3 | Viewed by 1646
Abstract
Given the complex spatiotemporal variability of aerosols, high-frequency satellite observations are essential for accurately mapping their distribution. However, optical remote sensing encounters difficulties in detecting Aerosol Optical Depth (AOD) over cloud-covered regions, creating data gaps that limit comprehensive environmental analysis. This study introduces [...] Read more.
Given the complex spatiotemporal variability of aerosols, high-frequency satellite observations are essential for accurately mapping their distribution. However, optical remote sensing encounters difficulties in detecting Aerosol Optical Depth (AOD) over cloud-covered regions, creating data gaps that limit comprehensive environmental analysis. This study introduces a spatial gap-filling method for Himawari-8/Advanced Himawari Imager (AHI) hourly AOD data, using a Random Forest (RF) model that integrates meteorological variables and model-based AOD data. Developed and validated over South Korea from 1 January to 31 December 2019, the model effectively improved data coverage from 6% to 100%. The approach demonstrated high performance in blind tests, achieving a root mean square error (RMSE) of 0.064 and a correlation coefficient (CC) of 0.966. Meteorological analysis indicated optimal model performance under cold, dry conditions (RMSE: 0.047, CC: 0.956), compared to humid conditions (RMSE: 0.105, CC: 0.921). Validation against Aerosol Robotic Network (AERONET) ground observations showed that, while the original Himawari-8 data exhibited higher accuracy (RMSE: 0.189, CC: 0.815, n = 346), the gap-filled dataset maintained reasonable precision (RMSE: 0.208, CC: 0.711) and significantly increased the number of valid data points (n = 4149). Furthermore, the gap-filled dataset successfully captured seasonal AOD patterns, with values ranging from 0.245–0.300 in winter to 0.381–0.391 in summer, providing a comprehensive view of aerosol dynamics across South Korea. Full article
Show Figures

Figure 1

24 pages, 6198 KiB  
Article
The China Coastal Front from Himawari-8 AHI SST Data—Part 2: South China Sea
by Igor M. Belkin, Shang-Shang Lou, Yi-Tao Zang and Wen-Bin Yin
Remote Sens. 2024, 16(18), 3415; https://doi.org/10.3390/rs16183415 - 14 Sep 2024
Cited by 2 | Viewed by 999
Abstract
High-resolution (2 km) high-frequency (hourly) SST data from 2015 to 2021 provided by the Advanced Himawari Imager (AHI) onboard the Japanese Himawari-8 geostationary satellite were used to study spatial and temporal variability of the China Coastal Front (CCF) in the South China Sea. [...] Read more.
High-resolution (2 km) high-frequency (hourly) SST data from 2015 to 2021 provided by the Advanced Himawari Imager (AHI) onboard the Japanese Himawari-8 geostationary satellite were used to study spatial and temporal variability of the China Coastal Front (CCF) in the South China Sea. The SST data were processed with the Belkin and O’Reilly (2009) algorithm to generate monthly maps of the CCF’s intensity (defined as SST gradient magnitude GM) and frontal frequency (FF). The horizontal structure of the CCF was investigated from cross-frontal distributions of SST along 11 fixed lines that allowed us to determine inshore and offshore boundaries of the CCF and calculate the CCF’s strength (defined as total cross-frontal step of SST). Combined with the results of Part 1 of this study, where the CCF was documented in the East China Sea, the new results reported in this paper allowed the CCF to be traced from the Yangtze Bank to Hainan Island. The CCF is continuous in winter, when its intensity peaks at 0.15 °C/km (based on monthly data). In summer, when the Guangdong Coastal Current reverses and flows eastward, the CCF’s intensity is reduced to 0.05 °C/km or less, especially off western Guangdong, where the CCF vanishes almost completely. Owing to its breadth (50–100 km, up to 200 km in the Taiwan Strait), the CCF is a very strong front, especially in winter, when the total SST step across the CCF peaks at 9 °C in the Taiwan Strait. The CCF’s strength decreases westward to 6 °C off eastern Guangdong, 5 °C off western Guangdong, and 2 °C off Hainan Island, all in mid-winter. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

23 pages, 24947 KiB  
Article
Quality Assessment and Application Scenario Analysis of AGRI Land Aerosol Product from the Geostationary Satellite Fengyun-4B in China
by Nan Wang, Bingqian Li, Zhili Jin and Wei Wang
Sensors 2024, 24(16), 5309; https://doi.org/10.3390/s24165309 - 16 Aug 2024
Cited by 2 | Viewed by 1172
Abstract
The Advanced Geostationary Radiation Imager (AGRI) sensor on board the geostationary satellite Fengyun-4B (FY-4B) is capable of capturing particles in different phases in the atmospheric environment and acquiring aerosol observation data with high spatial and temporal resolution. To understand the quality of the [...] Read more.
The Advanced Geostationary Radiation Imager (AGRI) sensor on board the geostationary satellite Fengyun-4B (FY-4B) is capable of capturing particles in different phases in the atmospheric environment and acquiring aerosol observation data with high spatial and temporal resolution. To understand the quality of the Land Aerosol (LDA) product of AGRI and its application prospects, we conducted a comprehensive evaluation of the AGRI LDA AOD. Using the 550 nm AGRI LDA AOD (550 nm) of nearly 1 year (1 October 2022 to 30 September 2023) to compare with the Aerosol Robotic Network (AERONET), MODIS MAIAC, and Himawari-9/AHI AODs. Results show the erratic algorithmic performance of AGRI LDA AOD, the correlation coefficient (R), mean error (Bias), root mean square error (RMSE), and the percentage of data with errors falling within the expected error envelope of ±(0.05+0.15×AODAERONET) (within EE15) of the LDA AOD dataset are 0.55, 0.328, 0.533, and 34%, respectively. The LDA AOD appears to be overestimated easily in the southern and western regions of China and performs poorly in the offshore areas, with an R of 0.43, a Bias of 0.334, a larger RMSE of 0.597, and a global climate observing system fraction (GCOSF) percentage of 15% compared to the inland areas (R = 0.60, Bias = 0.163, RMSE = 0.509, GCOSF = 17%). Future improvements should focus on surface reflectance calculation, water vapor attenuation, and more suitable aerosol model selection to improve the algorithm’s accuracy. Full article
(This article belongs to the Special Issue Recent Trends in Air Quality Sensing)
Show Figures

Figure 1

16 pages, 15964 KiB  
Article
Quantifying the Impact of Aerosols on Geostationary Satellite Infrared Radiance Simulations: A Study with Himawari-8 AHI
by Haofei Sun, Deying Wang, Wei Han and Yunfan Yang
Remote Sens. 2024, 16(12), 2226; https://doi.org/10.3390/rs16122226 - 19 Jun 2024
Cited by 5 | Viewed by 1429
Abstract
Aerosols exert a significant influence on the brightness temperature observed in the thermal infrared (IR) channels, yet the specific contributions of various aerosol types remain underexplored. This study integrated the Copernicus Atmosphere Monitoring Service (CAMS) atmospheric composition reanalysis data into the Radiative Transfer [...] Read more.
Aerosols exert a significant influence on the brightness temperature observed in the thermal infrared (IR) channels, yet the specific contributions of various aerosol types remain underexplored. This study integrated the Copernicus Atmosphere Monitoring Service (CAMS) atmospheric composition reanalysis data into the Radiative Transfer for TOVS (RTTOV) model to quantify the aerosol effects on brightness temperature (BT) simulations for the Advanced Himawari Imager (AHI) aboard the Himawari-8 geostationary satellite. Two distinct experiments were conducted: the aerosol-aware experiment (AER), which accounted for aerosol radiative effects, and the control experiment (CTL), in which aerosol radiative effects were omitted. The CTL experiment results reveal uniform negative bias (observation minus background (O-B)) across all six IR channels of the AHI, with a maximum deviation of approximately −1 K. Conversely, the AER experiment showed a pronounced reduction in innovation, which was especially notable in the 10.4 μm channel, where the bias decreased by 0.7 K. The study evaluated the radiative effects of eleven aerosol species, all of which demonstrated cooling effects in the AHI’s six IR channels, with dust aerosols contributing the most significantly (approximately 86%). In scenarios dominated by dust, incorporating the radiative effect of dust aerosols could correct the brightness temperature bias by up to 2 K, underscoring the substantial enhancement in the BT simulation for the 10.4 μm channel during dust events. Jacobians were calculated to further examine the RTTOV simulations’ sensitivity to aerosol presence. A clear temporal and spatial correlation between the dust concentration and BT simulation bias corroborated the critical role of the infrared channel data assimilation on geostationary satellites in capturing small-scale, rapidly developing pollution processes. Full article
(This article belongs to the Special Issue Remote Sensing for High Impact Weather and Extremes)
Show Figures

Figure 1

24 pages, 4092 KiB  
Article
The Sensitivity of Polar Mesospheric Clouds to Mesospheric Temperature and Water Vapor
by Jae N. Lee, Dong L. Wu, Brentha Thurairajah, Yuta Hozumi and Takuo Tsuda
Remote Sens. 2024, 16(9), 1563; https://doi.org/10.3390/rs16091563 - 28 Apr 2024
Cited by 1 | Viewed by 1545
Abstract
Polar mesospheric cloud (PMC) data obtained from the Aeronomy of Ice in the Mesosphere (AIM)/Cloud Imaging and Particle Size (CIPS) experiment and Himawari-8/Advanced Himawari Imager (AHI) observations are analyzed for multi-year climatology and interannual variations. Linkages between PMCs, mesospheric temperature, and water vapor [...] Read more.
Polar mesospheric cloud (PMC) data obtained from the Aeronomy of Ice in the Mesosphere (AIM)/Cloud Imaging and Particle Size (CIPS) experiment and Himawari-8/Advanced Himawari Imager (AHI) observations are analyzed for multi-year climatology and interannual variations. Linkages between PMCs, mesospheric temperature, and water vapor (H2O) are further investigated with data from the Microwave Limb Sounder (MLS). Our analysis shows that PMC onset date and occurrence rate are strongly dependent on the atmospheric environment, i.e., the underlying seasonal behavior of temperature and water vapor. Upper-mesospheric dehydration by PMCs is evident in the MLS water vapor observations. The spatial patterns of the depleted water vapor correspond to the PMC occurrence region over the Arctic and Antarctic during the days after the summer solstice. The year-to-year variabilities in PMC occurrence rates and onset dates are highly correlated with mesospheric temperature and H2O. They show quasi-quadrennial oscillation (QQO) with 4–5-year periods, particularly in the southern hemisphere (SH). The combined influence of mesospheric cooling and the mesospheric H2O increase provides favorable conditions for PMC formation. The global increase in mesospheric H2O during the last decade may explain the increased PMC occurrence in the northern hemisphere (NH). Although mesospheric temperature and H2O exhibit a strong 11-year variation, little solar cycle signatures are found in the PMC occurrence during 2007–2021. Full article
Show Figures

Figure 1

23 pages, 24962 KiB  
Article
Estimation of All-Day Aerosol Optical Depth in the Beijing–Tianjin–Hebei Region Using Ground Air Quality Data
by Wenhao Zhang, Sijia Liu, Xiaoyang Chen, Xiaofei Mi, Xingfa Gu and Tao Yu
Remote Sens. 2024, 16(8), 1410; https://doi.org/10.3390/rs16081410 - 16 Apr 2024
Cited by 2 | Viewed by 1795
Abstract
Atmospheric aerosols affect climate change, air quality, and human health. The aerosol optical depth (AOD) is a widely utilized parameter for estimating the concentration of atmospheric aerosols. Consequently, continuous AOD monitoring is crucial for environmental studies. However, a method to continuously monitor the [...] Read more.
Atmospheric aerosols affect climate change, air quality, and human health. The aerosol optical depth (AOD) is a widely utilized parameter for estimating the concentration of atmospheric aerosols. Consequently, continuous AOD monitoring is crucial for environmental studies. However, a method to continuously monitor the AOD throughout the day or night remains a challenge. This study introduces a method for estimating the All-Day AOD using ground air quality and meteorological data. This method allows for the hourly estimation of the AOD throughout the day in the Beijing–Tianjin–Hebei (BTH) region and addresses the lack of high temporal resolution monitoring of the AOD during the nighttime. The results of the proposed All-Day AOD estimation method were validated against AOD measurements from Advanced Himawari Imager (AHI) and Aerosol Robotic Network (AERONET). The R2 between the estimated AOD and AHI was 0.855, with a root mean square error of 0.134. Two AERONET sites in BTH were selected for analysis. The results indicated that the absolute error between the estimated AOD and AERONET was within acceptable limits. The estimated AOD showed spatial and temporal trends comparable to those of AERONET and AHI. In addition, the hourly mean AOD was analyzed for each city in BTH. The hourly mean AOD in each city exhibits a smooth change at night. In conclusion, the proposed AOD estimation method offers valuable data for investigating the impact of aerosol radiative forcing and assessing its influence on climate change. Full article
Show Figures

Figure 1

20 pages, 6050 KiB  
Article
Improving the Estimation of PM2.5 Concentration in the North China Area by Introducing an Attention Mechanism into Random Forest
by Luo Zhang, Zhengqiang Li, Jie Guang, Yisong Xie, Zheng Shi, Haoran Gu and Yang Zheng
Atmosphere 2024, 15(3), 384; https://doi.org/10.3390/atmos15030384 - 20 Mar 2024
Cited by 4 | Viewed by 1920
Abstract
Fine particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5) profoundly affects environmental systems, human health and economic structures. Multi-source data and advanced machine or deep-learning methods have provided a new chance for estimating the [...] Read more.
Fine particulate matter with an aerodynamic diameter less than 2.5 µm (PM2.5) profoundly affects environmental systems, human health and economic structures. Multi-source data and advanced machine or deep-learning methods have provided a new chance for estimating the PM2.5 concentrations at a high spatiotemporal resolution. In this paper, the Random Forest (RF) algorithm was applied to estimate hourly PM2.5 of the North China area (Beijing–Tianjin–Hebei, BTH) based on the next-generation geostationary meteorological satellite Himawari-8/AHI (Advanced Himawari Imager) aerosol optical depth (AOD) products. To improve the estimation of PM2.5 concentration across large areas, we construct a method for co-weighting the environmental similarity and the geographical distances by using an attention mechanism so that it can efficiently characterize the influence of spatial–temporal information hidden in adjacent ground monitoring sites. In experiment results, the hourly PM2.5 estimates are well correlated with ground measurements in BTH, with a coefficient of determination (R2) of 0.887, a root-mean-square error (RMSE) of 18.31 μg/m3, and a mean absolute error (MAE) of 11.17 µg/m3, indicating good model performance. In addition, this paper makes a comprehensive analysis of the effectiveness of multi-source data in the estimation process, in this way, to simplify the model structure and improve the estimation efficiency of the model while ensuring its accuracy. Full article
Show Figures

Figure 1

25 pages, 83192 KiB  
Article
Preliminary Retrieval and Validation of Aerosol Optical Depths from FY-4B Advanced Geostationary Radiation Imager Images
by Dong Zhou, Qingxin Wang, Siwei Li and Jie Yang
Remote Sens. 2024, 16(2), 372; https://doi.org/10.3390/rs16020372 - 17 Jan 2024
Cited by 3 | Viewed by 2604
Abstract
Fengyun-4B (FY-4B) is the latest Chinese next-generation geostationary meteorological satellite. The Advanced Geostationary Radiation Imager (AGRI) aboard FY-4B is equipped with 15 spectral bands, from visible to infrared, suitable for aerosol optical depth (AOD) retrieval. In this study, an overland AOD retrieval algorithm [...] Read more.
Fengyun-4B (FY-4B) is the latest Chinese next-generation geostationary meteorological satellite. The Advanced Geostationary Radiation Imager (AGRI) aboard FY-4B is equipped with 15 spectral bands, from visible to infrared, suitable for aerosol optical depth (AOD) retrieval. In this study, an overland AOD retrieval algorithm was developed for the FY-4B AGRI. Considering the large directional variation in the FY-4B AGRI reflectances, a bidirectional reflectance distribution function (BRDF) database was built, through which to estimate land surface reflectance/albedo. Seasonal aerosol models, based on four geographical regions in China, were developed between 2016 and 2022 using AERONET aerosol products, to improve their applicability to regional distribution differences and seasonal variations in aerosol types. AGRI AODs were retrieved using this new method over China from September 2022 to August 2023 and validated against ground-based measurements. The AGRI, Advanced Himawari Imager (AHI), and Moderate-Resolution Imaging Spectroradiometer (MODIS) official land aerosol products were also evaluated for comparison purposes. The results showed that the AGRI AOD retrievals were highly consistent with the AERONET AOD measurements, with a correlation coefficient (R) of 0.88, root mean square error (RMSE) of 0.14, and proportion that met an expected error (EE) of 65.04%. Intercomparisons between the AGRI AOD and other operational AOD products showed that the AGRI AOD retrievals achieved better performance results than the AGRI, AHI, and MODIS official AOD products. Moreover, the AGRI AOD retrievals showed high spatial integrity and stable performance at different times and regions, as well as under different aerosol loadings and characteristics. These results demonstrate the robustness of the new aerosol retrieval method and the potential of FY-4B AGRI measurements for the monitoring of aerosols with high accuracy and temporal resolutions. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Graphical abstract

21 pages, 1693 KiB  
Article
Day-Ahead Hourly Solar Photovoltaic Output Forecasting Using SARIMAX, Long Short-Term Memory, and Extreme Gradient Boosting: Case of the Philippines
by Ian B. Benitez, Jessa A. Ibañez, Cenon III D. Lumabad, Jayson M. Cañete and Jeark A. Principe
Energies 2023, 16(23), 7823; https://doi.org/10.3390/en16237823 - 28 Nov 2023
Cited by 18 | Viewed by 3042
Abstract
This study explores the forecasting accuracy of SARIMAX, LSTM, and XGBoost models in predicting solar PV output using one-year data from three solar PV installations in the Philippines. The research aims to compare the performance of these models with their hybrid counterparts and [...] Read more.
This study explores the forecasting accuracy of SARIMAX, LSTM, and XGBoost models in predicting solar PV output using one-year data from three solar PV installations in the Philippines. The research aims to compare the performance of these models with their hybrid counterparts and investigate their performance. The study utilizes the adjusted shortwave radiation (SWR) product in the Advanced Himawari Imager 8 (AHI-8), as a proxy for in situ solar irradiance, and weather parameters, to improve the accuracy of the forecasting models. The results show that SARIMAX outperforms LSTM, XGBoost, and their combinations for Plants 1 and 2, while XGBoost performs best for Plant 3. Contrary to previous studies, the hybrid models did not provide more accurate forecasts than the individual methods. The performance of the models varied depending on the forecasted month and installation site. Using adjusted SWR and other weather parameters, as inputs in forecasting solar PV output, adds novelty to this research. Future research should consider comparing the accuracy of using adjusted SWR alone and combined with other weather parameters. This study contributes to solar PV output forecasting by utilizing adjusted satellite-derived solar radiation, and combining SARIMAX, LSTM, and XGBoost models, including their hybrid counterparts, in a single and comprehensive analysis. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

15 pages, 11207 KiB  
Technical Note
Comparison of FY-4A/AGRI SST with Himawari-8/AHI and In Situ SST
by Chang Yang, Lei Guan and Xiaohui Sun
Remote Sens. 2023, 15(17), 4139; https://doi.org/10.3390/rs15174139 - 23 Aug 2023
Cited by 8 | Viewed by 1955
Abstract
The Fengyun-4A (FY-4A) satellite is a new-generation geostationary meteorological satellite developed by China. The advanced geosynchronous radiation imager (AGRI), one of the key payloads onboard FY-4A, can monitor sea surface temperature (SST). This paper compares FY-4A/AGRI SST with in situ and Himawari-8/advanced Himawari [...] Read more.
The Fengyun-4A (FY-4A) satellite is a new-generation geostationary meteorological satellite developed by China. The advanced geosynchronous radiation imager (AGRI), one of the key payloads onboard FY-4A, can monitor sea surface temperature (SST). This paper compares FY-4A/AGRI SST with in situ and Himawari-8/advanced Himawari imager (AHI) SST. The study area spans 30°E–180°E, 60°S–60°N, and the study period is from January 2019 to December 2021. The matching time window of the three data is 30 min, and the space window is 0.1°. The quality control criterion is to select all clear sky and well-distributed matchups within the study period, removing the influence of SST fronts. The results of the difference between FY-4A/AGRI and in situ SST show a bias of −0.12 °C, median of −0.05 °C, standard deviation (STD) of 0.76 °C, robust standard deviation (RSD) of 0.68 °C, and root mean square error (RMSE) of 0.77 °C for daytime and a bias of 0.00 °C, median of 0.05 °C, STD of 0.78 °C, RSD of 0.72 °C, and RMSE of 0.78 °C for nighttime. The results of the difference between FY-4A/AGRI SST and Himawari-8/AHI SST show a bias of 0.04 °C, median of 0.10 °C, STD of 0.78 °C, RSD of 0.70 °C, and RMSE of 0.78 °C for daytime and the bias of 0.30 °C, median of 0.34 °C, STD of 0.81 °C, RSD of 0.76 °C, and RMSE of 0.86 °C for nighttime. The three-way error analysis also indicates a relatively larger error of AGRI SST. Regarding timescale, the bias and STD of FY-4A/AGRI SST show no seasonal correlation, but FY-4A/AGRI SST has a noticeable bias jump in the study period. Regarding spatial scale, FY-4A/AGRI SST shows negative bias at the edge of the AGRI SST coverage in the Pacific region near 160°E longitude and positive bias in high latitudes of the southern hemisphere. The accuracy of FY-4A/AGRI SST depends on the satellite zenith angle and water vapor. Further research on the FY-4A/AGRI SST retrieval algorithm accounting for the variability of water vapor will be conducted. Full article
Show Figures

Figure 1

15 pages, 3556 KiB  
Article
Climatology of Cloud Base Height Retrieved from Long-Term Geostationary Satellite Observations
by Zhonghui Tan, Xianbin Zhao, Shensen Hu, Shuo Ma, Li Wang, Xin Wang and Weihua Ai
Remote Sens. 2023, 15(13), 3424; https://doi.org/10.3390/rs15133424 - 6 Jul 2023
Cited by 3 | Viewed by 2718
Abstract
Cloud base height (CBH) is crucial for parameterizing the cloud vertical structure (CVS), but knowledge concerning the temporal and spatial distribution of CBH is still poor owing to the lack of large-scale and continuous CBH observations. Taking advantage of high temporal and spatial [...] Read more.
Cloud base height (CBH) is crucial for parameterizing the cloud vertical structure (CVS), but knowledge concerning the temporal and spatial distribution of CBH is still poor owing to the lack of large-scale and continuous CBH observations. Taking advantage of high temporal and spatial resolution observations from the Advanced Himawari Imager (AHI) on board the geostationary Himawari-8 satellite, this study investigated the climatology of CBH by applying a novel CBH retrieval algorithm to AHI observations. We first evaluated the accuracy of the AHI-derived CBH retrievals using the active measurements of CVS from the CloudSat and CALIPSO satellites, and the results indicated that our CBH retrievals for single-layer clouds perform well, with a mean bias of 0.3 ± 1.9 km. Therefore, the CBH climatology was compiled based on AHI-derived CBH retrievals for single-layer clouds for the time period between September 2015 and August 2018. Overall, the distribution of CBH is tightly associated with cloud phase, cloud type, and cloud top height and also exhibits significant geographical distribution and temporal variation. Clouds at low latitudes are generally higher than those at middle and high latitudes, with CBHs peaking in summer and lowest in winter. In addition, the surface type affects the distribution of CBH. The proportion of low clouds over the ocean is larger than that over the land, while high cloud occurs most frequently over the coastal area. Due to periodic changes in environmental conditions, cloud types also undergo significant diurnal changes, resulting in periodic changes in the vertical structure of clouds. Full article
(This article belongs to the Section Environmental Remote Sensing)
Show Figures

Figure 1

Back to TopTop