Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (163)

Search Parameters:
Keywords = H–S boundary model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1098 KB  
Article
Process Mining of Sensor Data for Predictive Process Monitoring: A HACCP-Guided Pasteurization Study Case
by Azin Moradbeikie, Ana Paula Ayub da Costa Barbon, Iuliana Malina Grigore, Douglas Fernandes Barbin and Sylvio Barbon Junior
Systems 2025, 13(11), 935; https://doi.org/10.3390/systems13110935 - 22 Oct 2025
Abstract
Industrial processes governed by food safety regulations, such as high-temperature short-time (HTST) pasteurization, rely on continuous sensor monitoring to ensure compliance with standards like Hazard Analysis and Critical Control Points (HACCP). However, extracting actionable process insights from raw sensor data remains a non-trivial [...] Read more.
Industrial processes governed by food safety regulations, such as high-temperature short-time (HTST) pasteurization, rely on continuous sensor monitoring to ensure compliance with standards like Hazard Analysis and Critical Control Points (HACCP). However, extracting actionable process insights from raw sensor data remains a non-trivial task, largely due to the continuous, multivariate, and often high-frequency characteristics of the signals, which can obscure clear activity boundaries and introduce significant variability in temporal patterns. This paper proposes a process mining framework to extract activity-based representations from multivariate sensor data in a pasteurization scenario. By modelling temperature, pH, conductivity, viscosity, turbidity, flow, and pressure signals, the approach segments continuous data into discrete operational phases and generates event logs aligned with domain semantics. Unsupervised learning techniques, including Hidden Markov Models (HMMs), are used to infer latent process stages, while domain knowledge guides their interpretation in accordance with critical control points (CCPs). The extracted models support conformance checking against HACCP-based procedures and enable predictive process-monitoring tasks such as next-activity prediction and remaining time estimation. Experimental results on synthetic (literature-grounded data) demonstrated the method’s ability to enhance safety, compliance, and operational efficiency. This study illustrates how integrating process mining with regulatory principles can bridge the gap between continuous sensor streams and structured process analysis in food manufacturing. Full article
(This article belongs to the Special Issue Data-Driven Analysis of Industrial Systems Using AI)
Show Figures

Figure 1

20 pages, 64732 KB  
Article
Stability and Tribological Performance of Water-Emulsified Engine Oils for Hydrogen-Fuelled Internal Combustion Engines
by Nur Aisya Affrina Mohamed Ariffin, Jiahe Poy, King Jye Wong, Jo-Han Ng and William Woei Fong Chong
Lubricants 2025, 13(10), 464; https://doi.org/10.3390/lubricants13100464 - 21 Oct 2025
Abstract
Hydrogen-fuelled internal combustion engines (H2ICEs) generate water vapour that can condense in the sump and form water-in-oil emulsions, altering lubricant performance. This study measures the viscosity–temperature behaviour, copper corrosivity, and boundary tribology of three commercial oils—synthetic (5W-40), semi-synthetic (10W-40), and mineral [...] Read more.
Hydrogen-fuelled internal combustion engines (H2ICEs) generate water vapour that can condense in the sump and form water-in-oil emulsions, altering lubricant performance. This study measures the viscosity–temperature behaviour, copper corrosivity, and boundary tribology of three commercial oils—synthetic (5W-40), semi-synthetic (10W-40), and mineral (15W-40)—emulsified with 5–40 wt% water and tested in both freshly emulsified and aged (3 months; clarified oil layer) states. In fresh emulsions, viscosity rose with water fraction. At 25 C and 40 wt%, the increase was 44.4% (5W-40), 78.7% (10W-40), and 81.2% (15W-40) versus the neat oils. Ageing drove viscosities toward the baseline, with the strongest effect observed for 15W-40, indicating destabilisation. The Vogel–Fulcher–Tammann (VFT) model was fitted to all datasets (RMSE < 5%). A VFT-based screening map uses two ratios at the friction test temperature: Rη=η/ηneat (relative film-forming tendency) and Rs=S/Sneat with S=B/(TT0)2 (thermal-thinning sensitivity). A Preferred regime, Rη1.25 and Rs0.95, is correlated with lower friction, smaller wear scars, and copper rating 1a, with most aged conditions migrated out of this regime. Under boundary conditions, 5–10 wt% water generally reduced friction, whereas higher fractions and ageing increased friction and wear. Synthetic oil (5W-40) showed the most robust response. Full article
(This article belongs to the Special Issue Tribological Impacts of Sustainable Fuels in Mobility Systems)
Show Figures

Figure 1

35 pages, 13736 KB  
Article
Effects of Improved Atmospheric Boundary Layer Inlet Boundary Conditions for Uneven Terrain on Pollutant Dispersion from Nuclear Facilities
by Zhongkun Wang, Dexin Ding, Xiumin Dou and Zhengming Li
Atmosphere 2025, 16(10), 1203; https://doi.org/10.3390/atmos16101203 - 17 Oct 2025
Viewed by 242
Abstract
The specification of inlet boundary conditions plays a critical role in computational fluid dynamics (CFD) simulations of pollutant dispersion from nuclear facilities, particularly in regions characterized by uneven terrain. Previous studies have often simplified such terrain by approximating it as a flat surface [...] Read more.
The specification of inlet boundary conditions plays a critical role in computational fluid dynamics (CFD) simulations of pollutant dispersion from nuclear facilities, particularly in regions characterized by uneven terrain. Previous studies have often simplified such terrain by approximating it as a flat surface to reduce computational complexity. However, this approach fails to adequately capture the realistic atmospheric boundary layer dynamics inherent to uneven topographies. To address this limitation, this study conducted atmospheric dispersion tracer experiments specifically designed for nuclear facilities situated on non-uniform terrain. A novel inlet boundary condition, termed the Atmospheric Boundary Layer of Uneven Terrain (ABLUT), was developed by modifying the existing atmBoundaryLayer model in OpenFOAM. Numerical simulations were performed using both the default and the proposed ABLUT boundary conditions, incorporating different turbulence models and examining the influence of turbulent Schmidt numbers across a range of 0.3 to 1.3. The results demonstrate that the ABLUT boundary condition, particularly when coupled with a turbulent Schmidt number of 0.7 and the SST kω turbulence model, yields the closest agreement with experimental tracer dispersion data. Notably, comparative analyses between the default and improved models revealed significant discrepancies in near-surface wind speed profiles, with deviations becoming increasingly pronounced at higher elevations. Numerical simulations were conducted to assess the ground-level distribution of Total Effective Dose Equivalent (TEDE) for four typical radionuclides (3H, 14C, 85Kr and 129I) emitted from nuclear facilities under both higher and lower wind speed conditions. Results demonstrate that the TEDE maxima across all scenarios remain orders of magnitude below regulatory annual limits. These findings provide critical insights for enhancing the accuracy of wind field simulations in the vicinity of nuclear facilities located on uneven terrain, thereby contributing to improved risk assessment and environmental impact evaluations. Full article
(This article belongs to the Section Air Pollution Control)
Show Figures

Figure 1

31 pages, 11924 KB  
Article
Enhanced 3D Turbulence Models Sensitivity Assessment Under Real Extreme Conditions: Case Study, Santa Catarina River, Mexico
by Mauricio De la Cruz-Ávila and Rosanna Bonasia
Hydrology 2025, 12(10), 260; https://doi.org/10.3390/hydrology12100260 - 2 Oct 2025
Viewed by 389
Abstract
This study compares enhanced turbulence models in a natural river channel 3D simulation under extreme hydrometeorological conditions. Using ANSYS Fluent 2024 R1 and the Volume of Fluid scheme, five RANS closures were evaluated: realizable k–ε, Renormalization-Group k–ε, Shear Stress Transport k–ω, Generalized k–ω, [...] Read more.
This study compares enhanced turbulence models in a natural river channel 3D simulation under extreme hydrometeorological conditions. Using ANSYS Fluent 2024 R1 and the Volume of Fluid scheme, five RANS closures were evaluated: realizable k–ε, Renormalization-Group k–ε, Shear Stress Transport k–ω, Generalized k–ω, and Baseline-Explicit Algebraic Reynolds Stress model. A segment of the Santa Catarina River in Monterrey, Mexico, defined the computational domain, which produced high-energy, non-repeatable real-world flow conditions where hydrometric data were not yet available. Empirical validation was conducted using surface velocity estimations obtained through high-resolution video analysis. Systematic bias was minimized through mesh-independent validation (<1% error) and a benchmarked reference closure, ensuring a fair basis for inter-model comparison. All models were realized on a validated polyhedral mesh with consistent boundary conditions, evaluating performance in terms of mean velocity, turbulent viscosity, strain rate, and vorticity. Mean velocity predictions matched the empirical value of 4.43 [m/s]. The Baseline model offered the highest overall fidelity in turbulent viscosity structure (up to 43 [kg/m·s]) and anisotropy representation. Simulation runtimes ranged from 10 to 16 h, reflecting a computational cost that increases with model complexity but justified by improved flow anisotropy representation. Results show that all models yielded similar mean flow predictions within a narrow error margin. However, they differed notably in resolving low-velocity zones, turbulence intensity, and anisotropy within a purely hydrodynamic framework that does not include sediment transport. Full article
Show Figures

Figure 1

16 pages, 1655 KB  
Article
A Circular Land Use Model for Reconciling Industrial Expansion with Agricultural Heritage in Italian Industrial Parks
by Carlotta D’Alessandro, Antonio Licastro, Roberta Arbolino, Grazia Calabrò and Giuseppe Ioppolo
Sustainability 2025, 17(19), 8830; https://doi.org/10.3390/su17198830 - 2 Oct 2025
Viewed by 361
Abstract
Industrial park (IP) expansions in Mediterranean peri-urban areas can generate conflicts between economic development and agricultural heritage preservation. This paper develops a theoretically derived circular land use symbiosis model based on Hubs for Circularity (H4C) principles, using Fosso Imperatore IP in southern Italy [...] Read more.
Industrial park (IP) expansions in Mediterranean peri-urban areas can generate conflicts between economic development and agricultural heritage preservation. This paper develops a theoretically derived circular land use symbiosis model based on Hubs for Circularity (H4C) principles, using Fosso Imperatore IP in southern Italy as an illustrative case. This model proposes a transferable three-zone gradient design that enables the transformation of industrial–agricultural boundaries when combined with appropriate governance mechanisms and stakeholder engagement. Zone A concentrates vertical industrial development with rooftop agriculture; Zone B creates mixed agro-industrial interfaces; and Zone C enhances agricultural productivity through industrial resources. The model’s components (gradient zonation, temperature–cascade matching, and bidirectional resource flows) constitute generalizable design principles. When applied to Fosso Imperatore, where farmers oppose expansion that threatens culturally significant San Marzano tomato production, the model shows how 547 tons of organic waste could generate 87,520 m3 of methane, while industrial waste heat cascades from 150–200 °C to 25–40 °C of greenhouse heating across distances of 3 km. Implementation constraints include regulatory gaps and limited empirical data. This study operationalizes H4C through spatial design, showing how benefit-sharing mechanisms can transform stakeholder conflicts into collaboration. The model provides a replicable framework for Mediterranean contexts where industrial expansion encounters agricultural heritage. Full article
Show Figures

Figure 1

23 pages, 4197 KB  
Article
Position and Attitude Control of Multi-Modal Underwater Robots Using an Improved LADRC Based on Sliding Mode Control
by Luze Wang, Yu Lu, Lei Zhang, Bowei Cui, Fengluo Chen, Bingchen Liang, Liwei Yu and Shimin Yu
Sensors 2025, 25(19), 6010; https://doi.org/10.3390/s25196010 - 30 Sep 2025
Viewed by 643
Abstract
This paper focuses on the control problems of a multi-modal underwater robot, which is designed mainly for the task of detecting the working environment in deep-sea mining. To tackle model uncertainty and external disturbances, an improved linear active disturbance rejection control scheme based [...] Read more.
This paper focuses on the control problems of a multi-modal underwater robot, which is designed mainly for the task of detecting the working environment in deep-sea mining. To tackle model uncertainty and external disturbances, an improved linear active disturbance rejection control scheme based on sliding mode control is proposed (SM-ADRC). Firstly, to reduce overshoot, a piecewise fhan function is introduced into the tracking differentiator (TD). This design retains the system’s fast nonlinear tracking characteristics outside the boundary layer while leveraging linear damping within it to achieve effective overshoot suppression. Secondly, two key enhancements are made to the SMC: an integral sliding surface is designed to improve steady-state accuracy, and a saturation function replaces the sign function to suppress high-frequency chattering. Furthermore, the SMC integrates the total disturbance estimate from the linear extended state observer (LESO) for feedforward compensation. Finally, the simulation experiment verification is completed. The simulation results show that the SM-ADRC scheme significantly improves the dynamic response and disturbance suppression ability of the system and simultaneously suppresses the chattering problem of SMC. Full article
(This article belongs to the Special Issue Smart Sensing and Control for Autonomous Intelligent Unmanned Systems)
Show Figures

Figure 1

14 pages, 3399 KB  
Article
On the Quasi-Steady Vorticity Balance in the Mature Stage of Hurricane Irma (2017)
by Jasper de Jong, Aarnout J. van Delden and Michiel L. J. Baatsen
Atmosphere 2025, 16(10), 1146; https://doi.org/10.3390/atmos16101146 - 29 Sep 2025
Viewed by 726
Abstract
Vorticity budgets in traditional height or pressure coordinates are commonly examined to help explain how tropical cyclones evolve over time. One disadvantage of using these coordinates is that the vorticity flux due to diabatic heating cannot be easily assessed. Isentropic coordinates naturally lend [...] Read more.
Vorticity budgets in traditional height or pressure coordinates are commonly examined to help explain how tropical cyclones evolve over time. One disadvantage of using these coordinates is that the vorticity flux due to diabatic heating cannot be easily assessed. Isentropic coordinates naturally lend themselves to determine the effect of diabatic heating—the vorticity budget simplifies, and a clear-cut distinction can be made between adiabatic (advective) and diabatic vorticity fluxes. Above the boundary layer, advective vorticity fluxes alone would lead to a quick spin-down of the mature tropical cyclone. Do diabatic processes prevent this from happening? If so, how? This paper investigates the vorticity budget of Hurricane Irma (2017) in its mature quasi-steady phase. We analyse a simulation of Irma with an operational high-resolution weather forecasting model. During Irma’s remarkably long period (37 h) of steady peak intensity, the radially outward advective isentropic vorticity flux in the eyewall above the boundary layer is balanced by a radially inward diabatic isentropic vorticity flux. Frictional effects and asymmetrical flow properties are of little importance to the maintenance of cyclone intensity in its mature phase, provided enough latent heat is released in the eyewall to maintain an inward vorticity flux that balances the advective flux. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

22 pages, 864 KB  
Article
Modelling Magnetisation and Transport AC Loss of HTS Tapes near Ferromagnetic Materials Using an Integral Equation Method
by Calvin C. T. Chow, K. T. Chau and Francesco Grilli
Appl. Sci. 2025, 15(19), 10411; https://doi.org/10.3390/app151910411 - 25 Sep 2025
Viewed by 324
Abstract
The integral equation formulation of Maxwell’s equations proposed by Brandt provides an alternative to the H and T-A formulations for modelling high-temperature superconducting (HTS) tapes. A modified version of Brandt’s method in the literature models ferromagnetic domains near the tapes by [...] Read more.
The integral equation formulation of Maxwell’s equations proposed by Brandt provides an alternative to the H and T-A formulations for modelling high-temperature superconducting (HTS) tapes. A modified version of Brandt’s method in the literature models ferromagnetic domains near the tapes by considering the ferromagnetic domains as equivalent surface current. This paper extends this method by including the effect of external magnetic field acting on the ferromagnetic and HTS domains. The proposed method is used on a benchmark problem, which considers an HTS tape with a ferromagnetic substrate under an external time-varying magnetic field. The results agree closely (error in average ac loss less than 3%) with the widely-used T-A formulation implemented in COMSOL down to 2 mT. In addition, the proposed method is also applied to HTS tapes carrying transport ac current in a slot of a machine’s stator iron core, and HTS tapes in a stator iron slot in a machine under working conditions. It is found that ac loss calculated by the proposed method increases as the discretization size of the ferromagnetic material’s boundary decreases, and overshoots the value calculated by the T-A formulation in COMSOL when using very fine discretization. Full article
(This article belongs to the Special Issue Applied Superconductivity: Material, Design, and Application)
Show Figures

Figure 1

15 pages, 3333 KB  
Article
The Research on H2O Adsorption Characteristics of Lunar Regolith Simulants: Implications for the Development and Utilization of Lunar Water Resources
by Yanan Zhang, Ziheng Liu, Rongji Li, Xinyu Huang, Jiannan Li, Ye Tian, Junyue Tang, Fei Su and Huaiyu He
Water 2025, 17(18), 2777; https://doi.org/10.3390/w17182777 - 19 Sep 2025
Viewed by 467
Abstract
This study prepared an adsorption-based water-containing lunar regolith simulant under low-temperature conditions to investigate H2O behavior in simulated lunar environments. Experiments established that water binds to regolith particles via adsorption rather than existing in liquid/solid states, with critical initial pressure thresholds [...] Read more.
This study prepared an adsorption-based water-containing lunar regolith simulant under low-temperature conditions to investigate H2O behavior in simulated lunar environments. Experiments established that water binds to regolith particles via adsorption rather than existing in liquid/solid states, with critical initial pressure thresholds identified at various temperatures to ensure pure adsorption conditions. Crucially, coexisting substances extend H2O preservation to −100 °C, suggesting substantial water retention in lunar polar regolith even under extreme cold. Sublimation modeling further revealed phase transition boundaries, indicating water ice likely persists in both permanently shadowed regions and illuminated polar areas. These findings provide fundamental insights into: adsorption-driven enrichment/preservation mechanisms of lunar water, thermodynamic stability thresholds at ultralow temperatures, and water ice distribution patterns across lunar polar terrains. The data advance understanding of lunar water’s stability and extractability, offering critical scientific support for future in situ resource utilization and sustained lunar exploration. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

29 pages, 4967 KB  
Article
Adaptive and Differentiated Land Governance for Sustainability: The Spatiotemporal Dynamics and Explainable Machine Learning Analysis of Land Use Intensity in the Guanzhong Plain Urban Agglomeration
by Xiaohui Ding, Yufang Wang, Heng Wang, Yu Jiang and Yuetao Wu
Land 2025, 14(9), 1883; https://doi.org/10.3390/land14091883 - 15 Sep 2025
Viewed by 504
Abstract
Urban agglomerations underpin regional economic growth and sustainability transitions, yet the spatial heterogeneity and drivers of land use intensity (LUI) remain insufficiently resolved in inland settings. This study develops a high-resolution framework—combining a 1 km hexagonal grid with XGBoost-SHAP—to (i) map subsystem-specific LUI [...] Read more.
Urban agglomerations underpin regional economic growth and sustainability transitions, yet the spatial heterogeneity and drivers of land use intensity (LUI) remain insufficiently resolved in inland settings. This study develops a high-resolution framework—combining a 1 km hexagonal grid with XGBoost-SHAP—to (i) map subsystem-specific LUI evolution, (ii) identify dominant drivers and nonlinear thresholds, and (iii) inform differentiated, sustainable land governance in the Guanzhong Plain Urban Agglomeration (GPUA) over 2000–2020. Composite LUI indices were constructed for human settlement (HS), cropland (CS), and forest (FS) subsystems; eleven natural, socioeconomic, urban–rural, and locational variables served as candidate drivers. The results show marked redistributions across subsystems. In HS, the share of low-intensity cells declined (86.54% to 83.18%) as that of medium- (12.10% to 14.26%) and high-intensity ones (1.22% to 2.56%) increased, forming a continuous high-intensity corridor between Xi’an and Xianyang by 2020. CS shifted toward medium-intensity (32.53% to 50.57%) with the contraction of high-intensity cells (26.62% to 14.53%), evidencing strong dynamism (55.1% net intensification; 38.5% net decline). FS transitioned to low-intensity dominance by 2020 (59.12%), with stability and delayed growth concentrated in conserved mountainous zones. Urban–rural gradients were distinct: HS rose by >20% (relative to 2000) in cores but remained low and stable in rural areas (mean < 0.20); CS peaked and stayed stable at fringes (mean ≈ 0.60); FS shifted from an inverse gradient (2000–2010) to core-area recovery by 2020. Explainable machine learning revealed inverted U-shaped relationships for HS (per capita GDP) and CS (population density) and a unimodal peak for FS with respect to distance to urban centers; model performance was strong (HS R2 up to 0.82) with robust validation. Policy recommendations are subsystem-specific: enforce growth boundaries and prioritize infill/polycentric networks (HS); pair farmland redlines with precision agriculture (CS); and maintain ecological redlines with differentiated conservation and afforestation (FS). The framework offers transferable, data-driven evidence for calibrating thresholds and sequencing interventions to reconcile land use intensification with ecological integrity in rapidly urbanizing contexts. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

24 pages, 19145 KB  
Article
Marine Hydraulic Process Modelling Using SMC-Brasil on the Semi-Arid Brazilian Coast
by Thiago Cavalcante Lins Silva, Marco Túlio Mendonça Diniz, Paulo Victor do Nascimento Araújo and Bruno Ferreira
Geosciences 2025, 15(9), 344; https://doi.org/10.3390/geosciences15090344 - 3 Sep 2025
Viewed by 787
Abstract
Understanding coastal hydraulic processes is essential for sustainable coastal planning and management, especially in semi-arid regions where data scarcity represents a significant challenge. This study sought to apply the Brazilian Coastal Modelling System (SMC-Brasil) to analyse the coastal hydraulic processes present on the [...] Read more.
Understanding coastal hydraulic processes is essential for sustainable coastal planning and management, especially in semi-arid regions where data scarcity represents a significant challenge. This study sought to apply the Brazilian Coastal Modelling System (SMC-Brasil) to analyse the coastal hydraulic processes present on the Brazilian semi-arid coast in Rio Grande do Norte, seeking to understand its boundary conditions given the scarcity of data and limited monitoring network. The methodological procedures followed five main stages: data collection and processing, running the models, statistical analysis, and interpretation of the results. The simulations identified wave propagation and dissipation patterns influenced by local bathymetric features such as sandy banks and submarine canyons. The modelling indicated waves with an average Hs50% of 1.14 m, with dominant directions from ENE to ESE. Longitudinal flows ranged from 1 to 8 m3/h, with a predominance of east to west at medium and high tides. The modelling indicated spatial gradients of energy and sediment transport compatible with historical records and field observations. The results show that submerged relief irregularities play a central role in regional coastal dynamics, conditioning current flows and deposition. The application of SMC-Brasil has shown potential to fill monitoring gaps in regions with low infrastructure, offering affordable and effective technical support for adaptive coastal planning in the face of climate change impacts. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

24 pages, 94333 KB  
Article
Medical Segmentation of Kidney Whole Slide Images Using Slicing Aided Hyper Inference and Enhanced Syncretic Mask Merging Optimized by Particle Swarm Metaheuristics
by Marko Mihajlovic and Marina Marjanovic
BioMedInformatics 2025, 5(3), 44; https://doi.org/10.3390/biomedinformatics5030044 - 11 Aug 2025
Viewed by 700
Abstract
Accurate segmentation of kidney microstructures in whole slide images (WSIs) is essential for the diagnosis and monitoring of renal diseases. In this study, an end-to-end instance segmentation pipeline was developed for the detection of glomeruli and blood vessels in hematoxylin and eosin (H&E) [...] Read more.
Accurate segmentation of kidney microstructures in whole slide images (WSIs) is essential for the diagnosis and monitoring of renal diseases. In this study, an end-to-end instance segmentation pipeline was developed for the detection of glomeruli and blood vessels in hematoxylin and eosin (H&E) stained kidney tissue. A tiling-based strategy was employed using Slicing Aided Hyper Inference (SAHI) to manage the resolution and scale of WSIs and the performance of two segmentation models, YOLOv11 and YOLOv12, was comparatively evaluated. The influence of tile overlap ratios on segmentation quality and inference efficiency was assessed, with configurations identified that balance object continuity and computational cost. To address object fragmentation at tile boundaries, an Enhanced Syncretic Mask Merging algorithm was introduced, incorporating morphological and spatial constraints. The algorithm’s hyperparameters were optimized using Particle Swarm Optimization (PSO), with vessel and glomerulus-specific performance targets. The optimization process revealed key parameters affecting segmentation quality, particularly for vessel structures with fine, elongated morphology. When compared with a baseline without postprocessing, improvements in segmentation precision were observed, notably a 48% average increase for glomeruli and up to 17% for blood vessels. The proposed framework demonstrates a balance between accuracy and efficiency, supporting scalable histopathology analysis and contributing to the Vasculature Common Coordinate Framework (VCCF) and Human Reference Atlas (HRA). Full article
Show Figures

Figure 1

27 pages, 6584 KB  
Article
Evaluating Geostatistical and Statistical Merging Methods for Radar–Gauge Rainfall Integration: A Multi-Method Comparative Study
by Xuan-Hien Le, Naoki Koyama, Kei Kikuchi, Yoshihisa Yamanouchi, Akiyoshi Fukaya and Tadashi Yamada
Remote Sens. 2025, 17(15), 2622; https://doi.org/10.3390/rs17152622 - 28 Jul 2025
Viewed by 979
Abstract
Accurate and spatially consistent rainfall estimation is essential for hydrological modeling and flood risk mitigation, especially in mountainous tropical regions with sparse observational networks and highly heterogeneous rainfall. This study presents a comparative analysis of six radar–gauge merging methods, including three statistical approaches—Quantile [...] Read more.
Accurate and spatially consistent rainfall estimation is essential for hydrological modeling and flood risk mitigation, especially in mountainous tropical regions with sparse observational networks and highly heterogeneous rainfall. This study presents a comparative analysis of six radar–gauge merging methods, including three statistical approaches—Quantile Adaptive Gaussian (QAG), Empirical Quantile Mapping (EQM), and radial basis function (RBF)—and three geostatistical approaches—external drift kriging (EDK), Bayesian Kriging (BAK), and Residual Kriging (REK). The evaluation was conducted over the Huong River Basin in Central Vietnam, a region characterized by steep terrain, monsoonal climate, and frequent hydrometeorological extremes. Two observational scenarios were established: Scenario S1 utilized 13 gauges for merging and 7 for independent validation, while Scenario S2 employed all 20 stations. Hourly radar and gauge data from peak rainy months were used for the evaluation. Each method was assessed using continuous metrics (RMSE, MAE, CC, NSE, and KGE), categorical metrics (POD and CSI), and spatial consistency indicators. Results indicate that all merging methods significantly improved the accuracy of rainfall estimates compared to raw radar data. Among them, RBF consistently achieved the highest accuracy, with the lowest RMSE (1.24 mm/h), highest NSE (0.954), and strongest spatial correlation (CC = 0.978) in Scenario S2. RBF also maintained high classification skills across all rainfall categories, including very heavy rain. EDK and BAK performed better with denser gauge input but required recalibration of variogram parameters. EQM and REK yielded moderate performance and had limitations near basin boundaries where gauge coverage was sparse. The results highlight trade-offs between method complexity, spatial accuracy, and robustness. While complex methods like EDK and BAK offer detailed spatial outputs, they require more calibration. Simpler methods are easier to apply across different conditions. RBF emerged as the most practical and transferable option, offering strong generalization, minimal calibration needs, and computational efficiency. These findings provide useful guidance for integrating radar and gauge data in flood-prone, data-scarce regions. Full article
Show Figures

Figure 1

19 pages, 5351 KB  
Article
Early Hydration Kinetics of Shell Ash-Based Cementitious Materials: A Low-Field Nuclear Magnetic Resonance Study
by Chuan Tong, Liyuan Wang, Kun Wang and Jianxin Fu
Materials 2025, 18(14), 3253; https://doi.org/10.3390/ma18143253 - 10 Jul 2025
Viewed by 469
Abstract
This study systematically investigates the effects of shell ash (SA) content (0–10%) on early moisture evolution, pore structure, and hydration kinetics in cement paste using LF-NMR and NG-I-D hydration kinetic models. Key findings include the following: (1) Increased SA content significantly alters moisture [...] Read more.
This study systematically investigates the effects of shell ash (SA) content (0–10%) on early moisture evolution, pore structure, and hydration kinetics in cement paste using LF-NMR and NG-I-D hydration kinetic models. Key findings include the following: (1) Increased SA content significantly alters moisture phase distribution. Low contents (≤8%) consume free water through rapid CaO hydration, promoting C-S-H gel densification. However, 10% SA causes reduced moisture in 0.16–0.4 μm gel micropores (due to hindered ion diffusion) and abrupt increases in 0.63–2.5 μm pores. (2) Porosity first decreases then increases with SA content, reaching minimum values at 3–5% and 8%, respectively. The 10% content induces abnormal porosity growth from localized over-densification following polynomial fitting (R2 = 0.966). (3) Krstulovic–Dabic model analysis reveals three consecutive hydration stages: nucleation–growth (NG), phase boundary reaction (I), and diffusion control (D). The NG stage shows the most intense reactions, while the D stage dominates (>60% contribution), with high model fitting accuracy (R2 > 0.9). (4) SA delays nucleation/crystal growth, inducing needle-like crystals at 3% content. Mechanical properties exhibit quadratic relationships with SA content, achieving peak compressive strength (18.6% increase vs. control) at 5% SA. This research elucidates SA content thresholds governing hydration kinetics and microstructure evolution, providing theoretical support for low-carbon cementitious material design. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Figure 1

17 pages, 4414 KB  
Article
Mechanical Characteristics of 26H2MF and St12T Steels Under Torsion at Elevated Temperatures
by Waldemar Dudda
Materials 2025, 18(13), 3204; https://doi.org/10.3390/ma18133204 - 7 Jul 2025
Viewed by 445
Abstract
The concept of “material effort” appears in continuum mechanics wherever the response of a material to the currently existing state of loads and boundary conditions loses its previous, predictable character. However, within the material, which still descriptively remains a continuous medium, new physical [...] Read more.
The concept of “material effort” appears in continuum mechanics wherever the response of a material to the currently existing state of loads and boundary conditions loses its previous, predictable character. However, within the material, which still descriptively remains a continuous medium, new physical structures appear and new previously unused physical features of the continuum are activated. The literature is dominated by a simplified way of thinking, which assumes that all these states can be characterized and described by one and the same measure of effort—for metals it is the Huber–Mises–Hencky equivalent stress. Quantitatively, perhaps 90% of the literature is dedicated to this equivalent stress. The remaining authors, as well as the author of this paper, assume that there is no single universal measure of effort that would “fit” all operating conditions of materials. Each state of the structure’s operation may have its own autonomous measure of effort, which expresses the degree of threat from a specific destruction mechanism. In the current energy sector, we are increasingly dealing with “low-cycle thermal fatigue states”. This is related to the fact that large, difficult-to-predict renewable energy sources have been added. Professional energy based on coal and gas units must perform many (even about 100 per year) starts and stops, and this applies not only to the hot state, but often also to the cold state. The question arises as to the allowable shortening of start and stop times that would not to lead to dangerous material effort, and whether there are necessary data and strength characteristics for heat-resistant steels that allow their effort to be determined not only in simple states, but also in complex stress states. Do these data allow for the description of the material’s yield surface? In a previous publication, the author presented the results of tension and compression tests at elevated temperatures for two heat-resistant steels: St12T and 26H2MF. The aim of the current work is to determine the properties and strength characteristics of these steels in a pure torsion test at elevated temperatures. This allows for the analysis of the strength of power turbine components operating primarily on torsion and for determining which of the two tested steels is more resistant to high temperatures. In addition, the properties determined in all three tests (tension, compression, torsion) will allow the determination of the yield surface of these steels at elevated temperatures. They are necessary for the strength analysis of turbine elements in start-up and shutdown cycles, in states changing from cold to hot and vice versa. A modified testing machine was used for pure torsion tests. It allowed for the determination of the sample’s torsion moment as a function of its torsion angle. The experiments were carried out at temperatures of 20 °C, 200 °C, 400 °C, 600 °C, and 800 °C for St12T steel and at temperatures of 20 °C, 200 °C, 400 °C, 550 °C, and 800 °C for 26H2MF steel. Characteristics were drawn up for each sample and compared on a common graph corresponding to the given steel. Based on the methods and relationships from the theory of strength, the yield stress and torsional strength were determined. The yield stress of St12T steel at 600 °C was 319.3 MPa and the torsional strength was 394.4 MPa. For 26H2MH steel at 550 °C, the yield stress was 311.4 and the torsional strength was 382.8 MPa. St12T steel was therefore more resistant to high temperatures than 26H2MF. The combined data from the tension, compression, and torsion tests allowed us to determine the asymmetry and plasticity coefficients, which allowed us to model the yield surface according to the Burzyński criterion as a function of temperature. The obtained results also allowed us to determine the parameters of the Drucker-Prager model and two of the three parameters of the Willam-Warnke and Menetrey-Willam models. The research results are a valuable contribution to the design and diagnostics of power turbine components. Full article
Show Figures

Figure 1

Back to TopTop