Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (124)

Search Parameters:
Keywords = GSI system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1244 KB  
Article
Learning-Based Cost-Minimization Task Offloading and Resource Allocation for Multi-Tier Vehicular Computing
by Shijun Weng, Yigang Xing, Yaoshan Zhang, Mengyao Li, Donghan Li and Haoting He
Mathematics 2026, 14(2), 291; https://doi.org/10.3390/math14020291 - 13 Jan 2026
Viewed by 139
Abstract
With the fast development of the 5G technology and IoV, a vehicle has become a smart device with communication, computing, and storage capabilities. However, the limited on-board storage and computing resources often cause large latency for task processing and result in degradation of [...] Read more.
With the fast development of the 5G technology and IoV, a vehicle has become a smart device with communication, computing, and storage capabilities. However, the limited on-board storage and computing resources often cause large latency for task processing and result in degradation of system QoS as well as user QoE. In the meantime, to build the environmentally harmonious transportation system and green city, the energy consumption of data processing has become a new concern in vehicles. Moreover, due to the fast movement of IoV, traditional GSI-based methods face the dilemma of information uncertainty and are no longer applicable. To address these challenges, we propose a T2VC model. To deal with information uncertainty and dynamic offloading due to the mobility of vehicles, we propose a MAB-based QEVA-UCB solution to minimize the system cost expressed as the sum of weighted latency and power consumption. QEVA-UCB takes into account several related factors such as the task property, task arrival queue, offloading decision as well as the vehicle mobility, and selects the optimal location for offloading tasks to minimize the system cost with latency energy awareness and conflict awareness. Extensive simulations verify that, compared with other benchmark methods, our approach can learn and make the task offloading decision faster and more accurately for both latency-sensitive and energy-sensitive vehicle users. Moreover, it has superior performance in terms of system cost and learning regret. Full article
(This article belongs to the Special Issue Computational Methods in Wireless Communications with Applications)
Show Figures

Figure 1

24 pages, 6691 KB  
Article
TAT-PBX1 Reverses Hyperglycemia Through β-Cell Regeneration and Functional Restoration in an STZ-Induced Diabetic Model
by Xiangyuan Meng, Zhenhu Zhao, Xin Zhang, Ruihan Guo, Shuran Yang, Shuhua Mao, Ziyu Zong and Jinyu Liu
Pharmaceuticals 2026, 19(1), 85; https://doi.org/10.3390/ph19010085 - 1 Jan 2026
Viewed by 449
Abstract
Objective: β-cell dysfunction and loss are major pathological determinants of impaired islet function and hyperglycemia in diabetes. Given the inability of current therapies to restore β-cell viability or glucose-responsive insulin secretion, this study aimed to investigate whether a cell-permeable PBX1 fusion protein (TAT-PBX1) [...] Read more.
Objective: β-cell dysfunction and loss are major pathological determinants of impaired islet function and hyperglycemia in diabetes. Given the inability of current therapies to restore β-cell viability or glucose-responsive insulin secretion, this study aimed to investigate whether a cell-permeable PBX1 fusion protein (TAT-PBX1) could rescue streptozotocin (STZ)-induced β-cell injury and restore β-cell functional integrity. Methods: A TAT-PBX1 recombinant fusion protein was produced using a prokaryotic expression system. Its protective effects were assessed in STZ-treated MIN6 β cells and in a mouse model of STZ-induced diabetes, with the glucokinase (GK) activator dorzagliatin included as a positive control. We evaluated β-cell apoptosis, DNA damage, ATP and NAD+/NADH levels, insulin signaling (IRS1/PI3K/Akt), and the expression of PDX1 and GK. Glucose-stimulated insulin secretion (GSIS), glucose tolerance, islet morphology, and β-cell proliferation were also examined in vivo. Results: TAT-PBX1 was detectable and significantly enriched in pancreatic tissue and mitigated STZ-induced cytotoxicity by reducing DNA damage, PARP1-associated energy depletion, and β-cell apoptosis. It restored intracellular ATP and NAD+/NADH ratios and reactivated IRS1/PI3K/Akt signaling. TAT-PBX1 further enhanced PDX1 protein levels and upregulated GK, resulting in improved glucose uptake and GSIS. In addition, it increased Ki67+ β-cell proliferation. In diabetic mice, TAT-PBX1 improved glucose tolerance, preserved islet morphology and number, and improved insulin signaling responsiveness. Conclusions: TAT-PBX1 restores β-cell function through coordinated protection of cellular metabolism and insulin signaling, leading to improved β-cell survival, glucose responsiveness, and regenerative capacity. These findings support TAT-PBX1 as a promising molecular strategy for β-cell-protective and β-cell-restorative diabetes therapy. Full article
(This article belongs to the Special Issue Antidiabetic Agents: New Drug Discovery Insights and Prospects)
Show Figures

Graphical abstract

19 pages, 3680 KB  
Article
Co-Cultivation with Eichhornia crassipes Enhances Growth and Ovarian Development of Micropterus salmoides
by Lin Zhang, Jiahao Liu, Jiawen Hu, Nailin Shao, Yi Sun, Jiahui Xiao, Zhijuan Nie and Pao Xu
Int. J. Mol. Sci. 2026, 27(1), 398; https://doi.org/10.3390/ijms27010398 - 30 Dec 2025
Viewed by 186
Abstract
The growth and development of aquaculture organisms are significantly influenced by environmental variations shaped by different aquaculture systems. In this study, a 90-day controlled experiment was conducted to compare two pond culture setups for largemouth bass: with water hyacinth co-planted (FM group) and [...] Read more.
The growth and development of aquaculture organisms are significantly influenced by environmental variations shaped by different aquaculture systems. In this study, a 90-day controlled experiment was conducted to compare two pond culture setups for largemouth bass: with water hyacinth co-planted (FM group) and without (M group). As this experiment progressed, the FM group exhibited significantly superior water quality (p < 0.05) compared to the M group across multiple parameters, including total nitrogen (TN), total phosphorus (TP), ammonia nitrogen (NH3-N), dissolved oxygen (DO) and transparency, among which, the difference in transparency was especially evident (p < 0.001). Subsequently, by 90 days, the fish body weight, condition factor, and gonadosomatic index (GSI) were significantly higher in the FM group than in the M group, with the GSI difference being particularly pronounced (p < 0.001). While the GSI of M group fishes ranged exclusively from 0.01 to 0.02 (M1), the FM group displayed a much-expanded GSI range of 0.01–0.06, with 21.4% at 0.01–0.02 (FM1), 48.1% at 0.02–0.03 (FM2), and 30.5% at 0.03–0.06 (FM3). Accordingly, omics analyses of ovarian tissues were conducted between the control (M1) and the high-performing groups (FM2 and FM3). The analyses identified significant enrichment of the glycerophospholipid metabolic pathway and a marked upregulation of the Mettl3 gene (log2FC = 12.59) in the FM2 and FM3 than the M1 group, and both the pathway and the Mettl3 gene were actively involved in growth, reproductive processes, and oocyte maturation. Given that water transparency was the most markedly improved parameter, our results indicate that it may be a key driver in upregulating ovarian glycerophospholipid metabolism and Mettl3 expression in largemouth bass, thereby promoting better growth and ovarian development. Full article
Show Figures

Graphical abstract

20 pages, 16452 KB  
Article
Thinning Methods and Assimilation Applications for FY-4B/GIIRS Observations
by Shuhan Yao and Li Guan
Remote Sens. 2026, 18(1), 119; https://doi.org/10.3390/rs18010119 - 29 Dec 2025
Viewed by 315
Abstract
FY-4B/GIIRS (Geostationary Interferometric Infrared Sounder) is a new-generation infrared hyperspectral atmospheric vertical sounder onboard a Chinese geostationary meteorological satellite. Its observations with high spatial and temporal resolution play an important role in high-impact weather forecasts. The GIIRS data assimilation module is developed in [...] Read more.
FY-4B/GIIRS (Geostationary Interferometric Infrared Sounder) is a new-generation infrared hyperspectral atmospheric vertical sounder onboard a Chinese geostationary meteorological satellite. Its observations with high spatial and temporal resolution play an important role in high-impact weather forecasts. The GIIRS data assimilation module is developed in the GSI (Gridpoint Statistical Interpolation) assimilation system. Super Typhoon Doksuri in 2023 (No. 5) is taken as an example based on this module in this paper. Firstly, the sensitivity of analysis fields to five data thinning schemes at four daily assimilation times from 22 to 28 July 2023 is analyzed: the wavelet transform modulus maxima (WTMM) scheme, the grid-distance schemes of 30 km, 60 km, and 120 km in the GSI assimilation system, and a center field of view (FOV) scheme. Taking the ERA5 reanalysis fields as true, it is found that the mean error of temperature and humidity analysis for the WTMM scheme is the smallest, followed by the 120 km thinning scheme. Subsequently, a 72 h cycling assimilation and forecast experiments are conducted for the WTMM and 120 km thinning schemes. It is found that the root mean square error (RMSE) profiles of temperature and humidity forecast fields with no thinning scheme are the largest at all pressure levels and forecast times. The temperature forecast error decreases after data thinning at altitudes below 300 hPa. Since the WTMM scheme has assimilated more observations than the 120 km scheme, the accuracy of its temperature and humidity forecast fields gradually increases with the forecast time. In terms of typhoon track and intensity forecast, the typhoon intensities are underestimated before landfall and overestimated after landfall for all thinning schemes. As the forecast time increases, the advantage of the WTMM is increasingly evident, with both the forecast intensity and track being closest to the actual observations. Similarly, the forecasted 24 h accumulated precipitation over land is overestimated after typhoon landfall compared with the IMERG Final precipitation products. The location of precipitation simulated by no thinning scheme is more westward overall. The forecast accuracy of the locations and intensities of severe precipitation cores and the typhoon’s outer spiral rain bands over the South China Sea has been improved after thinning. The Equitable Threat Scores (ETSs) of the WTMM thinning scheme are the highest for most precipitation intensity thresholds. Full article
Show Figures

Figure 1

16 pages, 515 KB  
Article
Lurasidone and Fluvoxamine Combination in Eating Disorders with Comorbid Obsessive–Compulsive Disorder: Preliminary Evidence from an Observational Study
by Francesco Monaco, Annarita Vignapiano, Ernesta Panarello, Stefania Landi, Giuseppe Scarano, Giovanna Celia, Giulio Corrivetti, Luca Steardo and Mauro Cozzolino
Med. Sci. 2026, 14(1), 8; https://doi.org/10.3390/medsci14010008 - 23 Dec 2025
Viewed by 484
Abstract
Background: Anorexia nervosa (AN) and obsessive–compulsive disorder (OCD) share core features of cognitive rigidity, anxiety, and altered reward processing. Pharmacological options remain limited, and combined modulation of serotonergic and dopaminergic systems may provide new therapeutic directions. This naturalistic study explored the combined use [...] Read more.
Background: Anorexia nervosa (AN) and obsessive–compulsive disorder (OCD) share core features of cognitive rigidity, anxiety, and altered reward processing. Pharmacological options remain limited, and combined modulation of serotonergic and dopaminergic systems may provide new therapeutic directions. This naturalistic study explored the combined use of lurasidone and fluvoxamine in individuals with restrictive AN (AN-r) and comorbid OCD. Methods: Forty-five female inpatients with AN-r and OCD were followed for six months. Participants received either lurasidone + fluvoxamine (n = 14) or heterogeneous SSRI/antipsychotic regimens (n = 31). Primary outcomes were the Recovery Assessment Scale (RAS) and Body Uneasiness Test Global Severity Index (BUT-GSI). Secondary outcomes included the Eating Disorder Examination-Questionnaire (EDE-Q) and Eating Disorder Inventory-3 (EDI-3). Bayesian repeated-measures ANOVAs were conducted, reporting BF10, BFInclusion, and P(M│data) values, with multiple imputation applied to manage missing data. Results: Analyses indicated time-related changes across primary outcomes (RAS and BUT-GSI), with moderate-to-strong evidence (BF10 = 4.2–18.6) supporting overall improvement during treatment. Secondary and exploratory measures showed weaker or inconsistent trends (BF10 < 3). No evidence emerged for group-by-time interactions exceeding anecdotal strength. Conclusions: Within the constraints of this small, all-female inpatient cohort, the findings illustrate directional, time-related changes compatible with global rehabilitation effects rather than drug-specific efficacy. The study demonstrates the feasibility—and methodological challenges—of applying Bayesian longitudinal modeling to incomplete clinical datasets. Future randomized or adaptive trials incorporating objective endpoints and data-quality pipelines are warranted to test whether serotonergic–dopaminergic–σ-1 synergy provides genuine clinical benefit in the AN–OCD spectrum. Full article
(This article belongs to the Section Neurosciences)
Show Figures

Figure 1

45 pages, 3742 KB  
Review
Metabolic Stress and Adaptation in Pancreatic β-Cells to Hypoxia: Mechanisms, Modulators, and Implications for Transplantation
by Jannat Akram, Prianna Menezes, Noorul Ibtesam Idris, Joanna Eliza Thomas, Radwan Darwish, Afrin Tania, Alexandra E. Butler and Abu Saleh Md Moin
Cells 2025, 14(24), 2014; https://doi.org/10.3390/cells14242014 - 17 Dec 2025
Cited by 1 | Viewed by 1105
Abstract
Pancreatic β-cells are metabolically active endocrine cells with a high oxygen demand to sustain glucose-stimulated insulin secretion (GSIS). Hypoxia, arising from vascular disruption, islet isolation, or pathological states such as type 2 diabetes (T2D) and obstructive sleep apnoea (OSA), is a potent metabolic [...] Read more.
Pancreatic β-cells are metabolically active endocrine cells with a high oxygen demand to sustain glucose-stimulated insulin secretion (GSIS). Hypoxia, arising from vascular disruption, islet isolation, or pathological states such as type 2 diabetes (T2D) and obstructive sleep apnoea (OSA), is a potent metabolic stressor that impairs β-cell function, survival, and differentiation. At the molecular level, hypoxia-inducible factors (HIF-1α and HIF-2α) orchestrate transcriptional programs that shift β-cell metabolism from oxidative phosphorylation to glycolysis, modulate mitochondrial function, and regulate survival pathways such as autophagy and mitophagy. Crosstalk with nutrient-sensing mechanisms, redox regulation, growth factor signaling, and protein synthesis control further shapes adaptive or maladaptive outcomes. Hypoxia alters glucose, lipid, and amino acid metabolism, while mitochondrial dysfunction, oxidative stress, and inflammatory signaling contribute to progressive β-cell failure. Therapeutic strategies including incretin hormones, GABAergic signaling, erythropoietin, ChREBP inhibition, and activation of calcineurin–NFAT or oxygen-binding globins—offer potential to preserve β-cell viability under hypoxia. In islet transplantation, oxygen delivery technologies, ischemic preconditioning, mesenchymal stem cell–derived exosomes, and encapsulation systems show promise in mitigating hypoxic injury and improving graft survival. This review synthesizes current knowledge on β-cell responses to hypoxic stress, with emphasis on metabolic reprogramming, molecular signaling, and translational interventions, underscoring that targeted modulation of β-cell metabolism and oxygen handling can enhance resilience to hypoxia and improve outcomes in diabetes therapy and islet transplantation. Full article
(This article belongs to the Section Cellular Metabolism)
Show Figures

Figure 1

19 pages, 5760 KB  
Article
Control Systems for a Coal Mine Tunnelling Machine
by Yuriy Kozhubaev, Roman Ershov, Abbas Ali, Yiming Yao and Changwen Yin
Mining 2025, 5(4), 82; https://doi.org/10.3390/mining5040082 - 10 Dec 2025
Viewed by 338
Abstract
The mining industry places high priority on occupational safety, process quality and operational efficiency. Roadheaders are widely deployed in coal mines to support fully automated excavation, reducing workers’ physical strain and improving overall safety. This article examines an automatic control system for a [...] Read more.
The mining industry places high priority on occupational safety, process quality and operational efficiency. Roadheaders are widely deployed in coal mines to support fully automated excavation, reducing workers’ physical strain and improving overall safety. This article examines an automatic control system for a roadheader cutting head designed to increase mining efficiency, reduce energy consumption and maintain stable performance under varying coal and rock conditions. The system integrates advanced control algorithms with geological strength index (GSI) analysis and asynchronous motor control strategies. GSI-based adaptive speed control conserves energy and increases cutting efficiency compared to manual control. By reducing dynamic load fluctuations, transitions between different cutting zones become smoother, which decreases equipment wear. The proposed control system incorporates speed feedback loops that use a proportional–integral (PI) controller with field-oriented control (FOC), as well as super-twisted sliding mode control (STSMC) with FOC. FOC with STSMC improves roadheader productivity by applying advanced control strategies, adaptive speed regulation and precise geological strength analysis. It is also better able to handle disturbances and sudden loads thanks to STSMC’s nonlinear control robustness. The result is safer, more efficient, and more cost-effective mining that can be implemented across a wide range of underground mining scenarios. Full article
Show Figures

Figure 1

32 pages, 21706 KB  
Article
Seismic Risk Assessment and Sustainable Geotechnical Solutions for Building Heritage: A Case Study in Southeastern Sicily
by Angela Fiamingo, Ettore Mangione, Glenda Abate and Maria Rossella Massimino
Heritage 2025, 8(11), 485; https://doi.org/10.3390/heritage8110485 - 18 Nov 2025
Cited by 2 | Viewed by 611
Abstract
The protection of historic buildings in seismic-prone regions is a critical challenge requiring strategies that balance structural safety with cultural preservation. This study proposes an integrated methodological framework for assessing seismic risk in heritage contexts by combining Geographic Information System (GIS)-based large-scale analyses [...] Read more.
The protection of historic buildings in seismic-prone regions is a critical challenge requiring strategies that balance structural safety with cultural preservation. This study proposes an integrated methodological framework for assessing seismic risk in heritage contexts by combining Geographic Information System (GIS)-based large-scale analyses with detailed Finite Element Method (FEM) simulations. At the urban scale, the framework is applied to more than 70 buildings in the historic center of Bronte (Eastern Sicily, Italy) to evaluate Soil–Structure Interaction (SSI) effects and identify priority areas for mitigation. At a detailed scale, the approach is validated through an in-depth investigation of the San Giovanni Evangelista bell-tower, a representative historic structure within the study area. For this case, sustainable Geotechnical Seismic Isolation (GSI) systems using well-graded Gravel–Rubber Mixtures (wgGRMs) are numerically tested as a low-impact retrofitting strategy. The results demonstrate that combining large-scale mapping with detailed structural modeling provides both broad urban insight and accurate site-specific evaluations, offering a replicable decision-support tool for seismic risk reduction in heritage environments. Additionally, wgGRMs-based GSI system significantly reduces seismic accelerations and drifts, offering a low-impact, sustainable retrofitting solution that reuses waste materials and fully preserves architectural integrity. Full article
(This article belongs to the Special Issue History, Conservation and Restoration of Cultural Heritage)
Show Figures

Figure 1

27 pages, 7936 KB  
Article
Analytical Method for Tunnel Support Parameter Design Based on Surrounding Rock Failure Mode Identification
by Lantian Wang, Peng He, Zhenghu Ma, Ning Liu, Chuanxin Yang and Yaohui Gao
Geosciences 2025, 15(9), 369; https://doi.org/10.3390/geosciences15090369 - 22 Sep 2025
Cited by 1 | Viewed by 2043
Abstract
Accurately identifying surrounding rock failure modes and designing matching support systems are critical to the safety of deep-earth and underground space engineering. We develop a graded classification scheme based on the rock strength-to-stress ratio and the Stress Reduction Factor (SRF) to quantify failure [...] Read more.
Accurately identifying surrounding rock failure modes and designing matching support systems are critical to the safety of deep-earth and underground space engineering. We develop a graded classification scheme based on the rock strength-to-stress ratio and the Stress Reduction Factor (SRF) to quantify failure types and guide support design. Within the convergence–confinement method (CCM) framework, we establish analytical models for shotcrete, rock bolts, steel arches, and composite support systems, enabling parameterized calculations of stiffness, load-bearing capacity, and equilibrium conditions. We conduct single-factor sensitivity analyses to reveal how the Geological Strength Index (GSI), burial depth (H), and equivalent tunnel radius (R0) govern the evolution of surrounding rock pressure and deformation. We propose targeted reinforcement strategies that address large-deformation and high-stress instabilities in practice by linking observed or predicted failure modes to specific support schemes. A large-deformation case study verifies that the proposed parameterized design method accurately predicts the equilibrium support pressure and radial deformation, and the designed support scheme markedly reduces convergence. Accordingly, this study provides a practical tool for tunnel support parameter design and an analytical platform for safe, reliable, and efficient decision making for initial support. Full article
Show Figures

Figure 1

13 pages, 8472 KB  
Article
Radiation-Induced EMT of Adipose-Derived Stem Cells in 3D Organotypic Culture via Notch Signaling Pathway
by Seon Jeong Choi, Meesun Kim, Kyung Tae Chung and Tae Gen Son
Biology 2025, 14(9), 1306; https://doi.org/10.3390/biology14091306 - 22 Sep 2025
Viewed by 727
Abstract
In our previous study, adipose-derived stem cells (ASCs) cultured in a three-dimensional (3D) organotypic system exhibited mesenchymal-to-epithelial transition (MET) features, including cobblestone morphology and increased expression of E-cadherin and CK18. In this study, we investigated whether ionizing radiation could reverse this phenotype via [...] Read more.
In our previous study, adipose-derived stem cells (ASCs) cultured in a three-dimensional (3D) organotypic system exhibited mesenchymal-to-epithelial transition (MET) features, including cobblestone morphology and increased expression of E-cadherin and CK18. In this study, we investigated whether ionizing radiation could reverse this phenotype via epithelial–mesenchymal transition (EMT) and examined the involvement of Notch signaling. Mouse ASCs were cultured in Matrigel-based 3D organotypic conditions and exposed to 8 Gy of γ-radiation, and EMT- and Notch-related gene and protein expression were assessed 96 h post-irradiation using ATP viability assays, RT-qPCR, and Western blotting. Exposure to 8 Gy significantly reduced cell viability in 2D ASCs to 49.50 ± 6.50% compared with 61.02 ± 5.77% in 3D organoids (p < 0.0001). Irradiated 3D organoids showed EMT-like changes, including an increase of ~2.5-fold in fibronectin and an increase of ~2.0-fold in Twist1 expression, while epithelial CK18 was modestly elevated. Notch signaling was concurrently activated, with Notch1 and Jagged1 increasing by more than twofold and Fra-1 being significantly upregulated. Pretreatment with 20 μM of the γ-secretase inhibitor (GSI) kept cell viability above 90% and suppressed radiation-induced fibronectin, Twist1, Notch1, and Jagged1 expression. These findings indicate that ionizing radiation promotes EMT in 3D-cultured ASCs and reverses prior epithelialization, with Notch signaling playing a key regulatory role. The 3D ASC organoid model may thus provide a physiologically relevant platform for investigating radiation-induced plasticity and potential antifibrotic interventions. Full article
Show Figures

Figure 1

17 pages, 997 KB  
Article
Gonadal Production and Quality in the Red Sea Urchin Mesocentrotus franciscanus Fed with Seaweed Devaleraea mollis and Ulva australis from a Land-Based Integrated Multi-Trophic Aquaculture (IMTA) System
by Matthew S. Elliott, Yuanzi Huo and Mark Drawbridge
Biology 2025, 14(9), 1294; https://doi.org/10.3390/biology14091294 - 19 Sep 2025
Viewed by 875
Abstract
Harvesting sea urchins from barrens and enhancing their gonads through aquaculture offers a promising way to convert low-value individuals into high-quality seafood. This study evaluated whether red sea urchins (Mesocentrotus franciscanus, RSUs) fed nutrient-enriched seaweeds produced in a land-based integrated multi-trophic [...] Read more.
Harvesting sea urchins from barrens and enhancing their gonads through aquaculture offers a promising way to convert low-value individuals into high-quality seafood. This study evaluated whether red sea urchins (Mesocentrotus franciscanus, RSUs) fed nutrient-enriched seaweeds produced in a land-based integrated multi-trophic aquaculture (IMTA) system could significantly improve gonad size and quality. Two seaweed species, Ulva australis and Devaleraea mollis, were grown in effluent from white seabass (Atractoscion nobilis) tanks and used to feed RSUs over an 8-week period. RSUs readily consumed both seaweeds, with measurable ingestion, fecal output, and absorption efficiency. We hypothesized that RSUs fed IMTA seaweed would exhibit increased gonadosomatic index and improved gonad quality. GSI significantly increased in both groups, from an initial 3.00 ± 0.50% (9.02 ± 1.80 g) to 4.64 ± 0.66% (23.04 ± 10.20 g) in the U. australis group and to 6.35 ± 1.30% (31.20 ± 7.20 g) in the D. mollis group. Gonad quality improved from “D” (unmarketable) to average “B” (high-quality) grade, based on color, firmness, and texture. These results demonstrate that RSUs collected from barrens can be enhanced into premium seafood using nutrient-enriched seaweeds. Integrating RSUs into land-based IMTA systems may increase aquaculture efficiency, reduce waste, and diversify seafood production in a sustainable and economically viable way. Full article
(This article belongs to the Section Marine and Freshwater Biology)
Show Figures

Figure 1

15 pages, 2792 KB  
Article
A Comprehensive Analysis of Transcriptomics and Proteomics Elucidates the Cold-Adaptive Ovarian Development of Eriocheir sinensis Farmed in High-Altitude Karst Landform
by Qing Li, Yizhong Zhang and Lijuan Li
Genes 2025, 16(9), 1048; https://doi.org/10.3390/genes16091048 - 6 Sep 2025
Viewed by 994
Abstract
Background: In high-altitude regions, sporadic two-year-old immature Chinese mitten crabs (Eriocheir sinensis) would overwinter and mature in their third year, developing into three-year-old crabs (THCs) with a cold-adaptive strategy. Compared to two-year-old crabs (TWCs) from low-altitude Jiangsu, THCs from Karst landform [...] Read more.
Background: In high-altitude regions, sporadic two-year-old immature Chinese mitten crabs (Eriocheir sinensis) would overwinter and mature in their third year, developing into three-year-old crabs (THCs) with a cold-adaptive strategy. Compared to two-year-old crabs (TWCs) from low-altitude Jiangsu, THCs from Karst landform and high-altitude Guizhou exhibit significantly larger final size but lower gonadosomatic index (GSI) (p < 0.01). Methods: To elucidate the molecular mechanisms underlying this delayed ovarian development, integrated transcriptomic and proteomic analyses were conducted. Results: Results showed downregulation of PI3K-Akt and FoxO signaling pathways, as well as upregulation of protein digestion and absorption pathways. Differentially expressed proteins indicated alterations in mitochondrial energy transduction and nutrient assimilation. Integrated omics analysis revealed significant changes in nucleic acid metabolism, proteostasis, and stress response, indicating systemic reorganization in energy-nutrient coordination and developmental plasticity. Conclusions: The observed growth-reproductive inverse relationship reflects an adaptive life-history trade-off under chronic cold stress, whereby energy repartitioning prioritizes somatic growth over gonadal investment. Our transcriptomic and proteomic data further suggest a pivotal regulatory role for FOXO3 dephosphorylation in potentially coupling altered energy sensing to reproductive suppression. This inferred mechanism reveals a potential conserved pathway for environmental adaptation in crustaceans, warranting further functional validation. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

17 pages, 2015 KB  
Article
Large-Scale Screening and Identification of S-RNase Alleles in Chinese and European Apricot Accessions Reveal Their Diversity and Geographic Distribution Patterns
by Junhuan Zhang, Meiling Zhang, Wenjian Yu, Fengchao Jiang, Li Yang, Juanjuan Ling and Haoyuan Sun
Int. J. Mol. Sci. 2025, 26(17), 8667; https://doi.org/10.3390/ijms26178667 - 5 Sep 2025
Cited by 1 | Viewed by 1304
Abstract
Apricot (Prunus armeniaca L.) exhibits a gametophytic self-incompatibility (GSI) system. To identify the S-genotypes of the main apricot cultivars, including 133 native Chinese cultivars and 35 foreign accessions, PCR was performed using a combination of five primers based on the conserved [...] Read more.
Apricot (Prunus armeniaca L.) exhibits a gametophytic self-incompatibility (GSI) system. To identify the S-genotypes of the main apricot cultivars, including 133 native Chinese cultivars and 35 foreign accessions, PCR was performed using a combination of five primers based on the conserved regions of Prunus S-RNase genes. After cloning and sequencing the PCR products, the S-genotypes of all 168 apricot cultivars were determined. A total of 46 different S-RNase alleles, with 15 new alleles, were identified. For all 168 accessions, the top five most frequent S-alleles were S8, S11, S9, S16, and S53. S11, S8, and S16 were the most frequent in Chinese cultivars, and S9, S8, and S2 were mostly found in European accessions. For Chinese apricot cultivars, the distribution of S-alleles among five geographic regions was also investigated. In Northwest China, S16 was the most frequent S-allele. In the Xinjiang region, S66, S49, and S14 were the top three most frequent S-alleles. In North China, S8, S11, and S53 were the top three most frequent S-alleles. In addition, the self-compatible type, SC, was not detected in these 133 Chinese accessions. Finally, the phylogenetic tree of apricot S-alleles indicated that there are four groups of S-RNase genes (S97/S106, S14/S14a/S66, S9/S17/S44, and S23/S53) presenting a very close relation. These results provide more data on the S-genotypes of apricot accessions, which can support future breeding programs by aiding in the selection of the appropriate parents and contributing to efficient orchard design by combining cultivars with suitable pollinizers. Full article
(This article belongs to the Special Issue Advances in Fruit Tree Physiology, Breeding and Genetic Research)
Show Figures

Figure 1

18 pages, 6445 KB  
Article
Green Stormwater Infrastructure (GSI) Performance Assessment for Climate Change Resilience in Storm Sewer Network
by Teressa Negassa Muleta and Marcell Knolmar
Water 2025, 17(17), 2510; https://doi.org/10.3390/w17172510 - 22 Aug 2025
Cited by 1 | Viewed by 1513
Abstract
Urban flooding and the management of stormwater present significant challenges that necessitate innovative and sustainable solutions. This research examines the effectiveness of green stormwater infrastructure (GSI) for resilient storm sewer systems using the Storm Water Management Model (SWMM), based on customized local climate [...] Read more.
Urban flooding and the management of stormwater present significant challenges that necessitate innovative and sustainable solutions. This research examines the effectiveness of green stormwater infrastructure (GSI) for resilient storm sewer systems using the Storm Water Management Model (SWMM), based on customized local climate scenarios. Daily climate data downscaled by four CMIP6 models—CESM2, GFDL-CM4, GFDL-ESM4, and NorESM2-MM—was used. The daily data was disaggregated into 15 min temporal resolution using the HyetosMinute R-package. Two GSI types—bio-retention and rain gardens—were evaluated with a maximum coverage of 30%. The analysis focuses on two future climate scenarios, SSP2-4.5 and SSP5-8.5, predicted under the Shared Socioeconomic Pathways (SSPs) framework. The performance of the stormwater network was assessed for mid-century (2041–2060) and late century (2081–2100), both before and after integration of GSI. Three performance metrics were applied: node flooding volume, number of nodes flooded, and pipe surcharging duration. The simulation results showed an average reduction in flooding volumes ranging between 86 and 98% over the area after integration of GSI. Similarly, reductions ranging between 78 and 89% and between 75 and 90% were observed in pipe surcharging duration and number of nodes vulnerable to flooding, respectively, following GSI. These findings underscore the potential of GSI in fostering sustainable urban water management and enhancement of sustainable development goals (SDGs). Full article
Show Figures

Figure 1

23 pages, 3193 KB  
Perspective
The First Thirty Years of Green Stormwater Infrastructure in Portland, Oregon
by Michaela Koucka, Cara Poor, Jordyn Wolfand, Heejun Chang, Vivek Shandas, Adrienne Aiona, Henry Stevens, Tim Kurtz, Svetlana Hedin, Steve Fancher, Joshua Lighthipe and Adam Zucker
Sustainability 2025, 17(15), 7159; https://doi.org/10.3390/su17157159 - 7 Aug 2025
Cited by 3 | Viewed by 5342
Abstract
Over the past 30 years, the City of Portland, Oregon, USA, has emerged as a national leader in green stormwater infrastructure (GSI). The initial impetus for implementing sustainable stormwater infrastructure in Portland stemmed from concerns about flooding and water quality in the city’s [...] Read more.
Over the past 30 years, the City of Portland, Oregon, USA, has emerged as a national leader in green stormwater infrastructure (GSI). The initial impetus for implementing sustainable stormwater infrastructure in Portland stemmed from concerns about flooding and water quality in the city’s two major rivers, the Columbia and the Willamette. Heavy rainfall often led to combined sewer overflows, significantly polluting these waterways. A partial solution was the construction of “The Big Pipe” project, a large-scale stormwater containment system designed to filter and regulate overflow. However, Portland has taken a more comprehensive and long-term approach by integrating sustainable stormwater management into urban planning. Over the past three decades, the city has successfully implemented GSI to mitigate these challenges. Low-impact development strategies, such as bioswales, green streets, and permeable surfaces, have been widely adopted in streetscapes, pathways, and parking areas, enhancing both environmental resilience and urban livability. This perspective highlights the history of the implementation of Portland’s GSI programs, current design and performance standards, and challenges and lessons learned throughout Portland’s recent history. Innovative approaches to managing runoff have not only improved stormwater control but also enhanced green spaces and contributed to the city’s overall climate resilience while addressing economic well-being and social equity. Portland’s success is a result of strong policy support, effective integration of green and gray infrastructure, and active community involvement. As climate change intensifies, cities need holistic, adaptive, and community-centered approaches to urban stormwater management. Portland’s experience offers valuable insights for cities seeking to expand their GSI amid growing concerns about climate resilience, equity, and aging infrastructure. Full article
Show Figures

Figure 1

Back to TopTop