Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (181)

Search Parameters:
Keywords = GO/composite membranes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3187 KiB  
Article
Characterizations of Electrospun PVDF-Based Mixed Matrix Membranes with Nanomaterial Additives
by Haya Taleb, Venkatesh Gopal, Sofian Kanan, Raed Hashaikeh, Nidal Hilal and Naif Darwish
Nanomaterials 2025, 15(15), 1151; https://doi.org/10.3390/nano15151151 - 25 Jul 2025
Viewed by 311
Abstract
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. [...] Read more.
Water scarcity poses a formidable challenge around the world, especially in arid regions where limited availability of freshwater resources threatens both human well-being and ecosystem sustainability. Membrane-based desalination technologies offer a viable solution to address this issue by providing access to clean water. This work ultimately aims to develop a novel permselective polymeric membrane material to be employed in an electrochemical desalination system. This part of the study addresses the optimization, preparation, and characterization of a polyvinylidene difluoride (PVDF) polymeric membrane using the electrospinning technique. The membranes produced in this work were fabricated under specific operational, environmental, and material parameters. Five different additives and nano-additives, i.e., graphene oxide (GO), carbon nanotubes (CNTs), zinc oxide (ZnO), activated carbon (AC), and a zeolitic imidazolate metal–organic framework (ZIF-8), were used to modify the functionality and selectivity of the prepared PVDF membranes. Each membrane was synthesized at two different levels of additive composition, i.e., 0.18 wt.% and 0.45 wt.% of the entire PVDF polymeric solution. The physiochemical properties of the prepared membranes were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), zeta potential, contact angle, conductivity, porosity, and pore size distribution. Based on findings of this study, PVDF/GO membrane exhibited superior results, with an electrical conductivity of 5.611 mS/cm, an average pore size of 2.086 µm, and a surface charge of −38.33 mV. Full article
(This article belongs to the Section Synthesis, Interfaces and Nanostructures)
Show Figures

Figure 1

35 pages, 2409 KiB  
Review
Comparative Analysis of Electrochemical and Thermochemical Hydrogenation of Biomass-Derived Phenolics for Sustainable Biofuel and Chemical Production
by Halil Durak
Processes 2025, 13(5), 1581; https://doi.org/10.3390/pr13051581 - 19 May 2025
Viewed by 1005
Abstract
The electrocatalytic hydrogenation (ECH) of biomass-derived phenolic compounds is a promising approach to the production of value-added chemicals and biofuels in a sustainable way under moderate reaction conditions. This study provides a comprehensive comparison of electrochemical and thermochemical hydrogenation processes, highlighting their relative [...] Read more.
The electrocatalytic hydrogenation (ECH) of biomass-derived phenolic compounds is a promising approach to the production of value-added chemicals and biofuels in a sustainable way under moderate reaction conditions. This study provides a comprehensive comparison of electrochemical and thermochemical hydrogenation processes, highlighting their relative advantages in terms of energy efficiency, product selectivity, and environmental impact. Several electrocatalysts (Pt, Pd, Rh, Ru), membranes (Nafion, Fumasep, GO-based PEMs), and reactor configurations are tested for the selective conversion of model compounds such as phenol, guaiacol, furfural, and levulinic acid. The contributions made by the electrode material, electrolyte composition, membrane nature, and reaction conditions are critically evaluated in relation to Faradaic efficiency, conversion rates, and product selectivity. The enhancement in the performance achieved by a new catalyst architecture is emphasized, such as MOF-based systems and bimetallic/trimetallic catalysts. In addition, a demonstration of graphite-based membranes and membrane-separated slurry reactors (SSERs) is provided, for enhanced ion transport and reaction control. The results illustrate the potential of using ECH as a low-carbon, scalable, and tunable method for the upgrading of biomass. This study offers valuable insights and guidelines for the rational design of next-generation electrocatalytic systems toward green chemical synthesis and emphasizes promising perspectives for the strategic development of electrochemical technologies in the pathway of a sustainable energy economy. Full article
(This article belongs to the Special Issue Advances in Electrocatalysts for the OER, HER and Biomass Conversion)
Show Figures

Figure 1

13 pages, 4315 KiB  
Article
Electrospun Graphene Oxide/Poly(m-phenylene isophthalamide) Composite Nanofiber Membranes for High Performance
by Enling Tian, Yinping Bi and Yiwei Ren
Membranes 2025, 15(5), 145; https://doi.org/10.3390/membranes15050145 - 12 May 2025
Viewed by 718
Abstract
Due to its distinctive two-dimensional structure and high specific surface area, graphene oxide (GO) is expected to be a very promising material to be used for membrane separation. Not only can it improve the mechanical strength, surface wettability, and thermal stability of the [...] Read more.
Due to its distinctive two-dimensional structure and high specific surface area, graphene oxide (GO) is expected to be a very promising material to be used for membrane separation. Not only can it improve the mechanical strength, surface wettability, and thermal stability of the membrane, but it can also improve the filtration performance and shelf life of the polymer membrane. Graphene oxide/poly(meta-phenylene isophthalamide) (GO/PMIA) nanofiber membranes were prepared by means of an electrospinning technique. The effects of adding different amounts of GO on the PMIA nanofiber membranes were studied. The results indicated that the GO had a strong affinity with the PMIA matrix by forming hydrogen bonds. The composite nanofiber membranes exhibited better filtration and thermostability performance than those of the pristine membrane. As the loading amount of GO was 1.0 wt%, the air filtration efficiency of the composite nanofiber membrane was 97.79%, the pressure drop was 85.45 Pa and the glass transition temperature was 299.8 °C. Full article
(This article belongs to the Special Issue Prospects for Nanocomposite Membrane Applications)
Show Figures

Figure 1

18 pages, 4953 KiB  
Article
Self-Standing Adsorbent Composites of Waste-Derived Biochar and Reduced Graphene Oxide for Water Decontamination
by Anna Dotti, Marianna Guagliano, Vittorio Ferretti di Castelferretto, Roberto Scotti, Simone Pedrazzi, Marco Puglia, Romano V. A. Orrù, Cinzia Cristiani, Elisabetta Finocchio, Andrea Basso Peressut and Saverio Latorrata
Molecules 2025, 30(9), 1997; https://doi.org/10.3390/molecules30091997 - 30 Apr 2025
Cited by 2 | Viewed by 555
Abstract
Adsorption is one of the simplest and most cost-effective techniques for water decontamination. In this field, biochar has recently emerged as a promising alternative to traditional adsorbents, exhibiting a high surface area and affinity to metal ions, as well as often being waste-derived. [...] Read more.
Adsorption is one of the simplest and most cost-effective techniques for water decontamination. In this field, biochar has recently emerged as a promising alternative to traditional adsorbents, exhibiting a high surface area and affinity to metal ions, as well as often being waste-derived. Similarly, reduced graphene oxide (rGO) shows an excellent adsorption capacity. Having self-assembling properties, it has already been employed to obtain self-standing heavy-metal-adsorbing membranes. In this research, a novel self-standing membrane of biochar and rGO is presented. It was obtained through an eco-friendly method, consisting of the simple mechanical mixing of the two components, followed by vacuum filtration and mild drying. Vine pruning biochar (VBC) was employed in different rGO/biochar mass ratios, ranging from 1/1 to 1/9. The best compromise between membrane integrity and biochar content was achieved with a 4/6 proportion. This sample was also replicated using chestnut-shell-derived biochar. The composite rGO–biochar membranes were characterized through XRD, FTIR-ATR, TG-DTG, SEM-EDX, BET, ZP, particle dimension, and EPR analyses. Then, they were tested for metal ion adsorption with 10 mM Cu2+ and 100 mM Zn2+ aqueous solutions. The adsorption capacity of copper and zinc was found to be in the range of 1.51–4.03 mmolCu g−1 and 18.16–21.99 mmolZn g−1, respectively, at an acidic pH, room temperature, and contact time of 10 min. Interestingly, the composite rGO–biochar membranes exhibited a capture behavior between that of pure rGO and VBC. Full article
(This article belongs to the Special Issue Novel Two-Dimensional Energy-Environmental Materials)
Show Figures

Figure 1

22 pages, 2773 KiB  
Review
The Role of Flexibility in the Bioactivity of Short α-Helical Antimicrobial Peptides
by Daniel Balleza
Antibiotics 2025, 14(5), 422; https://doi.org/10.3390/antibiotics14050422 - 22 Apr 2025
Viewed by 766
Abstract
The formation of aqueous pores through the interaction of amphipathic peptides is a process facilitated by the conformational dynamics typical of these biomolecules. Prior to their insertion with the membrane, these peptides go through several conformational states until they finally reach a stable [...] Read more.
The formation of aqueous pores through the interaction of amphipathic peptides is a process facilitated by the conformational dynamics typical of these biomolecules. Prior to their insertion with the membrane, these peptides go through several conformational states until they finally reach a stable α-helical structure. The conformational dynamics of these pore-forming peptides, α-PFP, is, thus, encoded in their amino acid sequence, which also predetermines their intrinsic flexibility. However, although the role of flexibility is widely recognized as fundamental in their bioactivity, it is still unclear whether this parameter is indeed decisive, as there are reports favoring the view of highly disruptive flexible peptides and others where relative rigidity also predetermines high rates of permeability across membranes. In this review we discuss in depth all those aspects linked to the conformational dynamics of these small biomolecules and which depend on the composition, sequence and dynamic performance both in aqueous phase and in close interaction with phospholipids. In addition, evidence is provided for the contribution of the known carboxyamidation in some well-studied α-PFPs, which are preferentially associated with sequences intrinsically more rigid than those not amidated and generally more flexible than the former. Taken together, this information is of great relevance for the optimization of new antibiotic peptides. Full article
(This article belongs to the Special Issue Structure and Function of Antimicrobial Peptides)
Show Figures

Graphical abstract

30 pages, 3765 KiB  
Article
Antibacterial Activity of GO-Based Composites Enhanced by Phosphonate-Functionalized Ionic Liquids and Silver
by Xinyu Liu, Xing Zhao, Hongda Qiu, Weida Liang, Linlin Liu, Yunyu Sun, Lingling Zhao, Xiao Wang and Hongze Liang
Materials 2025, 18(8), 1889; https://doi.org/10.3390/ma18081889 - 21 Apr 2025
Viewed by 712
Abstract
The development of antibiotic-independent antimicrobial materials is critical for addressing bacterial resistance to conventional antibiotics. Currently, there is a lack of comprehensive understanding of ionic liquid-modified composites in antimicrobial applications. Here, we innovatively prepared GO-based composites modified with phosphonate ionic liquids via a [...] Read more.
The development of antibiotic-independent antimicrobial materials is critical for addressing bacterial resistance to conventional antibiotics. Currently, there is a lack of comprehensive understanding of ionic liquid-modified composites in antimicrobial applications. Here, we innovatively prepared GO-based composites modified with phosphonate ionic liquids via a series of surface functionalizations. The resulting antibacterial composites exhibit significant broad-spectrum activity against both Gram-negative and Gram-positive bacteria, including drug-resistant strains, with stronger efficacy against Gram-negative species. Additionally, the material features excellent long-term reusability and the ability to inhibit/destroy biofilms, which is vital for combating persistent infections. Mechanistic studies reveal its antibacterial effects through multiple pathways: disrupting bacterial membranes, inducing ROS, and inactivating intracellular substances—mechanisms less likely to promote resistance. Overall, these phosphonate ionic liquid-modified polycationic materials demonstrate substantial potential in treating bacterial infections, offering a promising strategy to tackle antibiotic resistance challenges. Full article
(This article belongs to the Special Issue Ionic Liquids: New Trends in Advanced Applications)
Show Figures

Figure 1

18 pages, 3472 KiB  
Article
The Mining of Candidate Genes Involved in the Camphor Biosynthesis Pathway of Cinnamomum camphora
by Yan Yang, Shengcai Zhou, Mingyang Ni, Yuting Zhang, Shixiong Lin, Junhong Zhang and Zaikang Tong
Plants 2025, 14(7), 991; https://doi.org/10.3390/plants14070991 - 21 Mar 2025
Viewed by 452
Abstract
Cinnamomum camphora is widely cultivated for its camphor in essential oil (EO), which is used in pharmaceutical industries. However, the candidate genes for the camphor biosynthesis pathway are unknown. Gas chromatography–mass spectrometry (GC-MS) was used to identify differences in the composition of camphor- [...] Read more.
Cinnamomum camphora is widely cultivated for its camphor in essential oil (EO), which is used in pharmaceutical industries. However, the candidate genes for the camphor biosynthesis pathway are unknown. Gas chromatography–mass spectrometry (GC-MS) was used to identify differences in the composition of camphor- and linalool-type camphor EOs and in conjunction with transcriptional analysis to identify terpene biosynthesis-related genes. The GC-MS analysis of C. camphora revealed 67 chemical components, including 32 monoterpenes and 35 sesquiterpenes, with camphor-type leaves dominated by camphor and linalool-type leaves by linalool. Transcriptome analysis revealed 6499 differentially expressed genes (DEGs) between camphor- and linalool-type C. camphora, with 4244 upregulated and 2255 downregulated in the camphor-type. GO enrichment highlighted DEGs involved in monoterpene biosynthesis, cell wall organization, and membrane-related processes. KEGG analysis identified pathways such as monoterpenoid, diterpenoid, and phenylpropanoid biosynthesis as significantly enriched. Furthermore, DEGs encoding TPS, dehydrogenases, and transcription factors, which might contribute to the terpenoid diversity in C. camphora, were identified. Twenty-one candidate genes involved in the camphor biosynthesis pathway were identified, providing a foundation for further elucidating the genetic mechanisms underlying camphor production in C. camphora. Full article
Show Figures

Figure 1

27 pages, 2018 KiB  
Review
Advances in Graphene-Based Materials for Metal Ion Sensing and Wastewater Treatment: A Review
by Akram Khalajiolyaie and Cuiying Jian
Environments 2025, 12(2), 43; https://doi.org/10.3390/environments12020043 - 2 Feb 2025
Cited by 6 | Viewed by 2419
Abstract
Graphene-based materials, including graphene oxide (GO) and functionalized derivatives, have demonstrated exceptional potential in addressing environmental challenges related to heavy metal detection and wastewater treatment. This review presents the latest advancements in graphene-based electrochemical and fluorescence sensors, emphasizing their superior sensitivity and selectivity [...] Read more.
Graphene-based materials, including graphene oxide (GO) and functionalized derivatives, have demonstrated exceptional potential in addressing environmental challenges related to heavy metal detection and wastewater treatment. This review presents the latest advancements in graphene-based electrochemical and fluorescence sensors, emphasizing their superior sensitivity and selectivity in detecting metal ions, such as Pb2⁺, Cd2⁺, and Hg2⁺, even in complex matrices. The key focus of this review is on the use of molecular dynamics (MD) simulations to understand and predict ion transport through graphene membranes, offering insights into their mechanisms and efficiency in removing contaminants. Particularly, this article reviews the effects of external conditions, pore radius, functionalization, and multilayers on water purification to provide comprehensive insights into filtration membrane design. Functionalized graphene membranes exhibit enhanced ion rejection through tailored electrostatic interactions and size exclusion effects, achieving up to 100% rejection rates for selected heavy metals. Multilayered and hybrid graphene composites further improve filtration performance and structural stability, enabling sustainable, large-scale water purification. However, challenges related to fabrication scalability, environmental impact, and cost remain. This review also highlights the importance of computational approaches and innovative material designs in overcoming these barriers, paving the way for future breakthroughs in graphene-based filtration technologies. Full article
(This article belongs to the Special Issue Monitoring of Contaminated Water and Soil)
Show Figures

Figure 1

19 pages, 51952 KiB  
Article
Influence of Graphene Oxide on Mechanical and Morphological Properties of Nafion® Membranes
by Carlos Ceballos-Alvarez, Maziar Jafari, Mohamed Siaj, Samaneh Shahgaldi and Ricardo Izquierdo
Nanomaterials 2025, 15(1), 68; https://doi.org/10.3390/nano15010068 - 3 Jan 2025
Cited by 2 | Viewed by 1255
Abstract
This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion® 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane [...] Read more.
This study explored the influence of graphene oxide (GO) on morphological and mechanical properties of Nafion® 115 membranes with the objective of enhancing the mechanical properties of the most widely employed membrane in Proton Exchange Membrane Water Electrolyzers (PEMWE) applications. The membrane surface was modified by ultrasonically spraying a GO solution and different annealing temperatures were tested. Scanning Electron Microscopy (SEM) cross-sectional images revealed that annealing the composite membranes was sufficient to favor an interaction between the graphene oxide and the surface of the Nafion® membranes. The GO covering only 35% of the membrane surface increased the composite’s wettability from hydrophobic (105.2°) to a highly hydrophilic angle (84.4°) while slightly reducing membrane swelling. Tensile tests depicted an increase in both the strain levels and tensile loads before breaking. The samples with GO presented remarkable mechanical properties when the annealing time and temperature increased; while the Nafion® control samples failed at elongations of 95% and 98%, their counterparts with GO on the surface achieved elongations of 248% and 191% when annealed at 80 °C and 110 °C respectively, demonstrating that the presence of GO mechanically stabilizes the membranes under tension. In exchange, the presence of GO altered the smoothness of the membrane surface going from an average 1.4 nm before the printing to values ranging from 8.4 to 10.2 nm depending on the annealing conditions which could affect the quality of the subsequent catalyst layer printing. Overall, the polymer’s electrical insulation was unaffected, making the Nafion®-GO blend a more robust material than those traditionally used. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

18 pages, 5355 KiB  
Article
Tuning of Water Vapor Permeability in 2D Nanocarbon-Based Polypropylene Composite Membranes
by Glykeria A. Visvini, Georgios N. Mathioudakis, Amaia Soto Beobide and George A. Voyiatzis
Nanomaterials 2025, 15(1), 11; https://doi.org/10.3390/nano15010011 - 25 Dec 2024
Cited by 1 | Viewed by 853
Abstract
This work focuses on the incorporation of 2D carbon nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO) and graphene nanoplatelets (GNPs), into polypropylene (PP) via melt mixing. The addition of these 2D carbon nanostructured networks offers a novel approach to enhancing/controlling [...] Read more.
This work focuses on the incorporation of 2D carbon nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO) and graphene nanoplatelets (GNPs), into polypropylene (PP) via melt mixing. The addition of these 2D carbon nanostructured networks offers a novel approach to enhancing/controlling the water vapor permeable capabilities of PP composite membranes, widely used in industrial applications, such as technical (building roof membranes) or medical (surgical gowns) textiles. The study investigates how the dispersion and concentration of these graphene nanomaterials within the PP matrix influence the microstructure and water vapor permeability (WVP) performance. The WVP measurements were conducted via the “wet” cup method. The presence of either GO, rGO or GNPs in the new polyolefin composite membranes revealed 6- to 7-fold enhanced WVP values compared to pristine PP. This improvement is attributed to the nanoindentations created at the interface of the carbon nanoinclusions with the polymer matrix in the form of nanopores that facilitate water vapor diffusion. In the particular case of GO and rGO, residual oxidative groups might contribute to the WVP as well. This is the first study to compare GO, rGO and even GNP inclusions under identical conditions, providing deeper insights into the mechanisms driving the observed improvements in WVP performance. Full article
(This article belongs to the Special Issue Functional Two-Dimensional Materials, Thin Films and Coatings)
Show Figures

Figure 1

41 pages, 3593 KiB  
Review
Nanocomposites Based on Iron Oxide and Carbonaceous Nanoparticles: From Synthesis to Their Biomedical Applications
by Mirela Văduva, Andreea Nila, Adelina Udrescu, Oana Cramariuc and Mihaela Baibarac
Materials 2024, 17(24), 6127; https://doi.org/10.3390/ma17246127 - 14 Dec 2024
Cited by 2 | Viewed by 1865
Abstract
Nanocomposites based on Fe3O4 and carbonaceous nanoparticles (CNPs), including carbon nanotubes (CNTs) and graphene derivatives (graphene oxide (GO) and reduced graphene oxide (RGO)), such as Fe3O4@GO, Fe3O4@RGO, and Fe3O4 [...] Read more.
Nanocomposites based on Fe3O4 and carbonaceous nanoparticles (CNPs), including carbon nanotubes (CNTs) and graphene derivatives (graphene oxide (GO) and reduced graphene oxide (RGO)), such as Fe3O4@GO, Fe3O4@RGO, and Fe3O4@CNT, have demonstrated considerable potential in a number of health applications, including tissue regeneration and innovative cancer treatments such as hyperthermia (HT). This is due to their ability to transport drugs and generate localized heat under the influence of an alternating magnetic field on Fe3O4. Despite the promising potential of CNTs and graphene derivatives as drug delivery systems, their use in biological applications is hindered by challenges related to dispersion in physiological media and particle agglomeration. Hence, a solid foundation has been established for the integration of various synthesis techniques for these nanocomposites, with the wet co-precipitation method being the most prevalent. Moreover, the dimensions and morphology of the composite nanoparticles are directly correlated with the value of magnetic saturation, thus influencing the efficiency of the composite in drug delivery and other significant biomedical applications. The current demand for this type of material is related to the loading of a larger quantity of drugs within the hybrid structure of the carrier, with the objective of releasing this amount into the tumor cells. A second demand refers to the biocompatibility of the drug carrier and its capacity to permeate cell membranes, as well as the processes occurring within the drug carriers. The main objective of this paper is to review the synthesis methods used to prepare hybrids based on Fe3O4 and CNPs, such as GO, RGO, and CNTs, and to examinate their role in the formation of hybrid nanoparticles and the correlation between their morphology, the dimensions, and optical/magnetic properties. Full article
(This article belongs to the Special Issue Featured Reviews on Carbon Materials)
Show Figures

Graphical abstract

19 pages, 19488 KiB  
Article
RNA-Seq Profiling in Chicken Spleen and Thymus Infected with Newcastle Disease Virus of Varying Virulence
by Xiaoquan Wang, Xiaolong Lu, Mingzhu Wang, Qiwen Zhou, Xiyue Wang, Wenhao Yang, Kaituo Liu, Ruyi Gao, Tianxing Liao, Yu Chen, Jiao Hu, Min Gu, Shunlin Hu, Xiufan Liu and Xiaowen Liu
Vet. Sci. 2024, 11(11), 569; https://doi.org/10.3390/vetsci11110569 - 15 Nov 2024
Cited by 2 | Viewed by 1499
Abstract
Newcastle disease virus (NDV), known as avian paramyxovirus-1, poses a significant threat to poultry production worldwide. Vaccination currently stands as the most effective strategy for Newcastle disease control. However, the mesogenic vaccine strain Mukteswar has been observed to evolve into a velogenic variant [...] Read more.
Newcastle disease virus (NDV), known as avian paramyxovirus-1, poses a significant threat to poultry production worldwide. Vaccination currently stands as the most effective strategy for Newcastle disease control. However, the mesogenic vaccine strain Mukteswar has been observed to evolve into a velogenic variant JS/7/05/Ch during poultry immunization. Here, we aimed to explore the mechanisms underlying virulence enhancement of the two viruses. Pathogenically, JS/7/05/Ch mediated stronger virulence and pathogenicity in vivo compared to Mukteswar. Comparative transcriptome analysis revealed 834 differentially expressed genes (DEGs), comprising 339 up-regulated and 495 down-regulated genes, in the spleen, and 716 DEGs, with 313 up-regulated and 403 down-regulated genes, in the thymus. Gene Ontology (GO) analysis indicated that these candidate targets primarily participated in cell and biological development, extracellular part and membrane composition, as well as receptor and binding activity. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis unveiled a substantial portion of candidate genes predominantly involved in cellular processes, environmental information processing, metabolism, and organismal systems. Additionally, five DEGs (TRAT1, JUP, LPAR4, CYB561A3, and CXCR5) were randomly identified through RNA-seq analysis and subsequently confirmed via quantitative real-time polymerase chain reaction (qRT-PCR). The findings revealed a marked up-regulation in the expression levels of these DEGs induced by JS/7/05/Ch compared to Mukteswar, with CYB561A3 and CXCR5 exhibiting significant increases. The findings corroborated the sequencing accuracy, offering promising research directions. Taken together, we comprehensively evaluated transcriptomic alterations in chicken immune organs infected by NDV strains of diverse virulence. This study establishes a basis and direction for NDV virulence research. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

14 pages, 6787 KiB  
Article
Effect of Addition Amount of Ethylenediamine on Interlayer Nanochannels and the Separation Performance of Graphene Oxide Membranes
by Na Meng, Xin Sun, Jinxin Liu, Jialing Mi and Rong Rong
Polymers 2024, 16(22), 3123; https://doi.org/10.3390/polym16223123 - 8 Nov 2024
Cited by 1 | Viewed by 1244
Abstract
In recent years, graphene oxide (GO)-based two-dimensional (2D) laminar membranes have attracted considerable attention because of their unique well-defined nanochannels and deliver a wide range of molecular separation properties and fundamentals. However, the practical application of 2D GO layered membranes suffers from instability [...] Read more.
In recent years, graphene oxide (GO)-based two-dimensional (2D) laminar membranes have attracted considerable attention because of their unique well-defined nanochannels and deliver a wide range of molecular separation properties and fundamentals. However, the practical application of 2D GO layered membranes suffers from instability in aqueous solutions as the interlayer d-spacing of GO membranes is prone to expansion caused by the hydration effect. In this study, the effects of the ethylenediamine (EDA) addition amount on the structure, crosslinking mechanism and separation performance of GO membranes were investigated systematically, and membrane performance was evaluated using water permeability and dye/salt rejection tests. The experimental results show that the amine groups of EDA chemically bond with the hydroxyl functional group (O=C–OH) of GO after intercalation, as evident from Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). By further controlling the amount of the intercalated EDA, the as-prepared GO composite membranes show nanoscale-tuned d-spacing promising for downstream applications. In the demonstrated dye/salt nanofiltration scenario, the EDA intercalated and crosslinked GO membrane has enhanced permeability by over five times and a better dye rejection rate of over 96% compared with pure GO membranes. These findings highlight a facile strategy for controlling nanochannels by tuning the amounts of reactive intercalants. Full article
(This article belongs to the Special Issue Recent Advances in Functional Polymer Materials for Water Treatment)
Show Figures

Figure 1

18 pages, 4115 KiB  
Article
An Assessment of the Catalytic and Adsorptive Performances of Cellulose Acetate-Based Composite Membranes for Oil/Water Emulsion Separation
by Mahendran Gurusamy, Sangeetha Thangavel, Jakub Čespiva, Jiří Ryšavý, Wei-Mon Yan, Marek Jadlovec and Gangasalam Arthanareeswaran
Polymers 2024, 16(22), 3108; https://doi.org/10.3390/polym16223108 - 5 Nov 2024
Cited by 1 | Viewed by 1226
Abstract
Cellulose acetate (CA) mixed-matrix membranes incorporating polyvinylpyrrolidone (PVP), bentonite (B or Ben), graphene oxide (GO), and titanium dioxide (TiO2) were prepared by the phase inversion separation technique for oil/water separation. An investigation was performed where the mixed-matrix membrane was tested for [...] Read more.
Cellulose acetate (CA) mixed-matrix membranes incorporating polyvinylpyrrolidone (PVP), bentonite (B or Ben), graphene oxide (GO), and titanium dioxide (TiO2) were prepared by the phase inversion separation technique for oil/water separation. An investigation was performed where the mixed-matrix membrane was tested for the separation performance of hydrophilic and hydrophobic surface properties. An ultrafiltration experiment at the laboratory scale was used to test dead-end ultrafiltration models developed for the treatment performances of oily wastewater under dynamic full-scale operating conditions. Artificial oily wastewater solutions were prepared from hexane, toluene, and engine oil with Tween80 emulsions for oil removal treatment using composite membranes. The impacts of material hydrophilicity, weight loss, permeability, and pore size were investigated, and it was found that the oil retention of membranes with larger pore sizes enabled much more sophisticated water flux. The CA-GO-, CA-B-, and CA-TiO2-incorporated membranes achieved pure water flux (PWF) values of 45.19, 53.41, and 100.25 L/m2h, respectively. The performance of CA-TiO2 in oil/water emulsion rejection was assessed, and the rejection of engine oil/water, toluene/water, and hexane/water mixtures was determined to be 95.21%, 90.33%, and 92.4%, respectively. The CA-based mixed-matrix membrane portrayed better antifouling properties due to enhanced hydrophilicity and water molecules. The CA-TiO2-incorporated membrane possessed the potential to provide high separation efficiency for oily wastewater treatment. This study demonstrates the potential of fine-tuning membrane performances through material hybridization to achieve efficient wastewater treatment. Full article
Show Figures

Figure 1

18 pages, 4578 KiB  
Article
Mitigating Membrane Fouling in Abattoir Wastewater Treatment: Integration of Pretreatment Step with Zwitterion Modified Graphene Oxide–Polyethersulfone Composite Membranes
by Meladi L. Motloutsi, Funeka Matebese, Mxolisi M. Motsa, Muthumuni Managa and Richard M. Moutloali
Membranes 2024, 14(11), 227; https://doi.org/10.3390/membranes14110227 - 30 Oct 2024
Cited by 2 | Viewed by 1684
Abstract
Composite polyethersulfone (PES) membranes containing N-aminoethyl piperazine propane sulfonate (AEPPS)-modified graphene oxide (GO) were integrated with either of the two pretreatment processes (activated carbon (AC) adsorption or polyelectrolyte coagulation) to assess their effectiveness in mitigating membrane fouling during the treatment of abattoir wastewater. [...] Read more.
Composite polyethersulfone (PES) membranes containing N-aminoethyl piperazine propane sulfonate (AEPPS)-modified graphene oxide (GO) were integrated with either of the two pretreatment processes (activated carbon (AC) adsorption or polyelectrolyte coagulation) to assess their effectiveness in mitigating membrane fouling during the treatment of abattoir wastewater. The AEPPS@GO-modified membranes, as compared to the pristine PES membranes, showed improved hydrophilicity, with water uptake increasing from 72 to 118%, surface porosity increasing from 2.34 to 27%, and pure water flux (PWF) increasing from 235 to 673 L.m−2h−1. The modified membranes presented improved antifouling properties, with the flux recovery ratio (FRR) increasing from 59.5 to 93.3%. This study compared the effectiveness of the two pretreatment processes, AC, coagulation, and the integrated system (coagulation/AC-UF membrane), in the removal of natural organic matter (NOM) and improvement of abattoir wastewater’s pH, electrical conductivity, TDS, and turbidity. The integrated systems produced improved water quality in terms of pH, EC, TDS, turbidity, and organic content. The fluorescence excitation–emission matrix (FEEM) analysis exhibited almost no fluorescence peak post-treatment following organic loading removal. The quality of the water met the South African non-potable water reuse standards. The sole membrane treatment systems exhibited good fouling resistance without the pretreatment systems; however, integrating these systems can offer extended longer filtration periods, thereby assisting in cost aspects of the abattoir wastewater treatment system. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

Back to TopTop