Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = GPS/EGNOS positioning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 4122 KiB  
Proceeding Paper
UKSBAS Testbed Performance Assessment of Two Years of Operations
by Javier González Merino, Fernando Bravo Llano, Michael Pattinson, Madeleine Easom, Juan Ramón Campano Hernández, Ignacio Sanz Palomar, María Isabel Romero Llapa, Sangeetha Priya Ilamparithi, David Hill and George Newton
Eng. Proc. 2025, 88(1), 35; https://doi.org/10.3390/engproc2025088035 - 21 Apr 2025
Viewed by 309
Abstract
Current Satellite-Based Augmentation Systems (SBASs) improve the positioning accuracy and integrity of GPS satellites and provide safe civil aviation navigation services for procedures from en-route to LPV-200 precision approach over specific regions. SBAS systems, such as WAAS, EGNOS, GAGAN, and MSAS, already operate. [...] Read more.
Current Satellite-Based Augmentation Systems (SBASs) improve the positioning accuracy and integrity of GPS satellites and provide safe civil aviation navigation services for procedures from en-route to LPV-200 precision approach over specific regions. SBAS systems, such as WAAS, EGNOS, GAGAN, and MSAS, already operate. The development of operational SBAS systems is in transition due to the extension of L1 SBAS services to new regions and the improvements expected by the introduction of dual frequency multi-constellation (DFMC) services, which allow the use of more core constellations such as Galileo and the use of ionosphere-free L1/L5 signal combination. The UKSBAS Testbed is a demonstration and feasibility project in the framework of ESA’s Navigation Innovation Support Programme (NAVISP), which is sponsored by the UK’s HMG with the participation of the Department for Transport and the UK Space Agency. UKSBAS Testbed’s main objective is to deliver a new L1 SBAS signal in space (SIS) from May 2022 in the UK region using Viasat’s Inmarsat-3F5 geostationary (GEO) satellite and Goonhilly Earth Station as signal uplink over PRN 158, as well as L1 SBAS and DFMC SBAS services through the Internet. SBAS messages are generated by GMV’s magicSBAS software and fed with data from the Ordnance Survey’s station network. This paper provides an assessment of the performance achieved by the UKSBAS Testbed during the last two years of operations at the SIS and user level, including a number of experimentation campaigns performed in the aviation and maritime domains, comprising ground tests at airports, flight tests on aircraft and sea trials on a vessel. This assessment includes, among others, service availability (e.g., APV-I, LPV-200), protection levels (PL), and position errors (PE) statistics over the service area and in a network of receivers. Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

16 pages, 4995 KiB  
Article
Optimal Global Positioning System/European Geostationary Navigation Overlay Service Positioning Model Using Smartphone
by Grzegorz Grunwald, Adam Ciećko, Kamil Krasuski and Dariusz Tanajewski
Appl. Sci. 2024, 14(5), 1840; https://doi.org/10.3390/app14051840 - 23 Feb 2024
Cited by 1 | Viewed by 1223
Abstract
The potential for the use of smartphones in GNSSs (Global Navigation Satellite Systems) positioning has increased in recent years due to the emergence of the ability of Android-based devices used to process raw satellite data. This paper presents the results of a study [...] Read more.
The potential for the use of smartphones in GNSSs (Global Navigation Satellite Systems) positioning has increased in recent years due to the emergence of the ability of Android-based devices used to process raw satellite data. This paper presents the results of a study on the use of SBAS data transmitted by the EGNOS (European Geostationary Navigation Overlay Service) system in GNSS positioning using a Xiaomi Mi8 smartphone. Raw data recorded at a fixed point were used in post-processing calculations in GPS/EGNOS positioning by determining the coordinates for every second of a session of about 5 h and comparing the results to those obtained with a Septentrio AsteRx2 GNSS receiver operating at the same time at a distance of about 3 m. The calculations were performed using the assumptions of the GNSS/SBAS positioning algorithms, which were modified with carrier-phase smoothed code observations and the content of the corrections transmitted by EGNOS. Full article
(This article belongs to the Topic GNSS Measurement Technique in Aerial Navigation)
Show Figures

Figure 1

22 pages, 6272 KiB  
Review
Review of the Monothematic Series of Publications Concerning Research on Statistical Distributions of Navigation Positioning System Errors
by Mariusz Specht
Remote Sens. 2023, 15(22), 5407; https://doi.org/10.3390/rs15225407 - 17 Nov 2023
Cited by 1 | Viewed by 1592
Abstract
This review presents the main results of the author’s study, obtained as part of the post-doctoral (habilitation) dissertation entitled “Research on Statistical Distributions of Navigation Positioning System Errors”, which constitutes a series of five thematically linked scientific publications. The main scientific aim of [...] Read more.
This review presents the main results of the author’s study, obtained as part of the post-doctoral (habilitation) dissertation entitled “Research on Statistical Distributions of Navigation Positioning System Errors”, which constitutes a series of five thematically linked scientific publications. The main scientific aim of this series is to answer the question of what statistical distributions follow the position errors of navigation systems, such as Differential Global Positioning System (DGPS), European Geostationary Navigation Overlay Service (EGNOS), Global Positioning System (GPS), and others. All of the positioning systems under study (Decca Navigator, DGPS, EGNOS, and GPS) are characterised by the Position Random Walk (PRW), which means that latitude and longitude errors do not appear randomly, being a feature of the normal distribution. The research showed that the Gaussian distribution is not an optimal distribution for the modelling of navigation positioning system errors. A higher fit to the 1D and 2D position errors was exhibited by such distributions as beta, gamma, and lognormal. Moreover, it was proven that the Twice the Distance Root Mean Square (2DRMS(2D)) measure, which assumes a priori normal distribution of position errors in relation to latitude and latitude, was smaller by 10–14% than the position error value from which 95% fixes were smaller (it is known as the R95(2D) measure). Full article
(This article belongs to the Special Issue Precise Point Positioning (PPP) Based on Multi-GNSS)
Show Figures

Figure 1

19 pages, 8596 KiB  
Article
The Movement of GPS Positioning Discrepancy Clouds at a Mid-Latitude Region in March 2015
by Janis Balodis, Madara Normand and Ansis Zarins
Remote Sens. 2023, 15(8), 2032; https://doi.org/10.3390/rs15082032 - 12 Apr 2023
Cited by 3 | Viewed by 2116
Abstract
The geomagnetic storm on 17 March 2015 had a strong impact on the global navigation satellite systems (GNSS) positioning results in many GNSS Continuously Operating Reference Stations (CORS) in Europe. The analysis of global positioning system (GPS) observations in Latvian CORS stations discovered [...] Read more.
The geomagnetic storm on 17 March 2015 had a strong impact on the global navigation satellite systems (GNSS) positioning results in many GNSS Continuously Operating Reference Stations (CORS) in Europe. The analysis of global positioning system (GPS) observations in Latvian CORS stations discovered a strong impact of this space weather event over the whole country. The impact appeared as a moving cloud of positioning discrepancies across the country. However, the analysis of the days before 17 March revealed other smaller duration ionospheric scintillation events. The objective was to analyze the GPS positioning discrepancy cloud movement, total electron content (TEC), and rate of change of the TEC index (ROTI) relationships, as well as discrepancy statistics. The area of analysis on 16–18 March was increased by including the EGNOS ground-based Ranging and Integrity Monitoring Stations (RIMS): GVLA and GVLB, LAPA and LAPB, and WRSA and WRSB. The conclusion of the study is that each “shot” after 90 s gives a completely new cloud with a new impacted station subset, its configuration, and completely irregular discrepancy values. Full article
Show Figures

Figure 1

13 pages, 2136 KiB  
Article
Analysis of GPS/EGNOS Positioning Quality Using Different Ionospheric Models in UAV Navigation
by Grzegorz Grunwald, Adam Ciećko, Tomasz Kozakiewicz and Kamil Krasuski
Sensors 2023, 23(3), 1112; https://doi.org/10.3390/s23031112 - 18 Jan 2023
Cited by 7 | Viewed by 2511
Abstract
Unmanned aerial vehicles (UAVs) have become very popular tools for geoinformation acquisition in recent years. They have also been applied in many other areas of life. Their navigation is highly dependent on global navigation satellite systems (GNSS). The European Geostationary Navigation Overlay Service [...] Read more.
Unmanned aerial vehicles (UAVs) have become very popular tools for geoinformation acquisition in recent years. They have also been applied in many other areas of life. Their navigation is highly dependent on global navigation satellite systems (GNSS). The European Geostationary Navigation Overlay Service (EGNOS) is intended to support GNSSs during positioning, mainly for aeronautical applications. The research presented in this paper concerns the analysis of the positioning quality of a modified GPS/EGNOS algorithm. The calculations focus on the source of ionospheric delay data as well as on the aspect of smoothing code observations with phase measurements. The modifications to the algorithm concerned the application of different ionospheric models for position calculation. Consideration was given to the EGNOS ionospheric model, the Klobuchar model applied to the GPS system, the Klobuchar model applied to the BeiDou system, and the NeQuick model applied to the Galileo system. The effect of removing ionospherical corrections from GPS/EGNOS positioning on the results of the determination of positioning quality was also analysed. The results showed that the original EGNOS ionospheric model maintains the best accuracy results and a better correlation between horizontal and vertical results than the other models examined. The additional use of phase-smoothing of code observations resulted in maximum horizontal errors of approximately 1.3 m and vertical errors of approximately 2.2 m. It should be noted that the results obtained have local characteristics related to the area of north-eastern Poland. Full article
(This article belongs to the Collection Radar, Sonar and Navigation)
Show Figures

Figure 1

20 pages, 7915 KiB  
Article
Dual Receiver EGNOS+SDCM Positioning with C1C and C1W Pseudo-Range Measurements
by Mieczysław Bakuła, Kamil Krasuski and Karol Dawidowicz
Remote Sens. 2022, 14(13), 3152; https://doi.org/10.3390/rs14133152 - 30 Jun 2022
Cited by 1 | Viewed by 2098
Abstract
The paper presents an approach to the simultaneous use of SDCM and EGNOS corrections for two GNSS receivers placed at a constant distance. The SDCM and EGNOS corrections were applied for two GPS code measurements on L1 frequency: C1C and C1W. The approach [...] Read more.
The paper presents an approach to the simultaneous use of SDCM and EGNOS corrections for two GNSS receivers placed at a constant distance. The SDCM and EGNOS corrections were applied for two GPS code measurements on L1 frequency: C1C and C1W. The approach is based mainly on the constrained least squares adjustment, but for the horizontal and vertical coordinates, the Kalman Filter was applied in order to reduce pseudo-range noises. It allows for obtaining a higher autonomous accuracy of GPS/(SDCM+EGNOS) positioning than when using only the GPS/EGNOS or GPS/SDCM system. The final dual-redundant solution, in which two SBAS systems were used (EGNOS+SDCM) and two GPS pseudo-ranges (C1C+C1W) were present, yielded RMS errors of 0.11 m for the horizontal coordinates and 0.25 m for the vertical coordinates. Moreover, the accuracy analysis in the developed mathematical model for the determined 3D coordinates with simultaneous use of EGNOS and SDCM systems proved to be much more reliable than using only a single EGNOS or SDCM system. The presented approach can be used not only for precise navigation, but also for some geoscience applications and remote sensing where the reliable accuracy of autonomous GPS positioning is required. Full article
(This article belongs to the Special Issue Satellite Navigation and Signal Processing)
Show Figures

Figure 1

18 pages, 11190 KiB  
Article
Determination of Navigation System Positioning Accuracy Using the Reliability Method Based on Real Measurements
by Mariusz Specht
Remote Sens. 2021, 13(21), 4424; https://doi.org/10.3390/rs13214424 - 3 Nov 2021
Cited by 27 | Viewed by 7298
Abstract
In navigation, the Twice the Distance Root Mean Square (2DRMS) is commonly used as a position accuracy measure. Its determination, based on statistical methods, assumes that the position errors are normally distributed and are often not reflected in actual measurements. As a result [...] Read more.
In navigation, the Twice the Distance Root Mean Square (2DRMS) is commonly used as a position accuracy measure. Its determination, based on statistical methods, assumes that the position errors are normally distributed and are often not reflected in actual measurements. As a result of the widespread adoption of this measure, the positioning accuracy of navigation systems is overestimated by 10–15%. In this paper, a new method is presented for determining the navigation system positioning accuracy based on a reliability model where the system’s operation and failure statistics are referred to as life and failure times. Based on real measurements, the method proposed in this article will be compared with the classical method (based on the 2DRMS measure). Real (empirical) measurements made by the principal modern navigation positioning systems were used in the analyses: Global Positioning System (GPS) (168’286 fixes), Differential Global Positioning System (DGPS) (900’000 fixes) and European Geostationary Navigation Overlay Service (EGNOS) (900’000 fixes). Research performed on real data, many of which can be considered representative, have shown that the reliability method provides a better (compared to the 2DRMS measure) estimate of navigation system positioning accuracy. Thanks to its application, it is possible to determine the position error distribution of the navigation system more precisely when compared to the classical method, as well as to indicate those applications that can be used by this system, ensuring the safety of the navigation process. Full article
(This article belongs to the Special Issue GNSS, Space Weather and TEC Special Features)
Show Figures

Figure 1

22 pages, 6383 KiB  
Article
Application the SBAS/EGNOS Corrections in UAV Positioning
by Kamil Krasuski and Damian Wierzbicki
Energies 2021, 14(3), 739; https://doi.org/10.3390/en14030739 - 31 Jan 2021
Cited by 11 | Viewed by 3300
Abstract
The paper presents a new concept of determining the resultant position of a UAV (Unmanned Aerial Vehicle) based on individual SBAS (Satellite-Based Augmentation System) determinations from all available EGNOS (European Geostationary Navigation Overlay Service) satellites for the SPP (Single Point Positioning) code method. [...] Read more.
The paper presents a new concept of determining the resultant position of a UAV (Unmanned Aerial Vehicle) based on individual SBAS (Satellite-Based Augmentation System) determinations from all available EGNOS (European Geostationary Navigation Overlay Service) satellites for the SPP (Single Point Positioning) code method. To achieve this, the authors propose a weighted mean model to integrate EGNOS data. The weighted model was based on the inverse of the square of the mean position error along the component axes of the BLh ellipsoidal frame. The calculations included navigation data from the EGNOS S123, S126, S136 satellites. In turn, the resultant UAV position model was determined using the Scilab v.6.0.0 software. Based on the proposed computational strategy, the mean values of the UAV BLh coordinates’ standard deviation were better than 0.2 m (e.g., 0.0000018° = 0.01″ in angular measurement). Additionally, the numerical solution used made it possible to increase the UAV’s position accuracy by about 29% for Latitude, 46% for Longitude and 72% for ellipsoidal height compared to the standard SPP positioning in the GPS receiver. It is also worth noting that the standard deviation of the UAV position calculated from the weighted mean model improved by about 21 ÷ 50% compared to the arithmetic mean model’s solution. It can be concluded that the proposed research method allows for a significant improvement in the accuracy of UAV positioning with the use of EGNOS augmentation systems. Full article
Show Figures

Figure 1

26 pages, 6418 KiB  
Article
Statistical Distribution Analysis of Navigation Positioning System Errors—Issue of the Empirical Sample Size
by Mariusz Specht
Sensors 2020, 20(24), 7144; https://doi.org/10.3390/s20247144 - 13 Dec 2020
Cited by 22 | Viewed by 6052
Abstract
Positioning systems are used to determine position coordinates in navigation (air, land, and marine). Statistical analysis of their accuracy assumes that the position errors (latitude—δφ and longitude—δλ) are random and that their distributions are consistent with the normal [...] Read more.
Positioning systems are used to determine position coordinates in navigation (air, land, and marine). Statistical analysis of their accuracy assumes that the position errors (latitude—δφ and longitude—δλ) are random and that their distributions are consistent with the normal distribution. However, in practice, these errors do not appear in a random way, since the position determination in navigation systems is done with an iterative method. It causes so-called “Position Random Walk”, similar to the term “Random Walk” known from statistics. It results in the empirical distribution of δφ and δλ being inconsistent with the normal distribution, even for samples of up to several thousand measurements. This phenomenon results in a significant overestimation of the accuracy of position determination calculated from such a short series of measurements, causing these tests to lose their representativeness. This paper attempts to determine the length of a measurement session (number of measurements) that is representative of the positioning system. This will be a measurement session of such a length that the position error statistics (δφ and δλ) represented by the standard deviation values are close to the real values and the calculated mean values (φ¯ and λ¯) are also close to the real values. Special attention will also be paid to the selection of an appropriate (statistically reliable) number of measurements to be tested statistically to verify the hypothesis that the δφ and δλ distributions are consistent with the normal distribution. Empirical measurement data are taken from different positioning systems: Global Positioning System (GPS) (168′286 fixes), Differential Global Positioning System (DGPS) (864′000 fixes), European Geostationary Navigation Overlay Service (EGNOS) (928′492 fixes), and Decca Navigator system (4052 fixes). The analyses showed that all researched positioning systems (GPS, DGPS, EGNOS and Decca Navigator) are characterized by the Position Random Walk (PRW), which resulted in that the empirical distribution of δφ and δλ being inconsistent with the normal distribution. The size of the PRW depends on the nominal accuracy of position determination by the system. It was found that measurement sessions consisting of 1000 fixes (for the GPS system) overestimate the accuracy analysis results by 109.1% and cannot be considered representative. Furthermore, when analyzing the results of long measurement campaigns (GPS and DGPS), it was found that the representative length of the measurement session differs for each positioning system and should be determined for each of them individually. Full article
(This article belongs to the Special Issue GNSS Data Processing and Navigation in Challenging Environments)
Show Figures

Figure 1

8 pages, 2742 KiB  
Concept Paper
SBAS/EGNOS for Maritime
by Manuel Lopez-Martinez, José-Manuel Álvarez, José-Maria Lorenzo and Carlos Garcia Daroca
J. Mar. Sci. Eng. 2020, 8(10), 764; https://doi.org/10.3390/jmse8100764 - 30 Sep 2020
Cited by 3 | Viewed by 3300
Abstract
The Global Navigation Satellite System (GNSS) has become the primary means of obtaining Position, Navigation, and Timing (PNT) information at sea. The current capabilities of the Global Positioning System (GPS) constellation, although adequate for ocean navigation, have some shortfalls for coastal navigation: some [...] Read more.
The Global Navigation Satellite System (GNSS) has become the primary means of obtaining Position, Navigation, and Timing (PNT) information at sea. The current capabilities of the Global Positioning System (GPS) constellation, although adequate for ocean navigation, have some shortfalls for coastal navigation: some user communities have a need for enhanced performance and they can benefit from the available “augmentation” techniques, resulting in improved GPS performance. Nowadays, the users can take advantage of Satellite-Based Augmentation Systems (SBASs). The maritime domain has been used SBAS for several years and it is supported by GNSS receivers used in the recreational and professional sectors. The SBAS/European Geostationary Navigation Overlay Service (EGNOS) can be used to complement the differential GNSS (DGNSS) for the provision of enhanced accuracy and integrity information with additional benefits. There are different possible solutions for the transmission of SBAS/EGNOS information to maritime users, considering that the corrections can be available from different transmission means. The different options for the use of SBAS for maritime navigation, the benefits brought to mariners, as well as the associated regulations, standardization and service provision aspects, are presented in this article. Full article
(This article belongs to the Special Issue GNSS and Geomatics Application for Navigation and Marine Engineering)
Show Figures

Figure 1

15 pages, 7228 KiB  
Article
Examination of Multi-Receiver GPS/EGNOS Positioning with Kalman Filtering and Validation Based on CORS Stations
by Adam Ciećko, Mieczysław Bakuła, Grzegorz Grunwald and Janusz Ćwiklak
Sensors 2020, 20(9), 2732; https://doi.org/10.3390/s20092732 - 11 May 2020
Cited by 24 | Viewed by 5124
Abstract
This paper presents the concept of precise navigation based on SBAS technology and CORS stations. In a kinematic test, three rover Global Positioning System (GPS) receivers, properly spaced relatively to each other, were used in order to estimate reliable and redundant GPS/EGNOS positions. [...] Read more.
This paper presents the concept of precise navigation based on SBAS technology and CORS stations. In a kinematic test, three rover Global Positioning System (GPS) receivers, properly spaced relatively to each other, were used in order to estimate reliable and redundant GPS/EGNOS positions. Next, the Kalman filter was employed to give the final solution. It was proven that EGNOS positioning allows to obtain an accuracy in the range of about 0.5–1.5 m. The proposed solution involving the use of three mobile receivers and Kalman filtering allowed to reduce the 3D error to a level below 0.3 m. Such an accuracy was achieved using only GPS L1 code observations and EGNOS corrections. Additionally, a reliable monitoring of quality of GPS/EGNOS positioning in the test area based on CORS stations was presented. Full article
(This article belongs to the Special Issue GNSS Sensors in Aerial Navigation)
Show Figures

Figure 1

20 pages, 3114 KiB  
Article
Monitoring Aircraft Position Using EGNOS Data for the SBAS APV Approach to the Landing Procedure
by Kamil Krasuski and Damian Wierzbicki
Sensors 2020, 20(7), 1945; https://doi.org/10.3390/s20071945 - 30 Mar 2020
Cited by 17 | Viewed by 3809
Abstract
The aim of this paper is to present the problem of the implementation of the EGNOS (European Geostationary Navigation Overlay Service) data for the processing of aircraft position determination. The main aim of the research is to develop a new computational strategy which [...] Read more.
The aim of this paper is to present the problem of the implementation of the EGNOS (European Geostationary Navigation Overlay Service) data for the processing of aircraft position determination. The main aim of the research is to develop a new computational strategy which might improve the performance of the EGNOS system in aviation, based on navigation solutions of an aircraft position, using several GNSS (Global Navigation Satellite System) onboard receivers. The results of an experimental test conducted by the Cessna 172 at EPDE (European Poland Deblin) (ICAO (International Civil Aviation Organization) code, N51°33.07’/E21°53.52’) aerodrome in Dęblin are presented and discussed in this paper. Two GNSS navigation receivers with the EGNOS positioning function for monitoring changes in the parameters of the aircraft position in real time during the landing phase were installed onboard a Cessna 172. Based on obtained research findings, it was discovered that the positioning accuracy was not higher than 2.1 m, and the integrity of positioning did not exceed 19 m. Moreover, the availability parameter was found to equal 1 (or 100%); also, no intervals in the continuity of the operation of the EGNOS system were recorded. In the paper, the results of the air test from Dęblin were compared with the parameters of positioning quality from the air test conducted in Chełm (ICAO code: EPCD, N51°04’57.8” E23°26’15”). In the air test in Chełm, the obtained parameters of EGNOS quality positioning were: better than 4.9 m for accuracy, less than 35.5 m for integrity, 100% for availability, and no breaks in continuity. Based on the results of the air tests in Dęblin and Chełm, it was concluded that the parameters of the EGNOS positioning quality in aviation for the SBAS (Satellite Based Augmentation System) APV (Approach to Vertical guidance) procedure were satisfied in accordance with the ICAO (International Civil Aviation Organization) requirements. The presented research method can be utilized in the SBAS APV landing procedure in Polish aviation. In this paper, the results of PDOP (Position Dilution of Precision) are presented and compared to the two air tests in Dęblin and Chełm. The maximum results of PDOP amounted to 1.4 in the air test in Dęblin, whereas they equaled 4.0 in the air test in Chełm. The paper also shows how the EGNOS system improved the aircraft position in relation to the only GPS solution. In this context, the EGNOS system improved the aircraft position from about 78% to 95% for each ellipsoidal coordinate axis. Full article
(This article belongs to the Special Issue GNSS Sensors in Aerial Navigation)
Show Figures

Figure 1

14 pages, 3437 KiB  
Article
Klobuchar, NeQuick G, and EGNOS Ionospheric Models for GPS/EGNOS Single-Frequency Positioning under 6–12 September 2017 Space Weather Events
by Adam Ciećko and Grzegorz Grunwald
Appl. Sci. 2020, 10(5), 1553; https://doi.org/10.3390/app10051553 - 25 Feb 2020
Cited by 18 | Viewed by 6392
Abstract
The ionosphere is one of the main factors affecting the accuracy of global navigation satellite systems (GNSS). It is a dispersive medium for radio signals, and for multi-frequency receivers, most of its effect can be removed. The problem is for the single-frequency devices, [...] Read more.
The ionosphere is one of the main factors affecting the accuracy of global navigation satellite systems (GNSS). It is a dispersive medium for radio signals, and for multi-frequency receivers, most of its effect can be removed. The problem is for the single-frequency devices, which must rely on a correction model. The motivation of this paper is the adoption of different ionospheric models in GPS/EGNOS (Global Positioning System/European Geostationary Navigation Overlay Service) positioning to mitigate the impact of geomagnetic storms. The aim of this article is to examine the accuracy of GPS/EGNOS single-frequency positioning. In all the examined solutions, GPS L1 data augmented with the EGNOS clock and ephemeris corrections were used in position calculation. The changes were only made to the ionospheric model. The examined scenarios are as follows: without any model (off), Klobuchar, NeQuick G, and EGNOS model. The analysed period is 6–12 September 2017, during which the last strong geomagnetic storm took place. In order to perform a reliable analysis, the study was conducted at three International GNSS Service (IGS) stations in different geographical latitudes, within the EGNOS APV-1 (Approach with Vertical Guidance) availability border. The obtained results prove that the EGNOS ionospheric model meets the aviation positioning accuracy criteria for the APV-1 approach during the studied geomagnetic storm. The EGNOS average horizontal positioning error of 0.75 m was on average almost two times lower than the other solutions. For vertical positioning, the EGNOS error of 0.93 m proved to be two times lower than those of the Klobuchar and NeQuick G models, while it was more than three times lower for the off solution. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

14 pages, 3012 KiB  
Article
Method of Evaluating the Positioning System Capability for Complying with the Minimum Accuracy Requirements for the International Hydrographic Organization Orders
by Mariusz Specht
Sensors 2019, 19(18), 3860; https://doi.org/10.3390/s19183860 - 6 Sep 2019
Cited by 22 | Viewed by 4316
Abstract
According to the IHO (International Hydrographic Organization) S-44 standard, hydrographic surveys can be carried out in four categories, the so-called orders—special, 1a, 1b, and 2—for which minimum accuracy requirements for the applied positioning system have been set out. These amount to, respectively: 2 [...] Read more.
According to the IHO (International Hydrographic Organization) S-44 standard, hydrographic surveys can be carried out in four categories, the so-called orders—special, 1a, 1b, and 2—for which minimum accuracy requirements for the applied positioning system have been set out. These amount to, respectively: 2 m, 5 m, 5 m, and 20 m at a confidence level of 0.95. It is widely assumed that GNSS (Global Navigation Satellite System) network solutions with an accuracy of 2–5 cm (p = 0.95) and maritime DGPS (Differential Global Positioning System) systems with an error of 1–2 m (p = 0.95) are currently the two main positioning methods in hydrography. Other positioning systems whose positioning accuracy increases from year to year (and which may serve as alternative solutions) have been omitted. The article proposes a method that enables an assessment of any given navigation positioning system in terms of its compliance (or non-compliance) with the minimum accuracy requirements specified for hydrographic surveys. The method concerned clearly assesses whether a particular positioning system meets the accuracy requirements set out for a particular IHO order. The model was verified, taking into account both past and present research results (stationary and dynamic) derived from tests on the following systems: DGPS, EGNOS (European Geostationary Navigation Overlay Service), and multi-GNSS receivers (GPS/GLONASS/BDS/Galileo). The study confirmed that the DGPS system meets the requirements for all IHO orders and proved that the EGNOS system can currently be applied in measurements in the orders 1a, 1b, and 2. On the other hand, multi-GNSS receivers meet the requirements for order 2, while some of them meet the requirements for orders 1a and 1b as well. Full article
(This article belongs to the Special Issue Sensors and System for Vehicle Navigation)
Show Figures

Figure 1

21 pages, 6418 KiB  
Article
Evaluation of Orbit, Clock and Ionospheric Corrections from Five Currently Available SBAS L1 Services: Methodology and Analysis
by Zhixi Nie, Peiyuan Zhou, Fei Liu, Zhenjie Wang and Yang Gao
Remote Sens. 2019, 11(4), 411; https://doi.org/10.3390/rs11040411 - 17 Feb 2019
Cited by 47 | Viewed by 6541
Abstract
To meet the demands of civil aviation and other precise navigation applications, several satellite-based augmentation systems (SBASs) have been developed around the world, such as the Wide Area Augmentation System (WAAS) for North America, the European Geostationary Navigation Overlay Service (EGNOS) for Europe, [...] Read more.
To meet the demands of civil aviation and other precise navigation applications, several satellite-based augmentation systems (SBASs) have been developed around the world, such as the Wide Area Augmentation System (WAAS) for North America, the European Geostationary Navigation Overlay Service (EGNOS) for Europe, the Multi-functional Satellite Augmentation System (MSAS) for Japan, the GPS (Global Positioning System) Aided GEO Augmented Navigation (GAGAN) for India, and the System for Differential Corrections and Monitoring (SDCM) for Russia. The SBASs broadcast messages to correct satellite orbit, clock, and ionosphere errors to augment the GPS positioning performance. In this paper, SBAS orbit, clock and ionospheric corrections are evaluated. Specifically, the orbit, clock and ionospheric corrections derived from SBAS messages are comprehensively evaluated using data collected from the above mentioned systems over 181 consective days. The evaluation indicates that the EGNOS outperforms other systems with signal-in-space range error (SISRE) at 0.645 m and ionospheric correction accuracy at 0.491 m, respectively. Meanwhile, the accuracy of SDCM is comparable to EGNOS with SISRE of 0.650 m and ionospheric correction accuracy of 0.523 m. For WAAS, the SISRE is 0.954 m and the accuracy of ionospheric correction is 0.505 m. The accuracies of the SBAS corrections from the MSAS and GAGAN systems, however, are significantly worse than those of others. The SISREs are 1.931 and 1.325 m and the accuracies of ionospheric corrections are 0.795 and 0.858 m, for MSAS and GAGAN, respectively. At the same time, GPS broadcast orbit, clock and ionospheric corrections are also evaluated. The results show that there are no significant improvements in the SISRE of the broadcast navigation data by applying SBAS corrections. On the other hand, the accuracy of SBAS ionospheric corrections is still much better than GPS broadcast ionospheric corrections, which could still be beneficial for single-frequency users. Full article
Show Figures

Graphical abstract

Back to TopTop