Preliminary Retrieval and Validation of Aerosol Optical Depths from FY-4B Advanced Geostationary Radiation Imager Images
Abstract
:1. Introduction
2. Data Source and Study Area
2.1. FY-4B AGRI Data
2.2. MODIS Data
2.3. Himawari-8/9 AHI Data
2.4. AERONET Data
2.5. Study Area
3. Method
3.1. Aerosol Model
3.2. Determination of Surface Reflectance
3.3. Look-Up Table Building
4. Results and Validation
4.1. AOD Validation Using AERONET Data
4.1.1. Overall Validation
4.1.2. Validation in Different Sites
4.1.3. Validation in Different Seasons
4.1.4. Validation in Different Months
4.2. Retrieval Error Analysis
4.3. Spatial Distribution of the Retrieved AOD
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Zhao, S.; Wang, Z.; Zhang, X.; Song, L. The updated effective radiative forcing of major anthropogenic aerosols and their effects on global climate at present and in the future. Int. J. Climatol. 2016, 36, 4029–4044. [Google Scholar] [CrossRef]
- Mahowald, N.; Ward, D.S.; Kloster, S.; Flanner, M.G.; Heald, C.L.; Heavens, N.G.; Hess, P.G.; Lamarque, J.-F.; Chuang, P.Y. Aerosol Impacts on Climate and Biogeochemistry. Annu. Rev. Environ. Resour. 2011, 36, 45–74. [Google Scholar] [CrossRef]
- Scott, C.E.; Arnold, S.R.; Monks, S.A.; Asmi, A.; Paasonen, P.; Spracklen, D.V. Substantial large-scale feedbacks between natural aerosols and climate. Nat. Geosci. 2017, 11, 44–48. [Google Scholar] [CrossRef]
- Colbeck, I.; Lazaridis, M. Aerosols and environmental pollution. Naturwissenschaften 2010, 97, 117–131. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Mauderly, J.L.; Costa, D.L.; Wyzga, R.E.; Vedal, S.; Hidy, G.M.; Altshuler, S.L.; Marrack, D.; Heuss, J.M.; et al. Health effects of fine particulate air pollution: Lines that connect. J. Air Waste Manag. Assoc. 2006, 56, 1368–1380. [Google Scholar] [CrossRef] [PubMed]
- King, M.D.; Kaufman, Y.J.; Tanre, D.; Nakajima, T. Remote sensing of tropospheric aerosols from space: Past, present, and future. Bull. Am. Meteorol. Soc. 1999, 80, 2229–2259. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tanré, D.; Remer, L.A.; Vermote, E.F.; Chu, A.; Holben, B.N. Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. J. Geophys. Res. Atmos. 1997, 102, 17051–17067. [Google Scholar] [CrossRef]
- Martonchik, J.V.; Diner, D.J.; Kahn, R.A.; Ackerman, T.P.; Verstraete, M.E.; Pinty, B.; Gordon, H.R. Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1212–1227. [Google Scholar] [CrossRef]
- Wang, M.H.; Knobelspiesse, K.D.; McClain, C.R. Study of the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) aerosol optical property data over ocean in combination with the ocean color products. J. Geophys. Res.-Atmos. 2005, 110, D10S06. [Google Scholar] [CrossRef]
- Jackson, J.M.; Liu, H.Q.; Laszlo, I.; Kondragunta, S.; Remer, L.A.; Huang, J.F.; Huang, H.C. Suomi-NPP VIIRS aerosol algorithms and data products. J. Geophys. Res.-Atmos. 2013, 118, 12673–12689. [Google Scholar] [CrossRef]
- Choi, M.; Kim, J.; Lee, J.; Kim, M.; Park, Y.-J.; Holben, B.; Eck, T.F.; Li, Z.; Song, C.H. GOCI Yonsei aerosol retrieval version 2 products: An improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia. Atmos. Meas. Tech. 2018, 11, 385–408. [Google Scholar] [CrossRef]
- She, L.; Xue, Y.; Yang, X.; Leys, J.; Guang, J.; Che, Y.; Fan, C.; Xie, Y.; Li, Y. Joint Retrieval of Aerosol Optical Depth and Surface Reflectance Over Land Using Geostationary Satellite Data. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1489–1501. [Google Scholar] [CrossRef]
- Su, X.; Wang, L.; Zhang, M.; Qin, W.; Bilal, M. A High-Precision Aerosol Retrieval Algorithm (HiPARA) for Advanced Himawari Imager (AHI) data: Development and verification. Remote Sens. Environ. 2021, 253, 112221. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Dubovik, O. Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. J. Geophys. Res. Atmos. 2007, 112, D13210. [Google Scholar] [CrossRef]
- Levy, R.C.; Remer, L.A.; Mattoo, S.; Vermote, E.F.; Kaufman, Y.J. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. J. Geophys. Res. Atmos. 2007, 112, D13211. [Google Scholar] [CrossRef]
- Levy, R.C.; Mattoo, S.; Munchak, L.A.; Remer, L.A.; Sayer, A.M.; Patadia, F.; Hsu, N.C. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. 2013, 6, 2989–3034. [Google Scholar] [CrossRef]
- Hsu, N.C.; Tsay, S.C.; King, M.D.; Herman, J.R. Deep Blue Retrievals of Asian Aerosol Properties During ACE-Asia. IEEE Trans. Geosci. Remote Sens. 2006, 44, 3180–3195. [Google Scholar] [CrossRef]
- Hsu, N.C.; Jeong, M.J.; Bettenhausen, C.; Sayer, A.M.; Hansell, R.; Seftor, C.S.; Huang, J.; Tsay, S.C. Enhanced Deep Blue aerosol retrieval algorithm: The second generation. J. Geophys. Res. Atmos. 2013, 118, 9296–9315. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S.; Remer, L.; Levy, R.; Reid, J.S. Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm. J. Geophys. Res. 2011, 116, D03211. [Google Scholar] [CrossRef]
- Kim, M.; Kim, J.; Wong, M.S.; Yoon, J.; Lee, J.; Wu, D.; Chan, P.W.; Nichol, J.E.; Chung, C.-Y.; Ou, M.-L. Improvement of aerosol optical depth retrieval over Hong Kong from a geostationary meteorological satellite using critical reflectance with background optical depth correction. Remote Sens. Environ. 2014, 142, 176–187. [Google Scholar] [CrossRef]
- Lim, H.; Choi, M.; Kim, J.; Kasai, Y.; Chan, P. AHI/Himawari-8 Yonsei Aerosol Retrieval (YAER): Algorithm, Validation and Merged Products. Remote Sens. 2018, 10, 699. [Google Scholar] [CrossRef]
- Yoshida, M.; Kikuchi, M.; Nagao, T.M.; Murakami, H.; Nomaki, T.; Higurashi, A. Common Retrieval of Aerosol Properties for Imaging Satellite Sensors. J. Meteorol. Soc. Jpn. Ser. II 2018, 96B, 193–209. [Google Scholar] [CrossRef]
- Ge, B.; Li, Z.; Liu, L.; Yang, L.; Chen, X.; Hou, W.; Zhang, Y.; Li, D.; Li, L.; Qie, L. A Dark Target Method for Himawari-8/AHI Aerosol Retrieval: Application and Validation. IEEE Trans. Geosci. Remote Sens. 2019, 57, 381–394. [Google Scholar] [CrossRef]
- Gupta, P.; Levy, R.C.; Mattoo, S.; Remer, L.A.; Holz, R.E.; Heidinger, A.K. Applying the Dark Target aerosol algorithm with Advanced Himawari Imager observations during the KORUS-AQ field campaign. Atmos. Meas. Tech. 2019, 12, 6557–6577. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Zeng, Q.; Sun, L.; Yang, J.; Lin, H. Retrieval and Validation of AOD from Himawari-8 Data over Bohai Rim Region, China. Remote Sens. 2020, 12, 3425. [Google Scholar] [CrossRef]
- Zhang, Z.; Fan, M.; Wu, W.; Wang, Z.; Tao, M.; Wei, J.; Wang, Q. A simplified aerosol retrieval algorithm for Himawari-8 Advanced Himawari Imager over Beijing. Atmos. Environ. 2019, 199, 127–135. [Google Scholar] [CrossRef]
- Wang, Q.; Du, D.; Li, S.; Yang, J.; Lin, H.; Du, J. Comparison of different methods of determining land surface reflectance for AOD retrieval. Atmos. Pollut. Res. 2021, 12, 101143. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, Z.Q.; Wei, C.Y.; Lu, F.; Guo, Q. INTRODUCING THE NEW GENERATION OF CHINESE GEOSTATIONARY WEATHER SATELLITES, FENGYUN-4. Bull. Am. Meteorol. Soc. 2017, 98, 1637–1658. [Google Scholar] [CrossRef]
- Xie, Y.; Li, Z.; Guang, J.; Hou, W.; Salam, A.; Ali, Z.; Fang, L. Aerosol Optical Depth Retrieval Over South Asia Using FY-4A/AGRI Data. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4104814. [Google Scholar] [CrossRef]
- Jiang, X.; Xue, Y.; Jin, C.; Bai, R.; Sun, Y.; Wu, S. A Simple Band Ratio Library (BRL) Algorithm for Retrieval of Hourly Aerosol Optical Depth Using FY-4A AGRI Geostationary Satellite Data. Remote Sens. 2022, 14, 4861. [Google Scholar] [CrossRef]
- Lyapustin, A.; Wang, Y.; Korkin, S.; Huang, D. MODIS Collection 6 MAIAC algorithm. Atmos. Meas. Tech. 2018, 11, 5741–5765. [Google Scholar] [CrossRef]
- Bessho, K.; Date, K.; Hayashi, M.; Ikeda, A.; Imai, T.; Inoue, H.; Kumagai, Y.; Miyakawa, T.; Murata, H.; Ohno, T.; et al. An Introduction to Himawari-8/9-Japan’s New-Generation Geostationary Meteorological Satellites. J. Meteorol. Soc. Jpn. 2016, 94, 151–183. [Google Scholar] [CrossRef]
- Holben, B.N.; Eck, T.F.; Slutsker, I.; Tanre, D.; Buis, J.P.; Setzer, A.; Vermote, E.; Reagan, J.A.; Kaufman, Y.J.; Nakajima, T.; et al. AERONET—A federated instrument network and data archive for aerosol characterization. Remote Sens. Environ. 1998, 66, 1–16. [Google Scholar] [CrossRef]
- Remer, L.A.; Kaufman, Y.J.; Tanre, D.; Mattoo, S.; Chu, D.A.; Martins, J.V.; Li, R.R.; Ichoku, C.; Levy, R.C.; Kleidman, R.G.; et al. The MODIS aerosol algorithm, products, and validation. J. Atmos. Sci. 2005, 62, 947–973. [Google Scholar] [CrossRef]
- Sayer, A.M.; Hsu, N.C.; Bettenhausen, C.; Jeong, M.J. Validation and uncertainty estimates for MODIS Collection 6 “Deep Blue” aerosol data. J. Geophys. Res.-Atmos. 2013, 118, 7864–7872. [Google Scholar] [CrossRef]
- Dubovik, O.; King, M.D. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. J. Geophys. Res.-Atmos. 2000, 105, 20673–20696. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J. Variability of Major Aerosol Types in China Classified Using AERONET Measurements. Remote Sens. 2019, 11, 2334. [Google Scholar] [CrossRef]
- Sinyuk, A.; Holben, B.N.; Eck, T.F.; Giles, D.M.; Slutsker, I.; Korkin, S.; Schafer, J.S.; Smirnov, A.; Sorokin, M.; Lyapustin, A. The AERONET Version 3 aerosol retrieval algorithm, associated uncertainties and comparisons to Version 2. Atmos. Meas. Tech. 2020, 13, 3375–3411. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Yang, J.; Zhou, D. Evaluation and comparison of VIIRS dark target and deep blue aerosol products over land. Sci. Total Environ. 2023, 869, 161667. [Google Scholar] [CrossRef]
- Giles, D.M.; Sinyuk, A.; Sorokin, M.G.; Schafer, J.S.; Smirnov, A.; Slutsker, I.; Eck, T.F.; Holben, B.N.; Lewis, J.R.; Campbell, J.R.; et al. Advancements in the Aerosol Robotic Network (AERONET) Version 3 database–automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements. Atmos. Meas. Tech. 2019, 12, 169–209. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, L.F.; Li, S.S.; Wang, X.H.; Yu, C.; Si, Y.D.; Zhang, Z.L. Interference of Heavy Aerosol Loading on the VIIRS Aerosol Optical Depth (AOD) Retrieval Algorithm. Remote Sens. 2017, 9, 397. [Google Scholar] [CrossRef]
- Wang, Q.; Li, S.; Yang, J.; Zhou, D.; Song, G. A high-precision aerosol retrieval algorithm for FY-3D MERSI-II images. Environ. Int. 2023, 173, 107841. [Google Scholar] [CrossRef]
- Kim, D.-H. Aerosol optical properties over east Asia determined from ground-based sky radiation measurements. J. Geophys. Res. 2004, 109, D02209. [Google Scholar] [CrossRef]
- He, Q.Q.; Gu, Y.F.; Zhang, M. Spatiotemporal patterns of aerosol optical depth throughout China from 2003 to 2016. Sci. Total Environ. 2019, 653, 23–35. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Peng, Y.; Sun, L.; Yan, X. A Regionally Robust High-Spatial-Resolution Aerosol Retrieval Algorithm for MODIS Images Over Eastern China. IEEE Trans. Geosci. Remote Sens. 2019, 57, 4748–4757. [Google Scholar] [CrossRef]
- Chen, Q.-X.; Huang, C.-L.; Yuan, Y.; Mao, Q.-J.; Tan, H.-P. Spatiotemporal Distribution of Major Aerosol Types over China Based on MODIS Products between 2008 and 2017. Atmosphere 2020, 11, 703. [Google Scholar] [CrossRef]
- Hayasaka, T.; Luo, Y.; Zheng, X.; Zhao, T.; Luo, H.; Nakamura, K.; Im, E. Geographical and climatological characterization of aerosol optical depth distribution of MODIS in China. In Proceedings of the SPIE Asia-Pacific Remote Sensing, Kyoto, Japan, 29 October–1 November 2012; Volume 8523, p. 85231N. [Google Scholar] [CrossRef]
- Filonchyk, M.; Yan, H.; Zhang, Z. Analysis of spatial and temporal variability of aerosol optical depth over China using MODIS combined Dark Target and Deep Blue product. Theor. Appl. Climatol. 2018, 137, 2271–2288. [Google Scholar] [CrossRef]
- Yang, X.; Zhao, C.; Zhou, L.; Wang, Y.; Liu, X. Distinct impact of different types of aerosols on surface solar radiation in China. J. Geophys. Res. Atmos. 2016, 121, 6459–6471. [Google Scholar] [CrossRef]
- Su, X.; Goloub, P.; Chiapello, I.; Chen, H.; Ducos, F.; Li, Z. Aerosol variability over East Asia as seen by POLDER space-borne sensors. J. Geophys. Res. Atmos. 2010, 115, D24215. [Google Scholar] [CrossRef]
- Cheng, L.; Li, L.; Chen, L.; Hu, S.; Yuan, L.; Liu, Y.; Cui, Y.; Zhang, T. Spatiotemporal Variability and Influencing Factors of Aerosol Optical Depth over the Pan Yangtze River Delta during the 2014–2017 Period. Int. J. Environ. Res. Public Health 2019, 16, 3522. [Google Scholar] [CrossRef]
- Yuan, T.G.; Chen, S.Y.; Huang, J.P.; Wu, D.Y.; Lu, H.; Zhang, G.L.; Ma, X.J.; Chen, Z.Q.; Luo, Y.; Ma, X.H. Influence of Dynamic and Thermal Forcing on the Meridional Transport of Taklimakan Desert Dust in Spring and Summer. J. Clim. 2019, 32, 749–767. [Google Scholar] [CrossRef]
- Han, Y.; Wang, T.H.; Tang, J.Y.; Wang, C.Y.; Jian, B.D.; Huang, Z.W.; Huang, J.P. New insights into the Asian dust cycle derived from CALIPSO lidar measurements. Remote Sens. Environ. 2022, 272, 112906. [Google Scholar] [CrossRef]
- Fukuda, S.; Nakajima, T.; Takenaka, H.; Higurashi, A.; Kikuchi, N.; Nakajima, T.Y.; Ishida, H. New approaches to removing cloud shadows and evaluating the 380 nm surface reflectance for improved aerosol optical thickness retrievals from the GOSAT/TANSO-Cloud and Aerosol Imager. J. Geophys. Res.-Atmos. 2013, 118, 13520–13531. [Google Scholar] [CrossRef]
- Mei, L.; Zhao, C.; de Leeuw, G.; Che, H.; Che, Y.; Rozanov, V.; Vountas, M.; Burrows, J.P. Understanding MODIS dark-target collection 5 and 6 aerosol data over China: Effect of surface type, aerosol loading and aerosol absorption. Atmos. Res. 2019, 228, 161–175. [Google Scholar] [CrossRef]
- Wei, J.; Sun, L. Comparison and Evaluation of Different MODIS Aerosol Optical Depth Products Over the Beijing-Tianjin-Hebei Region in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 835–844. [Google Scholar] [CrossRef]
- Wei, J.; Li, Z.; Sun, L.; Peng, Y.; Zhang, Z.; Li, Z.; Su, T.; Feng, L.; Cai, Z.; Wu, H. Evaluation and uncertainty estimate of next-generation geostationary meteorological Himawari-8/AHI aerosol products. Sci. Total Environ. 2019, 692, 879–891. [Google Scholar] [CrossRef]
Band | Center Wavelength (μm) | Band Width (μm) | Spatial Resolution (km) |
---|---|---|---|
1 | 0.47 | 0.45–0.49 | 1 |
2 | 0.65 | 0.55–0.75 | 0.5 |
3 | 0.825 | 0.75–0.90 | 1 |
4 | 1.379 | 1.371–1.386 | 2 |
5 | 1.61 | 1.58–1.64 | 2 |
6 | 2.225 | 2.10–2.35 | 2 |
7 | 3.75 | 3.50–4.00 (high) | 2 |
8 | 3.75 | 3.50–4.00 (low) | 4 |
9 | 6.25 | 5.80–6.70 | 4 |
10 | 6.95 | 6.75–7.15 | 4 |
11 | 7.42 | 7.24–7.60 | 4 |
12 | 8.55 | 8.30–8.80 | 4 |
13 | 10.80 | 10.30–11.30 | 4 |
14 | 12.00 | 11.50–12.50 | 4 |
15 | 13.30 | 13.00–13.60 | 4 |
Site Name | Latitude (°N) | Longitude (°E) | Altitude (m) |
---|---|---|---|
AOE_Baotou | 40.852 | 109.629 | 1314 |
Beijing | 39.977 | 116.381 | 92 |
Beijing-CAMS | 39.933 | 116.317 | 106 |
Beijing_PKU | 39.992 | 116.310 | 53 |
Beijing_RADI | 40.005 | 116.379 | 59 |
Chen-Kung_Univ | 22.993 | 120.205 | 50 |
Douliu | 23.712 | 120.545 | 60 |
EPA-NCU | 24.968 | 121.185 | 144 |
Hong_Kong_PolyU | 22.303 | 114.180 | 30 |
Kaohsiung | 22.676 | 120.292 | 15 |
Lulin | 23.469 | 120.874 | 2868 |
TASA_Taiwan | 24.784 | 121.001 | 99 |
XiangHe | 39.754 | 116.962 | 36 |
Aerosol Models | SSA (440/675/870/1020 nm) | REER 1 (440/675/870/1020 nm) | REEI 1 (440/675/870/1020 nm) | VC-F 2 (μm3/μm2) | Std-F 2 | VC-C 2 (μm3/μm2) | Std-C 2 | |
---|---|---|---|---|---|---|---|---|
QTR | spring | 0.85/0.83/0.81/0.78 | 1.55/1.55/1.55/1.54 | 0.028/0.024/0.026/0.029 | 0.02 | 0.48 | 0.02 | 0.73 |
summer | 0.85/0.81/0.76/0.73 | 1.56/1.56/1.55/1.55 | 0.027/0.030/0.037/0.044 | 0.01 | 0.52 | 0.01 | 0.73 | |
autumn | 0.81/0.79/0.78/0.75 | 1.56/1.56/1.56/1.56 | 0.042/0.037/0.034/0.037 | 0.01 | 0.52 | 0.01 | 0.60 | |
winter | 0.73/0.73/0.72/0.70 | 1.56/1.56/1.56/1.56 | 0.066/0.051/0.043/0.043 | 0.01 | 0.49 | 0.01 | 0.59 | |
NWR | spring | 0.92/0.93/0.93/0.91 | 1.51/1.52/1.53/1.53 | 0.006/0.005/0.006/0.008 | 0.05 | 0.55 | 0.27 | 0.62 |
summer | 0.95/0.94/0.93/0.91 | 1.46/1.47/1.49/1.48 | 0.008/0.008/0.009/0.010 | 0.08 | 0.51 | 0.07 | 0.60 | |
autumn | 0.97/0.97/0.96/0.94 | 1.45/1.46/1.47/1.46 | 0.004/0.003/0.004/0.005 | 0.07 | 0.50 | 0.08 | 0.58 | |
winter | 0.96/0.96/0.95/0.94 | 1.49/1.48/1.49/1.48 | 0.005/0.004/0.005/0.006 | 0.10 | 0.51 | 0.07 | 0.59 | |
NR | spring | 0.92/0.94/0.94/0.94 | 1.50/1.51/1.52/1.51 | 0.007/0.004/0.004/0.004 | 0.11 | 0.49 | 0.25 | 0.62 |
summer | 0.96/0.95/0.94/0.94 | 1.45/1.45/1.45/1.45 | 0.005/0.005/0.005/0.005 | 0.12 | 0.50 | 0.11 | 0.59 | |
autumn | 0.94/0.94/0.94/0.93 | 1.49/1.49/1.49/1.48 | 0.008/0.005/0.006/0.006 | 0.12 | 0.50 | 0.13 | 0.61 | |
winter | 0.91/0.93/0.92/0.92 | 1.49/1.50/1.51/1.50 | 0.012/0.007/0.007/0.008 | 0.12 | 0.52 | 0.13 | 0.63 | |
SR | spring | 0.95/0.95/0.94/0.93 | 1.43/1.44/1.44/1.44 | 0.006/0.006/0.006/0.006 | 0.11 | 0.50 | 0.07 | 0.63 |
summer | 0.97/0.96/0.95/0.95 | 1.39/1.40/1.40/1.40 | 0.004/0.004/0.004/0.005 | 0.10 | 0.48 | 0.05 | 0.60 | |
autumn | 0.97/0.97/0.96/0.96 | 1.41/1.41/1.41/1.41 | 0.003/0.003/0.004/0.004 | 0.09 | 0.50 | 007 | 0.60 | |
winter | 0.96/0.96/0.95/0.94 | 1.43/1.43/1.44/1.43 | 0.005/0.005/0.005/0.005 | 0.08 | 0.53 | 0.06 | 0.61 |
Variable | Value |
---|---|
Solar zenith angle (°) | 0, 12, 24, 36, 48, 60, 72 |
Viewing zenith angle (°) | 0, 13, 26, 39, 52, 65, 78 |
Relative azimuth angle (°) | 0, 30, 60, 90, 120, 150, 180 |
Aerosol type | QTR, NWR, NR, SR for different seasons |
AOD at 550 nm | 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, 1.0, 1.5, 2.0, 2.5, 3.5 |
Elevation (km) | NWR, NR, SR: 0, 0.5, 1.5, 5 |
Wavelength (μm) | QTR: 1, 4, 7 |
AGRI 0.47 | |
BRDF_Kiso | 0.001, 0.02, 0.04, 0.06, 0.08, 0.10, 0.15, 0.20, 0.25, 0.35 |
BRDF_Kgeo | 0, 0.02, 0.04, 0.06, 0.08 |
BRDF_Kvol | 0, 0.02, 0.04, 0.06, 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, D.; Wang, Q.; Li, S.; Yang, J. Preliminary Retrieval and Validation of Aerosol Optical Depths from FY-4B Advanced Geostationary Radiation Imager Images. Remote Sens. 2024, 16, 372. https://doi.org/10.3390/rs16020372
Zhou D, Wang Q, Li S, Yang J. Preliminary Retrieval and Validation of Aerosol Optical Depths from FY-4B Advanced Geostationary Radiation Imager Images. Remote Sensing. 2024; 16(2):372. https://doi.org/10.3390/rs16020372
Chicago/Turabian StyleZhou, Dong, Qingxin Wang, Siwei Li, and Jie Yang. 2024. "Preliminary Retrieval and Validation of Aerosol Optical Depths from FY-4B Advanced Geostationary Radiation Imager Images" Remote Sensing 16, no. 2: 372. https://doi.org/10.3390/rs16020372
APA StyleZhou, D., Wang, Q., Li, S., & Yang, J. (2024). Preliminary Retrieval and Validation of Aerosol Optical Depths from FY-4B Advanced Geostationary Radiation Imager Images. Remote Sensing, 16(2), 372. https://doi.org/10.3390/rs16020372