Gonadal Production and Quality in the Red Sea Urchin Mesocentrotus franciscanus Fed with Seaweed Devaleraea mollis and Ulva australis from a Land-Based Integrated Multi-Trophic Aquaculture (IMTA) System
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Red Sea Urchin Sourcing
2.2. Seaweed Production Methods
2.3. Feeding Trials
2.4. Environmental Factors and Water Quality
2.5. Measuring Protocol
2.6. Gonad Quality
2.7. Data Analysis
3. Results
3.1. Environmental Factors and Water Quality
3.2. Chemical Composition of U. australis and D. mollis
3.3. Red Sea Urchin Height, Diameter, Ingestion Rate, Fecal Rate, and Absorption Efficiency
3.4. Gonadal Somatic Index (GSI) and Gonad Wet Weight
3.5. Gonad Quality
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Filbee-Dexter, K.; Wernberg, T. Rise of turfs: A new battlefront for globally declining kelp forests. Bioscience 2018, 68, 64–76. [Google Scholar] [CrossRef]
- Vásquez, J.A.; Piaget, N.; Vega, J.A. The Lessonia nigrescens fishery in northern Chile: How you harvest is more important than how much you harvest. J. Appl. Phycol. 2012, 2, 417–426. [Google Scholar] [CrossRef]
- Ling, S.D.; Johnson, C.R.; Frusher, S.D.; Ridgway, K. Overfishing reduces resilience of kelp beds to climate-driven catastrophic phase shift. Proc. Natl. Acad. Sci. USA 2009, 106, 22341–22345. [Google Scholar] [CrossRef] [PubMed]
- Rogers-Bennett, L.; Catton, C.A. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. 2019, 9, 15050. [Google Scholar] [CrossRef]
- Steneck, R.S.; Johnson, C.R. Kelp forests: Dynamic patterns, processes and feedbacks. In Marine Community Ecology; Bertness, M.D., Silliman, B., Stachowicz, J., Eds.; Sinauer Associates: Sunderland, MA, USA, 2013; pp. 315–336. [Google Scholar]
- Dillon, D.; Edwards, M. The metabolic depression and revival of purple urchins (Strongylocentrotus purpuratus) in response to macroalgal availability. J. Exp. Mar. Biol. Ecol. 2021, 545, 151646. [Google Scholar] [CrossRef]
- California Department of Fish and Wildlife (CDFW). Red Sea Urchin, Mesocentrotus franciscanus, Enhanced Status Report; California Department of Fish and Wildlife: Sacramento, CA, USA, 2019. [Google Scholar]
- Dvoretsky, A.G.; Dvoretsky, V.G. Distribution patterns and biological aspects of Strongylocentrotus droebachiensis (Echinoidea: Echinoida) in Russian waters of the Barents Sea: Implications for commercial exploration. Rev. Fish Biol. Fish. 2024, 34, 1215–1229. [Google Scholar] [CrossRef]
- Lawrence, J.M.; Lawrence, A.L.; McBride, S.C.; George, S.B.; Watts, S.; Plank, L.R. Developments in the use of prepared feeds in sea-urchin aquaculture. World Aquac.-Baton Rouge 2001, 32, 34–39. [Google Scholar]
- Stefánsson, G.; Kristinsson, H.; Ziemer, N.; Hannon, C.; James, P. Markets for sea urchins: A review of global supply and markets. Skýrsla Matís 2017, 45, 10–17. [Google Scholar]
- Kato, S.; Schroeter, S.C. Biology of the red sea urchin, Strongylocentrotus franciscanus, and its fishery in California. Mar. Fish. Rev. 1985, 47, 1–20. [Google Scholar]
- Rogers-Bennett, L.; Okamoto, D. Mesocentrotus franciscanus and Strongylocentrotus purpuratus. In Developments in Aquaculture and Fisheries Science; Elsevier: Amsterdam, The Netherlands, 2020; pp. 593–608. [Google Scholar] [CrossRef]
- Angwin, R.E.; Hentschel, B.T.; Anderson, T.W. Gonad enhancement of the purple sea urchin, Strongylocentrotus purpuratus, collected from barren grounds and fed prepared diets and kelp. Aquac. Int. 2022, 30, 1353–1367. [Google Scholar] [CrossRef]
- Gardner, L.; Lindsey, H.; Neylan, K.; Chang, W.; Herrmann, K.; Rintoul, M.; Roy, K. Preliminary feasibility assessment of purple sea urchin, Strongylocentrotus purpuratus, roe enhancement. Bull. Jpn. Fish. Res. Educ. Agency 2021, 50, 47–53. [Google Scholar]
- Heflin, L.E.; Makowsky, R.; Taylor, J.C.; Williams, M.B.; Lawrence, A.L.; Watts, S.A. Production and economic optimization of dietary protein and carbohydrate in the culture of juvenile sea urchin Lytechinus variegatus. Aquaculture 2016, 463, 51–60. [Google Scholar] [CrossRef]
- Lares, M.; McClintock, J. The effects of food quality and temperature on the nutrition of the carnivorous sea urchin Eucidaris tribuloides (Lamarck). J. Exp. Mar. Biol. Ecol. 1991, 149, 279–286. [Google Scholar] [CrossRef]
- Lawrence, J.M.; Plank, L.R.; Lawrence, A.L. The effect of feeding frequency on consumption of food, absorption efficiency, and gonad production in the sea urchin Lytechinus variegatus. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2003, 134, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Cook, E.J.; Kelly, M.S. Effect of variation in the protein value of the red macroalga Palmaria palmata on the feeding, growth and gonad composition of the sea urchins Psammechinus miliaris and Paracentrotus lividus (Echinodermata). Aquaculture 2007, 270, 207–217. [Google Scholar] [CrossRef]
- Eddy, S.D.; Brown, N.P.; Kling, A.L.; Watts, S.A.; Lawrence, A. Growth of juvenile green sea urchins, Strongylocentrotus droebachiensis, fed formulated feeds with varying protein levels compared with a macroalgal diet and a commercial abalone feed. J. World Aquac. Soc. 2012, 43, 159–173. [Google Scholar] [CrossRef]
- Foster, M.C.; Byrnes, J.E.; Reed, D.C. Effects of five southern California macroalgal diets on consumption, growth, and gonad weight in the purple sea urchin Strongylocentrotus purpuratus. PeerJ 2015, 3, e719. [Google Scholar] [CrossRef]
- Onomu, A.J.; Vine, N.G.; Cyrus, M.D.; Macey, B.M.; Bolton, J.J. The effect of fresh seaweed and a formulated diet supplemented with seaweed on the growth and gonad quality of the collector sea urchin, Tripneustes gratilla, under farm conditions. Aquac. Res. 2020, 51, 4087–4102. [Google Scholar] [CrossRef]
- Prato, E.; Fanelli, G.; Angioni, A.; Biandolino, F.; Parlapiano, I.; Papa, L.; Denti, G.; Secci, M.; Chiantore, M.; Kelly, M.S. Influence of a prepared diet and a macroalga (Ulva sp.) on the growth, nutritional and sensory qualities of gonads of the sea urchin Paracentrotus lividus. Aquaculture 2018, 493, 240–250. [Google Scholar] [CrossRef]
- Takagi, S.; Murata, Y.; Inomata, E.; Aoki, M.N.; Agatsuma, Y. Production of high quality gonads in the sea urchin Mesocentrotus nudus (A. Agassiz, 1864) from a barren by feeding on the kelp Saccharina japonica at the late sporophyte stage. J. Appl. Phycol. 2019, 31, 4037–4048. [Google Scholar] [CrossRef]
- Warren-Myers, F.; Swearer, S.E.; Francis, D.S.; Turchini, G.M.; Overton, K.; Dempster, T. Algal supplements in formulated feeds: Effects on sea urchin gonad quality. Aquaculture 2022, 548, 737673. [Google Scholar] [CrossRef]
- Drawbridge, M.; Huo, Y.; Fanning, E.; Polizzi, T.; Booher, L. Growth, productivity and nutrient removal rates of sea lettuce (Ulva lactuca) in a land-based IMTA system with white seabass (Atractoscion nobilis) in Southern California. Aquaculture 2024, 587, 740836. [Google Scholar] [CrossRef]
- Huo, Y.; Elliott, M.S.; Drawbridge, M. Growth, productivity and nutrient uptake rates of Ulva lactuca and Devaleraea mollis co-cultured with Atractoscion nobilis in a land-based seawater flow-through cascade IMTA system. Fishes 2024, 9, 417. [Google Scholar] [CrossRef]
- Shpigel, M.; Guttman, L.; Ben-Ezra, D.; Yu, J.; Chen, S. Is Ulva sp. able to be an efficient biofilter for mariculture effluents? J. Appl. Phycol. 2019, 31, 2449–2459. [Google Scholar] [CrossRef]
- Shpigel, M.; Shauli, L.; Odintsov, V.; Ashkenazi, N.; Ben-Ezra, D. Ulva lactuca biofilter from a land-based integrated multi-trophic aquaculture (IMTA) system as a sole food source for the tropical sea urchin Tripneustes gratilla elatensis. Aquaculture 2018, 496, 221–231. [Google Scholar] [CrossRef]
- Shpigel, M.; Shauli, L.; Odintsov, V.; Ben-Ezra, D.; Neori, A.; Guttman, L. The sea urchin, Paracentrotus lividus, in an integrated multi-trophic aquaculture (IMTA) system with fish (Sparus aurata) and seaweed (Ulva lactuca): Nitrogen partitioning and proportional configurations. Aquaculture 2018, 490, 260–269. [Google Scholar] [CrossRef]
- Gao, G.; Clare, A.S.; Chatzidimitriou, E.; Rose, C.; Caldwell, G. Effects of ocean warming and acidification, combined with nutrient enrichment, on chemical composition and functional properties of Ulva rigida. Food Chem. 2018, 258, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Bikker, P.; van Krimpen, M.M.; van Wikselaar, P.; Houweling-Tan, B.; Scaccia, N.; van Hal, J.W.; Huijgen, W.J.; Cone, J.W.; López-Contreras, A.M. Biorefinery of the green seaweed Ulva lactuca to produce animal feed, chemicals and biofuels. J. Appl. Phycol. 2016, 28, 3511–3525. [Google Scholar] [CrossRef]
- Gao, G.; Burgess, J.G.; Wu, M.; Wang, S.; Gao, K. Using macroalgae as biofuel: Current opportunities and challenges. Bot. Mar. 2020, 63, 355–370. [Google Scholar] [CrossRef]
- Demetropoulos, C.L.; Langdon, C.J. Pacific dulse (Palmaria mollis) as a food and biofilter in recirculated, land-based abalone culture systems. Aquac. Eng. 2004, 32, 57–75. [Google Scholar] [CrossRef]
- Gadberry, B.A.; Colt, J.; Maynard, D.; Boratyn, D.C.; Webb, K.; Johnson, R.B.; Saunders, G.W.; Boyer, R.H. Intensive land-based production of red and green macroalgae for human consumption in the Pacific Northwest: An evaluation of seasonal growth, yield, nutritional composition, and contaminant levels. Algae 2018, 33, 109–125. [Google Scholar] [CrossRef]
- Hamilton, S.L.; Elliott, M.S.; deVries, M.S.; Adelaars, J.; Rintoul, M.D.; Graham, M.H. Integrated multi-trophic aquaculture mitigates the effects of ocean acidification: Seaweeds raise system pH and improve growth of juvenile abalone. Aquaculture 2022, 560, 738571. [Google Scholar] [CrossRef]
- Pearce, C.M.; Daggett, T.L.; Robinson, S.M. Effect of urchin size and diet on gonad yield and quality in the green sea urchin (Strongylocentrotus droebachiensis). Aquaculture 2004, 233, 337–367. [Google Scholar] [CrossRef]
- Robinson, S.; Castell, J.; Kennedy, E. Developing suitable colour in the gonads of cultured green sea urchins (Strongylocentrotus droebachiensis). Aquaculture 2002, 206, 289–303. [Google Scholar] [CrossRef]
- Lourenço, S.O.; Barbarino, E.; De-Paula, J.C.; Pereira, L.O.D.S.; Marquez, U.M.L. Amino acid composition, protein content and calculation of nitrogen-to-protein conversion factors for 19 tropical seaweeds. Phycol. Res. 2002, 50, 233–241. [Google Scholar] [CrossRef]
- Pearce, C.M.; Daggett, T.L.; Robinson, S.M. Effect of protein source ratio and protein concentration in prepared diets on gonad yield and quality of the green sea urchin, Strongylocentrotus droebachiensis. Aquaculture 2002, 214, 307–332. [Google Scholar] [CrossRef]
- Pert, C.G.; Swearer, S.E.; Dworjanyn, S.; Kriegisch, N.; Turchini, G.M.; Francis, D.S.; Dempster, T. Barrens of gold: Gonad conditioning of an overabundant sea urchin. Aquac. Environ. Interact. 2018, 10, 345–361. [Google Scholar] [CrossRef]
- Huo, Y.; Stuart, K.; Rotman, F.; Ernst, D.; Drawbridge, M. The culture of fish, mussels, sea cucumbers and macroalgae in a modular integrated multi-trophic recirculating aquaculture system (IMTRAS): Performance and waste removal efficiencies. Aquaculture 2024, 585, 740720. [Google Scholar] [CrossRef]
- Laramore, S.E.; Wills, P.S.; Hanisak, M.D. Seasonal variation in the nutritional profile of Ulva lactuca produced in a land-based IMTA system. Aquac. Int. 2022, 30, 3067–3079. [Google Scholar] [CrossRef]
- Inomata, E.; Murata, Y.; Matsui, T.; Agatsuma, Y. Gonadal production and quality in the sea urchin Mesocentrotus nudus fed a high-protein concentrated red alga Pyropia yezoensis. Aquaculture 2016, 454, 184–191. [Google Scholar] [CrossRef]
- Cyrus, M.D. The Use of Ulva as a Feed Supplement in the Development of an Artificial Diet and Feeding Regimes to Produce Export Quality Roe from the Sea Urchin Tripneustes gratilla (Linnaeus). Ph.D. Dissertation, University of Cape Town, Cape Town, South Africa, 2013. [Google Scholar]
- Souza, C.F.; Oliveira, A.S.; Pereira, R.C. Feeding preference of the sea urchin Lytechinus variegatus (Lamarck, 1816) on seaweeds. Braz. J. Oceanogr. 2008, 56, 239–247. [Google Scholar] [CrossRef]
- Cuesta-Gomez, D.M.; Sánchez-Saavedra, M.P. Increased gonad growth of the purple sea urchin (Strongylocentrotus purpuratus) fed the giant kelp (Macrocystis pyrifera) and the sea lettuce (Ulva lactuca) enriched with nutrients. Aquac. Res. 2016, 47, 2150–2163. [Google Scholar] [CrossRef]
- Agatsuma, Y. Gonadal growth of the sea urchin, Strongylocentrotus nudus, from trophically poor coralline flats and fed excess kelp, Laminaria religiosa. Aquac. Sci. 1999, 47, 325–330. [Google Scholar] [CrossRef]
- Jangoux, M.; Lawrence, J.M. Echinoderm Nutrition; CRC Press: Boca Raton, FL, USA, 1982. [Google Scholar]
- Warren, E.M.; Pearce, C.M. Effect of transport method on subsequent survivorship and gonad yield/quality in the red sea urchin Mesocentrotus franciscanus. N. Am. J. Aquac. 2020, 82, 371–376. [Google Scholar] [CrossRef]
- Russell, M.P. Resource allocation plasticity in sea urchins: Rapid, diet induced, phenotypic changes in the green sea urchin, Strongylocentrotus droebachiensis (Müller). J. Exp. Mar. Biol. Ecol. 1998, 220, 1–14. [Google Scholar] [CrossRef]
- Ryder, J.; Karunasagar, I.; Ababouch, L. Assessment and Management of Seafood Safety and Quality: Current Practices and Emerging Issues; FAO Fisheries and Aquaculture Technical Paper No. 574; FAO: Rome, Italy, 2014; 220p. [Google Scholar]
- Shpigel, M.; McBride, S.C.; Marciano, S.; Ron, S.; Ben-Amotz, A. Improving gonad colour and somatic index in the European sea urchin Paracentrotus lividus. Aquaculture 2005, 245, 101–109. [Google Scholar] [CrossRef]
- Eismann, A.I.; Reis, R.P.; Obando, J.M.C.; dos Santos, T.C.; Cavalcanti, D.N. Carotenoid content in Ulva lactuca cultivated under aquaculture conditions and collected from intertidal beds in southeastern Brazil: Biotechnological implications for biomass use and storage. Cienc. Mar. 2024, 50, 3461. [Google Scholar] [CrossRef]
- Bjørnland, T.; Aguilar-Martinez, M. Carotenoids in red algae. Phytochemistry 1976, 15, 291–296. [Google Scholar] [CrossRef]
- Ju, Z.Y.; Viljoen, C.; Hutchinson, P.; Reinicke, J.; Horgen, F.D.; Howard, L.; Lee, C.S. Effects of diets on the growth performance and shell pigmentation of Pacific abalone. Aquac. Res. 2016, 47, 4004–4014. [Google Scholar] [CrossRef]
- Takagi, S.; Murata, Y.; Inomata, E.; Endo, H.; Aoki, M.N.; Agatsuma, Y. Improvement of gonad quality of the sea urchin Mesocentrotus nudus fed the kelp Saccharina japonica during offshore cage culture. Aquaculture 2017, 477, 50–61. [Google Scholar] [CrossRef]
- Grime, B.C.; Sanders, R.; Ford, T.; Burdick, H.; Claisse, J.T. Urchin gonad response to kelp forest restoration on the Palos Verdes Peninsula, California. Bull. South. Calif. Acad. Sci. 2023, 122, 1–18. [Google Scholar] [CrossRef]
Color | Texture | Firmness | Grade |
---|---|---|---|
Level I—Bright yellow-orange | Fine | F | A |
NF | A | ||
Medium | F | A | |
NF | A | ||
Coarse | F | B | |
NF | B | ||
Level II—Dull yellow-orange to light orange-brown | Fine | F | B |
NF | B | ||
Medium | F | B | |
NF | B | ||
Coarse | F | C | |
NF | C | ||
Level III—Light to moderate brown | Fine | F | C |
NF | C | ||
Medium | F | C | |
NF | C | ||
Coarse | F | D | |
NF | D | ||
Level IV—Dark brown or black | Fine | F | D |
NF | D | ||
Medium | F | D | |
NF | D | ||
Coarse | F | D | |
NF | D |
Level | Description | Color Display | RGB Value Range |
---|---|---|---|
Level I | Bright yellow-orange | R: 160–255, G: 115–255, B: 0–125 | |
Level II | Dull yellow-orange to light orange-brown | R: 120–160, G: 75–125, B: 0–95 | |
Level III | Light to moderate brown | R: 100–120, G: 50–115, B: 0–65 | |
Level IV | Dark brown or black | R: 0–100, G: 0–80, B: 0–35 |
(A) | ||||
RSU | Color Level | Texture (mm) | Firmness | Grade |
1 | IV | 0.68 | F | D |
2 | III | 1.23 | NF | C |
3 | III | 1.15 | NF | C |
4 | IV | 1.25 | F | D |
5 | IV | 0.98 | F | D |
(B) | ||||
RSU | Color Level | Texture (mm) | Firmness | Grade |
1 | II | 1.17 | NF | B |
2 | IV | 1.59 | F | D |
3 | III | 0.68 | F | C |
4 | IV | 0.81 | F | D |
5 | II | 0.87 | NF | B |
(C) | ||||
RSU | Color Level | Texture (mm) | Firmness | Grade |
1 | II | 0.75 | F | B |
2 | II | 1.14 | F | B |
3 | I | 0.92 | F | A |
4 | III | 0.78 | NF | C |
5 | II | 0.91 | F | B |
(D) | ||||
RSU | Color Level | Texture (mm) | Firmness | Grade |
6 | II | 0.77 | F | B |
7 | II | 0.91 | F | B |
8 | II | 0.88 | F | B |
9 | II | 0.62 | F | B |
10 | II | 1.03 | F | B |
(E) | ||||
RSU | Color Level | Texture (mm) | Firmness | Grade |
6 | II | 0.79 | F | B |
7 | II | 1.04 | F | B |
8 | II | 1.04 | F | B |
9 | III | 1.09 | NF | C |
10 | II | 1 | F | B |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elliott, M.S.; Huo, Y.; Drawbridge, M. Gonadal Production and Quality in the Red Sea Urchin Mesocentrotus franciscanus Fed with Seaweed Devaleraea mollis and Ulva australis from a Land-Based Integrated Multi-Trophic Aquaculture (IMTA) System. Biology 2025, 14, 1294. https://doi.org/10.3390/biology14091294
Elliott MS, Huo Y, Drawbridge M. Gonadal Production and Quality in the Red Sea Urchin Mesocentrotus franciscanus Fed with Seaweed Devaleraea mollis and Ulva australis from a Land-Based Integrated Multi-Trophic Aquaculture (IMTA) System. Biology. 2025; 14(9):1294. https://doi.org/10.3390/biology14091294
Chicago/Turabian StyleElliott, Matthew S., Yuanzi Huo, and Mark Drawbridge. 2025. "Gonadal Production and Quality in the Red Sea Urchin Mesocentrotus franciscanus Fed with Seaweed Devaleraea mollis and Ulva australis from a Land-Based Integrated Multi-Trophic Aquaculture (IMTA) System" Biology 14, no. 9: 1294. https://doi.org/10.3390/biology14091294
APA StyleElliott, M. S., Huo, Y., & Drawbridge, M. (2025). Gonadal Production and Quality in the Red Sea Urchin Mesocentrotus franciscanus Fed with Seaweed Devaleraea mollis and Ulva australis from a Land-Based Integrated Multi-Trophic Aquaculture (IMTA) System. Biology, 14(9), 1294. https://doi.org/10.3390/biology14091294