Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (142)

Search Parameters:
Keywords = G-KE

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4687 KiB  
Article
Geant4-Based Logging-While-Drilling Gamma Gas Detection for Quantitative Inversion of Downhole Gas Content
by Xingming Wang, Xiangyu Wang, Qiaozhu Wang, Yuanyuan Yang, Xiong Han, Zhipeng Xu and Luqing Li
Processes 2025, 13(8), 2392; https://doi.org/10.3390/pr13082392 - 28 Jul 2025
Viewed by 340
Abstract
Downhole kick is one of the most severe safety hazards in deep and ultra-deep well drilling operations. Traditional monitoring methods, which rely on surface flow rate and fluid level changes, are limited by their delayed response and insufficient sensitivity, making them inadequate for [...] Read more.
Downhole kick is one of the most severe safety hazards in deep and ultra-deep well drilling operations. Traditional monitoring methods, which rely on surface flow rate and fluid level changes, are limited by their delayed response and insufficient sensitivity, making them inadequate for early warning. This study proposes a real-time monitoring technique for gas content in drilling fluid based on the attenuation principle of Ba-133 γ-rays. By integrating laboratory static/dynamic experiments and Geant4-11.2 Monte Carlo simulations, the influence mechanism of gas–liquid two-phase media on γ-ray transmission characteristics is systematically elucidated. Firstly, through a comparative analysis of radioactive source parameters such as Am-241 and Cs-137, Ba-133 (main peak at 356 keV, half-life of 10.6 years) is identified as the optimal downhole nuclear measurement source based on a comparative analysis of penetration capability, detection efficiency, and regulatory compliance. Compared to alternative sources, Ba-133 provides an optimal energy range for detecting drilling fluid density variations, while also meeting exemption activity limits (1 × 106 Bq) for field deployment. Subsequently, an experimental setup with drilling fluids of varying densities (1.2–1.8 g/cm3) is constructed to quantify the inverse square attenuation relationship between source-to-detector distance and counting rate, and to acquire counting data over the full gas content range (0–100%). The Monte Carlo simulation results exhibit a mean relative error of 5.01% compared to the experimental data, validating the physical correctness of the model. On this basis, a nonlinear inversion model coupling a first-order density term with a cubic gas content term is proposed, achieving a mean absolute percentage error of 2.3% across the full range and R2 = 0.999. Geant4-based simulation validation demonstrates that this technique can achieve a measurement accuracy of ±2.5% for gas content within the range of 0–100% (at a 95% confidence interval). The anticipated field accuracy of ±5% is estimated by accounting for additional uncertainties due to temperature effects, vibration, and mud composition variations under downhole conditions, significantly outperforming current surface monitoring methods. This enables the high-frequency, high-precision early detection of kick events during the shut-in period. The present study provides both theoretical and technical support for the engineering application of nuclear measurement techniques in well control safety. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

39 pages, 2929 KiB  
Article
A Risk-Based Analysis of Lightweight Drones: Evaluating the Harmless Threshold Through Human-Centered Safety Criteria
by Tamer Savas
Drones 2025, 9(8), 517; https://doi.org/10.3390/drones9080517 - 23 Jul 2025
Viewed by 226
Abstract
In recent years, the rapid development of lightweight Unmanned Aerial Vehicle (UAV) technology under 250 g has begun to challenge the validity of existing mass-based safety classifications. The commonly used 250 g threshold for defining “harmless” UAVs has become a subject requiring more [...] Read more.
In recent years, the rapid development of lightweight Unmanned Aerial Vehicle (UAV) technology under 250 g has begun to challenge the validity of existing mass-based safety classifications. The commonly used 250 g threshold for defining “harmless” UAVs has become a subject requiring more detailed evaluations, especially as new models with increased speed and performance enter the market. This study aims to reassess the adequacy of the current 250 g mass limit by conducting a comprehensive analysis using human-centered injury metrics, including kinetic energy, Blunt Criterion (BC), Viscous Criterion (VC), and the Abbreviated Injury Scale (AIS). Within this scope, an extensive dataset of commercial UAV models under 500 g was compiled, with a particular focus on the sub-250 g segment. For each model, KE, BC, VC, and AIS values were calculated using publicly available technical data and validated physical models. The results were compared against established injury thresholds, such as 14.9 J (AIS-3 serious injury), 25 J (“harmless” threshold), and 33.9 J (AIS-4 severe injury). Furthermore, new recommendations were developed for regulatory authorities, including energy-based classification systems and mission-specific dynamic threshold mechanisms. According to the findings of this study, most UAVs under 250 g continue to remain below the current “harmless” threshold values. However, some next-generation high-speed UAV models are approaching or exceeding critical KE levels, indicating a need to reassess existing regulatory approaches. Additionally, the strong correlation between both BC and VC metrics with AIS outcomes demonstrates that these indicators are complementary and valuable tools for assessing injury risk. In this context, the adoption of an energy-based supplementary classification and dynamic, mission-based regulatory frameworks is recommended. Full article
Show Figures

Figure 1

13 pages, 1952 KiB  
Article
Real-Time Dose Measurement in Brachytherapy Using Scintillation Detectors Based on Ce3+-Doped Garnet Crystals
by Sandra Witkiewicz-Łukaszek, Bogna Sobiech, Janusz Winiecki and Yuriy Zorenko
Crystals 2025, 15(8), 669; https://doi.org/10.3390/cryst15080669 - 23 Jul 2025
Viewed by 219
Abstract
Conventional detectors based on ionization chambers, semiconductors, or thermoluminescent materials generally cannot be used to verify the in vivo dose delivered during brachytherapy treatments with γ-ray sources. However, certain adaptations and alternative methods, such as the use of miniaturized detectors or other specialized [...] Read more.
Conventional detectors based on ionization chambers, semiconductors, or thermoluminescent materials generally cannot be used to verify the in vivo dose delivered during brachytherapy treatments with γ-ray sources. However, certain adaptations and alternative methods, such as the use of miniaturized detectors or other specialized techniques, have been explored to address this limitation. One approach to solving this problem involves the use of dosimetric materials based on efficient scintillation crystals, which can be placed in the patient’s body using a long optical fiber inserted intra-cavernously, either in front of or next to the tumor. Scintillation crystals with a density close to that of tissue can be used in any location, including the respiratory tract, as they do not interfere with dose distribution. However, in many cases of radiation therapy, the detector may need to be positioned behind the target. In such cases, the use of heavy, high-density, and high-Zeff scintillators is strongly preferred. The delivered radiation dose was registered using the radioluminescence response of the crystal scintillator and recorded with a compact luminescence spectrometer connected to the scintillator via a long optical fiber (so-called fiber-optic dosimeter). This proposed measurement method is completely non-invasive, safe, and can be performed in real time. To complete the abovementioned task, scintillation detectors based on YAG:Ce (ρ = 4.5 g/cm3; Zeff = 35), LuAG:Ce (ρ = 6.75 g/cm3; Zeff = 63), and GAGG:Ce (ρ = 6.63 g/cm3; Zeff = 54.4) garnet crystals, with different densities ρ and effective atomic numbers Zeff, were used in this work. The results obtained are very promising. We observed a strong linear correlation between the dose and the scintillation signal recorded by the detector system based on these garnet crystals. The measurements were performed on a specially prepared phantom in the brachytherapy treatment room at the Oncology Center in Bydgoszcz, where in situ measurements of the applied dose in the 0.5–8 Gy range were performed, generated by the 192Ir (394 keV) γ-ray source from the standard Fexitron Elektra treatment system. Finally, we found that GAGG:Ce crystal detectors demonstrated the best figure-of-merit performance among all the garnet scintillators studied. Full article
(This article belongs to the Special Issue Recent Advances in Scintillator Materials)
Show Figures

Figure 1

23 pages, 6991 KiB  
Article
Comparing the Accuracy of Soil Moisture Estimates Derived from Bulk and Energy-Resolved Gamma Radiation Measurements
by Sonia Akter, Johan Alexander Huisman and Heye Reemt Bogena
Sensors 2025, 25(14), 4453; https://doi.org/10.3390/s25144453 - 17 Jul 2025
Viewed by 316
Abstract
Monitoring soil moisture (SM) using permanently installed gamma radiation (GR) detectors is a promising non-invasive method based on the inverse relationship between SM and soil-emitted GR. In a previous study, we successfully estimated SM from environmental gamma radiation (EGR) measured by a low-cost [...] Read more.
Monitoring soil moisture (SM) using permanently installed gamma radiation (GR) detectors is a promising non-invasive method based on the inverse relationship between SM and soil-emitted GR. In a previous study, we successfully estimated SM from environmental gamma radiation (EGR) measured by a low-cost counter-tube detector. Since this detector type provides a bulk GR response across a wide energy range, EGR signals are influenced by several confounding factors, e.g., soil radon emanation, biomass. To what extent these confounding factors deteriorate the accuracy of SM estimates obtained from EGR is not fully understood. Therefore, the aim of this study was to compare the accuracy of SM estimates from EGR with those from reference 40K GR (1460 keV) measurements which are much less influenced by these factors. For this, a Geiger–Mueller counter (G–M), which is commonly used for EGR monitoring, and a gamma spectrometer were installed side by side in an agricultural field equipped with in situ sensors to measure reference SM and a meteorological station. The EGRG–M and spectrometry-based 40K measurements were related to reference SM using a functional relationship derived from theory. We found that daily SM can be predicted with an RMSE of 3.39 vol. % from 40K using the theoretical value of α = 1.11 obtained from the effective ratio of GR mass attenuation coefficients for the water and solid phase. A lower accuracy was achieved for the EGRG–M measurements (RMSE = 6.90 vol. %). Wavelet coherence analysis revealed that the EGRG–M measurements were influenced by radon-induced noise in winter. Additionally, biomass shielding had a stronger impact on EGRG–M than on 40K GR estimates of SM during summer. In summary, our study provides a better understanding on the lower prediction accuracy of EGRG–M and suggests that correcting for biomass can improve SM estimation from the bulk EGR data of operational radioactivity monitoring networks. Full article
(This article belongs to the Special Issue Sensors in Smart Irrigation Systems)
Show Figures

Figure 1

14 pages, 1097 KiB  
Article
Modeling the Impact of Viscosity on Fricke Gel Dosimeter Radiolysis: A Radiation Chemical Simulation Approach
by Sumaiya Akhter Ria, Jintana Meesungnoen and Jean-Paul Jay-Gerin
Gels 2025, 11(7), 489; https://doi.org/10.3390/gels11070489 - 24 Jun 2025
Viewed by 403
Abstract
The Fricke gel dosimeter, a hydrogel-based chemical dosimeter containing dissolved ferrous sulfate, measures 3D radiation dose distributions by oxidizing Fe2+ to Fe3+ upon irradiation. This study investigates the variation in Fricke yield, G(Fe3+), from a radiation–chemical perspective in [...] Read more.
The Fricke gel dosimeter, a hydrogel-based chemical dosimeter containing dissolved ferrous sulfate, measures 3D radiation dose distributions by oxidizing Fe2+ to Fe3+ upon irradiation. This study investigates the variation in Fricke yield, G(Fe3+), from a radiation–chemical perspective in both standard and gel-like Fricke systems of varying viscosities, under low- and high-linear energy transfer (LET) conditions. We employed our Monte Carlo track chemistry code IONLYS-IRT, using protons of 300 MeV (LET~0.3 keV/µm) and 1 MeV (LET~25 keV/µm) as radiation sources. To assess the impact of viscosity on G(Fe3+), we systematically varied the diffusion coefficients of all radiolytic species in the Fricke gel, including Fe2+ and Fe3+ ions. Increasing gel viscosity reduces Fe3+ diffusion and stabilizes spatial dose distributions but also lowers G(Fe3+), compromising measurement accuracy and sensitivity—especially under high-LET irradiation. Our results show that an optimal Fricke gel dosimeter must balance these competing factors. Simulations with lower sulfuric acid concentrations (e.g., 0.05 M vs. 0.4 M) further revealed that G(Fe3+) values at ~100 s are nearly identical for both low- and high-LET conditions. This study underscores the utility of Monte Carlo simulations in modeling viscosity effects on Fricke gel radiolysis, guiding dosimeter optimization to maximize sensitivity and accuracy while preserving spatial dose distribution integrity. Full article
(This article belongs to the Special Issue Application of Gel Dosimetry)
Show Figures

Figure 1

29 pages, 12630 KiB  
Article
LPBF-Produced Elastomeric Lattice Structures for Personal Protection Equipment: Mechanical Performance Versus Comfort-Related Attributes
by William Turnier Trottier, Antoine Collin, Thierry Krick and Vladimir Brailovski
J. Manuf. Mater. Process. 2025, 9(6), 182; https://doi.org/10.3390/jmmp9060182 - 29 May 2025
Viewed by 1246
Abstract
This study focuses on the energy absorption and wearer comfort attributes of regular lattice structures fabricated by laser powder bed fusion from two elastomeric materials, namely TPU1301 and TPE300, for use in personal protective equipment (PPE). This study compares Body-Centered Cubic (BCC), Face-Centered [...] Read more.
This study focuses on the energy absorption and wearer comfort attributes of regular lattice structures fabricated by laser powder bed fusion from two elastomeric materials, namely TPU1301 and TPE300, for use in personal protective equipment (PPE). This study compares Body-Centered Cubic (BCC), Face-Centered Cubic (FCC) and Kelvin (KE) lattice structures with density varying from 0.15 to 0.25 g/cm3, cell size varying from 10 to 14 mm and feature size varying from 1 to 3 mm. Quasi-static and dynamic compression testing confirmed that among the studied geometries, KE structures printed with TPE300 powders provide the best combination of reduced peak acceleration and increased compliance, thereby improving both safety and comfort. Using the protection–comfort maps built on the basis of this study enables the design of lightweight and compact protective structures. For example, if a safety layer protecting a 100 mm2 surface area can be manufactured from either TPE300 or TPU1100 powders using either KE or FCC structures, the KE TPE300 layer will be 1.5 times thinner and 2.5 times lighter than its FCC TPU1301 equivalent. The results of this study thus provide a basis for the optimization of lattice structures in 3D-printed PPE to meet both service and manufacturing requirements. Full article
Show Figures

Graphical abstract

16 pages, 5298 KiB  
Article
Neuregulin-1 (NRG1) Binds to the Allosteric Binding Site (Site 2) and Suppresses Allosteric Integrin Activation by Inflammatory Cytokines: A Potential Mechanism of Anti-Inflammatory and Anti-Fibrosis Action of NRG1
by Yoko K. Takada and Yoshikazu Takada
Cells 2025, 14(8), 617; https://doi.org/10.3390/cells14080617 - 21 Apr 2025
Viewed by 687
Abstract
We showed that multiple inflammatory cytokines (e.g., CCL5, CXCL12, CX3CL1, CD40L, and FGF2) bind to the allosteric site (site 2) of integrins, distinct from the classical RGD-binding site (site 1), and allosterically activate integrins. A major inflammatory lipid mediator 25-hydroxycholesterol is known to [...] Read more.
We showed that multiple inflammatory cytokines (e.g., CCL5, CXCL12, CX3CL1, CD40L, and FGF2) bind to the allosteric site (site 2) of integrins, distinct from the classical RGD-binding site (site 1), and allosterically activate integrins. A major inflammatory lipid mediator 25-hydroxycholesterol is known to bind to site 2 and allosterically activates integrins and induces inflammatory signals (e.g., IL-6 and TNF secretion). Thus, site 2 is involved in inflammatory signaling. Neuregulin-1 (NRG1) is known to suppresses the progression of inflammatory diseases, fibrosis, and insulin resistance. But, the mechanism of anti-inflammatory action of NRG1 is unclear. We previously showed that NRG1 binds to the classical RGD-binding site (site 1). Mutating the 3 Lys residues that are involved in site 1 binding (NRG1 3KE mutant) is defective in binding to site 1 and in ErbB3-mediated mitogenic signals. Docking simulation predicted that NRG1 binds to site 2. We hypothesized that NRG1 acts as an antagonist of site 2 and blocks allosteric activation by multiple cytokines. Here, we describe that NRG1 binds to site 2 but does not activate soluble αvβ3 or αIIbβ3 in 1 mM Ca2+, unlike inflammatory cytokines. Instead, NRG1 suppressed integrin activation by several inflammatory cytokines, suggesting that NRG1 acts as a competitive inhibitor of site 2. Wild-type NRG1 is not suitable for long-term treatment due to its mitogenicity. We showed that the non-mitogenic NRG1 3KE mutant still bound to site 2 and inhibited allosteric activation of soluble and cell-surface integrins, suggesting that NRG1 3KE may have potential as a therapeutic. Full article
Show Figures

Figure 1

17 pages, 2601 KiB  
Article
Biosynthesis of Silver Nanoparticles via Medusomyces gisevii Fermentation with Origanum vulgare L. Extract: Antimicrobial Properties, Antioxidant Properties, and Phytochemical Analysis
by Aiste Balciunaitiene, Syeda Hijab Zehra, Mindaugas Liaudanskas, Vaidotas Zvikas, Jonas Viskelis, Yannick Belo Nuapia, Arturas Siukscius, Pradeep Kumar Singh, Valdimaras Janulis and Pranas Viskelis
Molecules 2025, 30(8), 1706; https://doi.org/10.3390/molecules30081706 - 10 Apr 2025
Cited by 1 | Viewed by 703
Abstract
Silver nanoparticles belong to a highly versatile group of nanomaterials with an appealing range of potential applications. In the realm of antimicrobial and antioxidant application, silver nanoparticles (AgNPs) exhibit auspicious capabilities. This research, for the very first time, endeavors to carry out biosynthesis [...] Read more.
Silver nanoparticles belong to a highly versatile group of nanomaterials with an appealing range of potential applications. In the realm of antimicrobial and antioxidant application, silver nanoparticles (AgNPs) exhibit auspicious capabilities. This research, for the very first time, endeavors to carry out biosynthesis of AgNPs coupled with fermentation using Medusomyces gisevii and Origanum vulgare L. (O. vulgare) plant species. Fermentation (F) via Medusomyces gisevii is responsible for chemical, physical, biological, and electrochemical processes. During in vitro study of antioxidant activity, fermented O. vulgare herb extract showed strong reductive activity as evaluated by the cupric reducing antioxidant capacity (CUPRAC), ferric reducing antioxidant power (FRAP), and 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS•+) assay, with a value of 1.45 ± 0.048 mmol TE/g, 0.95 ± 0.04 mmol TE/g, and 0.59 ± 0.023 mmol TE/g, respectively. The highest antimicrobial activity was shown by Staphylococcus aureus in the inhibition zone, with values of 1.40 ± 0.12 mm of OrV and of 10.30 ± 0.04 mm and 11.54 ± 0.10 mm for OrV-AgNPs and OrV-F-AgNPs, respectively. Analysis of phenolic compounds revealed that the highest total amount of the apigenin, 87.78 µg/g, was detected in OrV-F-AgNPs and the lowest amount, 16.56 µg/g, in OrV-AgNPs. Moreover, in OrV-F-AgNPs, the collective amount of proanthocyanidins, hydroxycinnamic, and flavonoids was prominently high in all cases, i.e., 145.00 ± 0.02 mg EE/g DW, 2.86 ± 0.01 mg CAE/g DW, and 0.55 ± 0.01 mg RE/g DW, respectively, as compared to the original extract (102.1 ± 0.03 mg EE/g DW, 2.78 ± 0.02 mg CAE/g DW, and 0.47 ± 0.01 mg RE/g DW, respectively). During the characterization of biosynthesized nanoparticles by scanning electron microscopy (SEM), AgNPs demonstrated a uniform spherical shape with even distribution. The sample’s elemental composition was confirmed with a signal of 3.2 keV using energy-dispersive X-ray spectroscopy (EDS) analysis. Transmission electron microscopy (TEM) analysis showed silver nanoparticles that were round and spherical in shape in both stacked and congested form, with a size range of less than 30 nm. Thus, this green and sustainable synthesis of AgNPs, a blend of Medusomyces gisevii and O. vulgare herbal extract, has adequate potential for increased antimicrobial and antioxidant activity. Full article
Show Figures

Figure 1

13 pages, 1704 KiB  
Article
Contrast Volume Reduction in Oncologic Body Imaging Using Dual-Energy CT: A Comparison with Single-Energy CT
by Marianna Gulizia, Anais Viry, Mario Jreige, Guillaume Fahrni, Yannick Marro, Gibran Manasseh, Christine Chevallier, Clarisse Dromain and Naik Vietti-Violi
Diagnostics 2025, 15(6), 707; https://doi.org/10.3390/diagnostics15060707 - 12 Mar 2025
Viewed by 997
Abstract
Background/Objectives: To evaluate the feasibility of reducing contrast volume in oncologic body imaging using dual-energy CT (DECT) by (1) identifying the optimal virtual monochromatic imaging (VMI) reconstruction using DECT and (2) comparing DECT performed with reduced iodinated contrast media (ICM) volume to [...] Read more.
Background/Objectives: To evaluate the feasibility of reducing contrast volume in oncologic body imaging using dual-energy CT (DECT) by (1) identifying the optimal virtual monochromatic imaging (VMI) reconstruction using DECT and (2) comparing DECT performed with reduced iodinated contrast media (ICM) volume to single-energy CT (SECT) performed with standard ICM volume. Methods: In this retrospective study, we quantitatively and qualitatively compared the image quality of 35 thoracoabdominopelvic DECT across 9 different virtual monoenergetic image (VMI) levels (from 40 to 80 keV) using a reduced volume of ICM (0.3 gI/kg of body weight) to determine the optimal keV reconstruction level. Out of these 35 patients, 20 had previously performed SECT with standard ICM volume (0.3 gI/kg of body weight + 9 gI), enabling protocol comparison. The qualitative analysis included overall image quality, noise, and contrast enhancement by two radiologists. Quantitative analysis included contrast enhancement measurements, contrast-to-noise ratio, and signal-to-noise ratio of the liver parenchyma and the portal vein. ANOVA was used to identify the optimal VMI level reconstruction, while t-tests and paired t-tests were used to compare both protocols. Results: VMI60 keV provided the highest overall image quality score. DECT with reduced ICM volume demonstrated higher contrast enhancement and lower noise than SECT with standard ICM volume (p < 0.001). No statistical difference was found in the overall image quality between the two protocols (p = 0.290). Conclusions: VMI60 keV with reduced contrast volume provides higher contrast and lower noise than SECT at a standard contrast volume. DECT using a reduced ICM volume is the technique of choice for oncologic body CT. Full article
Show Figures

Figure 1

18 pages, 13148 KiB  
Article
Enhancing Radiation Shielding Efficiency of Nigella sativa Eumelanin Polymer Through Heavy Metals Doping
by Mohammad Marashdeh and Nawal Madkhali
Polymers 2025, 17(5), 609; https://doi.org/10.3390/polym17050609 - 25 Feb 2025
Viewed by 775
Abstract
Gamma radiation shielding is necessary for many applications; nevertheless, lead creates environmental risks. Eumelanin, a natural polymer, is a viable alternative, although its effectiveness is limited to lower gamma-ray energy. This research looks at how doping the herbal eumelanin polymer (Nigella sativa [...] Read more.
Gamma radiation shielding is necessary for many applications; nevertheless, lead creates environmental risks. Eumelanin, a natural polymer, is a viable alternative, although its effectiveness is limited to lower gamma-ray energy. This research looks at how doping the herbal eumelanin polymer (Nigella sativa) with heavy metals including iron (Fe), copper (Cu), and zinc (Zn) affects its gamma radiation shielding characteristics. The inclusion of these metals considerably increases the linear attenuation coefficient (μ) and mass attenuation coefficient (μm) of eumelanin, especially at lower photon energies where the photoelectric effect is prominent. The μ value of pure eumelanin is 0.193 cm1 at 59.5 keV. It goes up to 0.309 cm1, 0.420 cm1, and 0.393 cm1 when Fe, Cu, and Zn are added, in that order. Similarly, the mass attenuation coefficients increase from 0.153 cm2/g for pure eumelanin to 0.230, 0.316, and 0.302 cm2/g for the Fe-, Cu-, and Zn-doped samples. At intermediate and higher energies (661.7 keV-to-1332.5 keV), where Compton scattering is the main interaction, differences in attenuation coefficients between samples are not as noticeable, which means that metal additions have less of an effect. The mean free path (MFP) and radiation protection efficiency (RPE) also show these behaviors. For example, at 59.5 keV the MFP drops from 5.172 cm for pure eumelanin to 3.244 cm for Mel-Fe, 2.385 cm for Mel-Cu, and 2.540 cm for Mel-Zn. RPE values also go up a lot at low energies. For example, at 59.5 keV Cu-doped eumelanin has the highest RPE of 34.251%, while pure eumelanin only has an RPE of 17.581%. However, at higher energies the RPE values for all samples converge, suggesting a more consistent performance. These findings suggest that doping eumelanin with Fe, Cu, and Zn is particularly effective for enhancing gamma-ray shielding at low energies, with copper (Cu) providing the most significant improvement overall, making these composites suitable for applications requiring enhanced radiation protection at lower gamma-ray energies. Full article
(This article belongs to the Special Issue Modeling of Polymer Composites and Nanocomposites)
Show Figures

Figure 1

29 pages, 41771 KiB  
Article
The Aesthetic Imagery of Traditional Garden Door and Window Forms: A Case Study of the Four Major Traditional Gardens of Lingnan
by Zhongwei Wang, Ruyue Zheng, Jian Tang, Shaobin Wang and Xubo He
Buildings 2025, 15(4), 513; https://doi.org/10.3390/buildings15040513 - 7 Feb 2025
Cited by 1 | Viewed by 1444
Abstract
Traditional Lingnan gardens, one of the three major types of Chinese garden design, have evolved over nearly a millennium, embodying the distinctive craftsmanship and aesthetic sensibilities of the Lingnan region. The architectural elements of doors and windows in these gardens serve as key [...] Read more.
Traditional Lingnan gardens, one of the three major types of Chinese garden design, have evolved over nearly a millennium, embodying the distinctive craftsmanship and aesthetic sensibilities of the Lingnan region. The architectural elements of doors and windows in these gardens serve as key expressions of regional cultural identity. This study focuses on four renowned Lingnan gardens (e.g., Yuyin Garden in Guangzhou, Liang Garden in Foshan, Qinghui Garden in Shunde, and Ke Garden in Dongguan) as primary case studies to examine the typologies, decorative characteristics, and aesthetic qualities of their doors and windows. Based on aesthetic imagery, the research elucidates both the functional and structural principles governing these designs, while also exploring their aesthetic resonance with traditional Chinese arts, such as calligraphy, painting, and poetry. By deepening the theoretical understanding of the formal and artistic features of Lingnan garden doors and windows, this study contributes to advancing the scholarly discourse on traditional garden architecture and supports the ongoing cultural preservation of this important heritage. Full article
(This article belongs to the Special Issue Built Heritage Conservation in the Twenty-First Century: 2nd Edition)
Show Figures

Figure 1

19 pages, 5303 KiB  
Article
Prolonged Hypoxia in Rat Living Myocardial Slices Affects Function, Expression, and Structure
by Florian J. G. Waleczek, Giuseppe Cipriano, Jonas A. Haas, Ankita Garg, Angelika Pfanne, Annette Just, Susanne Neumüller, Jan Hegermann, Andreas Pich, Ante Radocaj, Ke Xiao, Natalie Weber and Thomas Thum
Int. J. Mol. Sci. 2025, 26(1), 218; https://doi.org/10.3390/ijms26010218 - 30 Dec 2024
Cited by 2 | Viewed by 1185
Abstract
Ischemic heart disease is the leading cause of death worldwide. Reduced oxygen supply and myocardial hypoxia lead to tissue damage and impairment of the heart function. To the best of our knowledge, the primary functional effects of hypoxia in the multicellular model of [...] Read more.
Ischemic heart disease is the leading cause of death worldwide. Reduced oxygen supply and myocardial hypoxia lead to tissue damage and impairment of the heart function. To the best of our knowledge, the primary functional effects of hypoxia in the multicellular model of living myocardial slices (LMSs) have not been investigated so far. In this study, we analyzed force generation, ultrastructure, gene expression, and proteome changes in rat LMS after 24 h of ex vivo culture in normal and reduced levels of oxygen (O2). We observed a significant reduction in absolute force and a slowdown of force kinetics as well as an increase in cardiomyocyte apoptosis and myofibrillar and mitochondrial damage, as well as transcriptomic changes. Proteome analysis revealed the deregulation of proteins involved in metabolic processes, hypoxic response, and neutralizing of reactive oxygen species. Our results indicate that hypoxia induces substantial primary changes in heart tissue, which are independent of perfusion and immune responses. Our new LMS model could serve as a screening system for drug development and new mechanistic insights. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

17 pages, 1408 KiB  
Article
Ab Initio Study of Electron Capture in Collisions of Protons with CO2 Molecules
by Luis Méndez and Ismanuel Rabadán
Molecules 2025, 30(1), 74; https://doi.org/10.3390/molecules30010074 - 28 Dec 2024
Viewed by 577
Abstract
Ab initio calculations of cross sections for electron capture by protons in collisions with CO2 are carried out at energies between 100 eV/u and 50 keV/u, employing a semiclassical method within the Franck–Condon framework. The scattering wave function is expanded in a [...] Read more.
Ab initio calculations of cross sections for electron capture by protons in collisions with CO2 are carried out at energies between 100 eV/u and 50 keV/u, employing a semiclassical method within the Franck–Condon framework. The scattering wave function is expanded in a set of ab initio electronic wave functions of the HCO2+ supermolecule. The calculation is performed on several trajectory orientations to obtain orientation-averaged total cross sections. A two-state model with an exponential interaction between the entrance and the lowest charge transfer channel is proposed to describe the main aspects of the charge transfer process and to estimate the precision of the molecular expansion. The symmetry of the HOMO πg of CO2 is relevant to choose the signs of the molecular functions and to set up the orientation average of the cross sections. Very good agreement is found with the experimental charge transfer cross sections. Full article
Show Figures

Graphical abstract

13 pages, 1725 KiB  
Article
Intra-Cardiac Kinetic Energy and Ventricular Flow Analysis in Bicuspid Aortic Valve: Impact on Left Ventricular Function, Dilation Severity, and Surgical Referral
by Ali Fatehi Hassanabad and Julio Garcia
Fluids 2025, 10(1), 5; https://doi.org/10.3390/fluids10010005 - 27 Dec 2024
Cited by 1 | Viewed by 900
Abstract
Intra-cardiac kinetic energy (KE) and ventricular flow analysis (VFA), as derived from 4D-flow MRI, can be used to understand the physiological burden placed on the left ventricle (LV) due to bicuspid aortic valve (BAV). Our hypothesis was that the KE of each VFA [...] Read more.
Intra-cardiac kinetic energy (KE) and ventricular flow analysis (VFA), as derived from 4D-flow MRI, can be used to understand the physiological burden placed on the left ventricle (LV) due to bicuspid aortic valve (BAV). Our hypothesis was that the KE of each VFA component would impact the surgical referral outcome depending on LV function decrement, BAV phenotype, and aortic dilation severity. A total of 11 healthy controls and 49 BAV patients were recruited. All subjects underwent cardiac magnetic resonance imaging (MRI) examination. The LV mass was inferior in the controls than in the BAV patients (90 ± 26 g vs. 45 ± 17 g, p = 0.025), as well as the inferior ascending aorta diameter indexed (15.8 ± 2.5 mm/m2 vs. 19.3 ± 3.5 mm/m2, p = 0.005). The VFA KE was higher in the BAV group; significant increments were found for the maximum KE and mean KE in the VFA components (p < 0.05). A total of 14 BAV subjects underwent surgery after the scans. When comparing BAV nonsurgery vs. surgery-referred cohorts, the maximum KE and mean KE were elevated (p < 0.05). The maximum and mean KE were also associated with surgical referral (r = 0.438, p = 0.002 and r = 0.371, p = 0.009, respectively). In conclusion, the KE from VFA components significantly increased in BAV patients, including in BAV patients undergoing surgery. Full article
(This article belongs to the Special Issue Recent Advances in Cardiovascular Flows)
Show Figures

Figure 1

15 pages, 4400 KiB  
Article
GPR68 Mediates Lung Endothelial Dysfunction Caused by Bacterial Inflammation and Tissue Acidification
by Pratap Karki, Yunbo Ke, Chenou Zhang, Kamoltip Promnares, Yue Li, Charles H. Williams, Charles C. Hong, Konstantin G. Birukov and Anna A. Birukova
Cells 2024, 13(24), 2125; https://doi.org/10.3390/cells13242125 - 22 Dec 2024
Viewed by 1509
Abstract
Tissue acidification resulting from dysregulated cellular bioenergetics accompanies various inflammatory states. GPR68, along with other members of proton-sensing G protein-coupled receptors, responds to extracellular acidification and has been implicated in chronic inflammation-related diseases such as ischemia, cancer, and colitis. The present study examined [...] Read more.
Tissue acidification resulting from dysregulated cellular bioenergetics accompanies various inflammatory states. GPR68, along with other members of proton-sensing G protein-coupled receptors, responds to extracellular acidification and has been implicated in chronic inflammation-related diseases such as ischemia, cancer, and colitis. The present study examined the role of extracellular acidification on human pulmonary endothelial cell (EC) permeability and inflammatory status per se and investigated potential synergistic effects of acidosis on endothelial dysfunction caused by bacterial lipopolysaccharide (LPS, Klebsiella pneumoniae). Results showed that medium acidification to pH 6.5 caused a delayed increase in EC permeability illustrated by a decrease in transendothelial electrical resistance and loss of continuous VE-cadherin immunostaining at cell junctions. Likewise, acidic pH induced endothelial inflammation reflected by increased mRNA and protein expression of EC adhesion molecules VCAM-1 and ICAM-1, upregulated mRNA transcripts of tumor necrosis factor-α, IL-6, IL-8, IL-1β, and CXCL5, and increased secretion of ICAM-1, IL-6, and IL-8 in culture medium monitored by ELISA. Among the GPCRs tested, acidic pH selectively increased mRNA and protein expression of GPR68, and only the GPR68-specific small molecule inhibitor OGM-8345 rescued acidosis-induced endothelial permeability and inflammation. Furthermore, acidic pH exacerbated LPS-induced endothelial permeability and inflammatory response in cultured lung macrovascular as well as microvascular endothelial cells. These effects were suppressed by OGM-8345 in both EC types. Altogether, these results suggest that GPR68 is a critical mediator of acidic pH-induced dysfunction of human pulmonary vascular endothelial cells and mediates the augmenting effect of tissue acidification on LPS-induced endothelial cell injury. Full article
(This article belongs to the Section Cell Microenvironment)
Show Figures

Figure 1

Back to TopTop