Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (263)

Search Parameters:
Keywords = Fusarium DNA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 4228 KiB  
Article
Whole-Genome Analysis of Halomonas sp. H5 Revealed Multiple Functional Genes Relevant to Tomato Growth Promotion, Plant Salt Tolerance, and Rhizosphere Soil Microecology Regulation
by Yan Li, Meiying Gu, Wanli Xu, Jing Zhu, Min Chu, Qiyong Tang, Yuanyang Yi, Lijuan Zhang, Pan Li, Yunshu Zhang, Osman Ghenijan, Zhidong Zhang and Ning Li
Microorganisms 2025, 13(8), 1781; https://doi.org/10.3390/microorganisms13081781 - 30 Jul 2025
Viewed by 265
Abstract
Soil salinity adversely affects crop growth and development, leading to reduced soil fertility and agricultural productivity. The indigenous salt-tolerant plant growth-promoting rhizobacteria (PGPR), as a sustainable microbial resource, do not only promote growth and alleviate salt stress, but also improve the soil microecology [...] Read more.
Soil salinity adversely affects crop growth and development, leading to reduced soil fertility and agricultural productivity. The indigenous salt-tolerant plant growth-promoting rhizobacteria (PGPR), as a sustainable microbial resource, do not only promote growth and alleviate salt stress, but also improve the soil microecology of crops. The strain H5 isolated from saline-alkali soil in Bachu of Xinjiang was studied through whole-genome analysis, functional annotation, and plant growth-promoting, salt-tolerant trait gene analysis. Phylogenetic tree analysis and 16S rDNA sequencing confirmed its classification within the genus Halomonas. Functional annotation revealed that the H5 genome harbored multiple functional gene clusters associated with plant growth promotion and salt tolerance, which were critically involved in key biological processes such as bacterial survival, nutrient acquisition, environmental adaptation, and plant growth promotion. The pot experiment under moderate salt stress demonstrated that seed inoculation with Halomonas sp. H5 not only significantly improved the agronomic traits of tomato seedlings, but also increased plant antioxidant enzyme activities under salt stress. Additionally, soil analysis revealed H5 treatment significantly decreased the total salt (9.33%) and electrical conductivity (8.09%), while significantly improving organic matter content (11.19%) and total nitrogen content (10.81%), respectively (p < 0.05). Inoculation of strain H5 induced taxonomic and functional shifts in the rhizosphere microbial community, increasing the relative abundance of microorganisms associated with plant growth-promoting and carbon and nitrogen cycles, and reduced the relative abundance of the genera Alternaria (15.14%) and Fusarium (9.76%), which are closely related to tomato diseases (p < 0.05). Overall, this strain exhibits significant potential in alleviating abiotic stress, enhancing growth, improving disease resistance, and optimizing soil microecological conditions in tomato plants. These results provide a valuable microbial resource for saline soil remediation and utilization. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

23 pages, 2535 KiB  
Article
Defining Soilborne Pathogen Complexes Provides a New Foundation for the Effective Management of Faba Bean Root Diseases in Ethiopia
by Solomon Yilma, Berhanu Bekele, Joop Van Leur, Ming Pei You, Seid-Ahmed Kemal, Danièle Giblot-Ducray, Kelly Hill, Thangavel Selvaraji, Alemu Lencho, Lemma Driba and Martin J. Barbetti
Pathogens 2025, 14(7), 695; https://doi.org/10.3390/pathogens14070695 - 14 Jul 2025
Viewed by 803
Abstract
Soilborne diseases cause losses of 45–70% in faba bean in Ethiopia. Studies were undertaken to define soilborne pathogens and their complexes in Ethiopia. First, the severity of root rot was assessed in 150 field sites across seven Ethiopian regions. Soil samples were collected, [...] Read more.
Soilborne diseases cause losses of 45–70% in faba bean in Ethiopia. Studies were undertaken to define soilborne pathogens and their complexes in Ethiopia. First, the severity of root rot was assessed in 150 field sites across seven Ethiopian regions. Soil samples were collected, and the DNA of 29 pests and pathogens was quantified using a commercial quantitative PCR (qPCR) soil testing service. There was a very high incidence rate of Macrophomina phaseolina, as well as Pythium clades F and I. The other detected species in order of incidence included Fusarium redolens, Rhizoctonia solani, Aphanomyces euteiches, Phytophthora megasperma, Sclerotinia sclerotiorum and S. minor, and Verticillium dahliae, as well as low levels of Thielaviopsis basicola. Five anastomosis groups (AG) of R. solani, namely AG2.1, AG2.2, AG3, AG4, and AG5, were detected, of which AG2.2 and AG4 were most prevalent. We believe this is the first report of occurrence for Ethiopia of A. euteiches, Ph. megasperma, T. basicola, and the five AGs for R. solani. There were very high incidence rates of the foliar pathogens Botrytis cinerea, B. fabae, Didymella pinodes, and Phoma pinodella and of the nematode Pratylenchus thornei, followed by P. neglectus and P. penetrans. The root rot severity and distribution varied significantly across regions, as well as with soil types, soil pH, and soil drainage. Subsequently, metabarcoding of the soil DNA was undertaken using three primer pairs targeting fungi (ITS2), Fusarium species (TEF1 α), and Oomycetes (ITS1Oo). The ITS2 and TEF1α primers emphasized F. oxysporum as the most abundant soilborne fungal pathogen and highlighted F. ananatum, F. brachygibbosum, F. brevicaudatum, F. clavum, F. flagelliforme, F. keratoplasticum, F. napiforme, F. nelsonii, F. neocosmosporiellum, F. torulosum, and F. vanettenii as first reports of occurrence for Ethiopia. The ITS1Oo primer confirmed Pythium spp. as the most prevalent of all Oomycetes. Full article
(This article belongs to the Special Issue An Update on Fungal Infections)
Show Figures

Figure 1

30 pages, 4680 KiB  
Article
Production of Lanhouin—A Fermented Catfish (Clarias gariepinus) Using the Selected Lactiplantibacillus pentosus Probiotic Strain
by Vasilica Barbu, Chimène Agrippine Rodogune Yelouassi, Mihaela Cotârleț, Leontina Grigore-Gurgu, Comlan Kintomagnimessè Célestin Tchekessi and Pierre Dossou-Yovo
Sustainability 2025, 17(14), 6387; https://doi.org/10.3390/su17146387 - 11 Jul 2025
Viewed by 585
Abstract
Lactic acid bacteria (LAB) preserve many foods and play a vital role in fermented food products. This study designed a controlled biotechnological process of catfish (Clarias gariepinus) fermentation with a LAB starter culture isolated from corn hydrolysate. The BY (Barbu-Yelouassi) LAB [...] Read more.
Lactic acid bacteria (LAB) preserve many foods and play a vital role in fermented food products. This study designed a controlled biotechnological process of catfish (Clarias gariepinus) fermentation with a LAB starter culture isolated from corn hydrolysate. The BY (Barbu-Yelouassi) LAB strain was characterized regarding fermentative and antimicrobial potential, and its adaptability in the simulated gastrointestinal system (SGIS). After 10–12 h of cultivation on MRS broth (De Man Rogosa and Sharpe), the strain achieved the maximum exponential growth, produced maximum lactic acid (33.04%), and decreased the acidity up to pH 4. Also, the isolated strain showed increased tolerance to an acidic pH (3.5–2.0), high concentrations of salt (2–10%), and high concentrations of bile salts (≤2%). The behavior in SGIS demonstrated good viability after 2 h in artificial gastric juice (AGJ) (1 × 107 CFU/mL) and up to 2 × 103 CFU/mL after another 6 h in artificial intestinal juice (AIJ). The characterized BY strain was identified with the API 50CHL microtest (BioMerieux) as Lactiplantibacillus pentosus (Lbp. pentosus) (90.9% probability), taxon confirmed by genomic DNA sequencing. It was also demonstrated that Lbp. pentosus BY inhibited the growth of pathogenic bacteria, including Escherichia coli, Staphylococcus aureus, Listeria monocytogenes, and sporulated bacteria, such as Bacillus cereus. Additionally, it suppressed the sporulation of fungi like Aspergillus niger, Fusarium sp., and Penicillium sp. Furthermore, the Lbp. pentosus BY strain was used to ferment catfish, resulting in three variants of lanhouin (unsalted, with 10% salt, and with 15% salt), which exhibited good microbiological safety. Full article
(This article belongs to the Special Issue Sustainable Food Preservation)
Show Figures

Figure 1

13 pages, 5309 KiB  
Article
Fungi Associated with Dying Buckthorn in North America
by Ryan D. M. Franke, Nickolas N. Rajtar and Robert A. Blanchette
Forests 2025, 16(7), 1148; https://doi.org/10.3390/f16071148 - 11 Jul 2025
Viewed by 434
Abstract
Common buckthorn (Rhamnus cathartica L.) is a small tree that forms dense stands, displacing native plant species and threatening natural forest habitats in its introduced range in North America. Removal via cutting is labor intensive and often ineffective due to vigorous resprouting. [...] Read more.
Common buckthorn (Rhamnus cathartica L.) is a small tree that forms dense stands, displacing native plant species and threatening natural forest habitats in its introduced range in North America. Removal via cutting is labor intensive and often ineffective due to vigorous resprouting. Although chemical control methods are effective, they can negatively affect sensitive ecosystems. A mycoherbicide that selectively kills buckthorn would provide an additional method for control. In the present study, fungi were collected from dying buckthorn species (Frangula alnus Mill., Rhamnus cathartica, Ventia alnifolia L’Hér) located at 19 sites across Minnesota and Wisconsin for their potential use as mycoherbicides for common buckthorn. A total of 412 fungi were isolated from samples of diseased tissue and identified via DNA extraction and sequencing. These fungi were identified as 120 unique taxa belonging to 81 genera. Of these fungi, 46 species belonging to 26 genera were considered to be canker or root-rot pathogens of woody plants, including species in Cytospora, Diaporthe, Diplodia, Dothiorella, Eutypella, Fusarium, Hymenochaete, Irpex, Phaeoacemonium, and others. A future study testing the pathogenicity of these putative pathogens of buckthorn is now needed to assess their utility as potential mycoherbicide agents for control of common buckthorn. Full article
(This article belongs to the Special Issue Pathogenic Fungi in Forest)
Show Figures

Figure 1

13 pages, 1449 KiB  
Article
Novel DNA Barcoding and Multiplex PCR Strategy for the Molecular Identification and Mycotoxin Gene Detection of Fusarium spp. in Maize from Bulgaria
by Daniela Stoeva, Deyana Gencheva, Georgi Radoslavov, Peter Hristov, Rozalina Yordanova and Georgi Beev
Methods Protoc. 2025, 8(4), 78; https://doi.org/10.3390/mps8040078 - 9 Jul 2025
Viewed by 322
Abstract
Fusarium spp. represent a critical threat to maize production and food safety due to their mycotoxin production. This study introduces a refined molecular identification protocol integrating four genomic regions—ITS1, IGS, TEF-1α, and β-TUB—for robust species differentiation of Fusarium spp. isolates from [...] Read more.
Fusarium spp. represent a critical threat to maize production and food safety due to their mycotoxin production. This study introduces a refined molecular identification protocol integrating four genomic regions—ITS1, IGS, TEF-1α, and β-TUB—for robust species differentiation of Fusarium spp. isolates from post-harvest maize in Bulgaria. The protocol enhances species resolution, especially for closely related taxa within the Fusarium fujikuroi species complex (FFSC). A newly optimized multiplex PCR strategy was developed using three primer sets, each designed to co-amplify a specific pair of toxigenic genes: fum6/fum8, tri5/tri6, and tri5/zea2. Although all five genes were analyzed, they were detected through separate two-target reactions, not in a single multiplex tube. Among 17 identified isolates, F. proliferatum (52.9%) dominated, followed by F. verticillioides, F. oxysporum, F. fujikuroi, and F. subglutinans. All isolates harbored at least one toxin biosynthesis gene, with 18% co-harboring genes for both fumonisins and zearalenone. This dual-protocol approach enhances diagnostic precision and supports targeted mycotoxin risk management strategies. Full article
(This article belongs to the Section Molecular and Cellular Biology)
Show Figures

Figure 1

17 pages, 3009 KiB  
Article
Influence of Light Spectrum on Bread Wheat Head Colonization by Fusarium graminearum and on the Accumulation of Its Secondary Metabolites
by Minely Cerón-Bustamante, Francesco Tini, Giovanni Beccari, Andrea Onofri, Emilio Balducci, Michael Sulyok, Lorenzo Covarelli and Paolo Benincasa
Plants 2025, 14(13), 2013; https://doi.org/10.3390/plants14132013 - 1 Jul 2025
Viewed by 509
Abstract
Previous studies indicated that light influences mycotoxin production and wheat’s defense responses to the cereal fungal pathogen Fusarium graminearum. Herein, the effect of different light wavelengths on F. graminearum colonization and secondary metabolite biosynthesis in bread wheat was assessed. Heads of a [...] Read more.
Previous studies indicated that light influences mycotoxin production and wheat’s defense responses to the cereal fungal pathogen Fusarium graminearum. Herein, the effect of different light wavelengths on F. graminearum colonization and secondary metabolite biosynthesis in bread wheat was assessed. Heads of a susceptible bread wheat cultivar were point-inoculated and exposed to red (627 nm), blue (470 nm), blue/red, and white light. Symptom severity, fungal DNA, and secondary metabolite accumulation were evaluated. Blue and red wavelengths reduced F. graminearum infection but had an opposite effect on the production of its fungal secondary metabolites. While blue light enhanced the accumulation of sesquiterpene mycotoxins, red light promoted the production of polyketide compounds. In addition, blue light stimulated deoxynivalenol glycosylation. These findings suggest that the light spectrum could affect mycotoxin contamination of wheat grains, highlighting the importance of light quality studies in field crops. Full article
(This article belongs to the Special Issue Light and Plant Responses)
Show Figures

Figure 1

18 pages, 2683 KiB  
Article
FpFumB Is Required for Basic Biological Processes and Virulence in Fusarium proliferatum by Modulating DNA Repair Through Interaction with FpSae2
by Yizhou Gao, Haibo Li, Yong Liu, Yuqing Wang, Jingwen Xue, Yitong Wang and Zhihong Wu
Microorganisms 2025, 13(6), 1433; https://doi.org/10.3390/microorganisms13061433 - 19 Jun 2025
Viewed by 450
Abstract
Fumarase plays a pivotal role in the tricarboxylic acid cycle, but its functions in plant pathogenic fungi are not well understood. We identified two fumarase genes in Fusarium proliferatum and generated individual deletion mutants. Loss of FpFumB led to defects in growth, sporulation, [...] Read more.
Fumarase plays a pivotal role in the tricarboxylic acid cycle, but its functions in plant pathogenic fungi are not well understood. We identified two fumarase genes in Fusarium proliferatum and generated individual deletion mutants. Loss of FpFumB led to defects in growth, sporulation, stress tolerance, and virulence. Exogenous malate supplementation restored growth defects. Site-directed mutagenesis of residues G452 and A463 reduced FpFumB enzyme activity. Transcriptomic analysis identified significant changes in gene expression related to different metabolic pathways. Protein interaction assays showed that FpFumB interacts with the DNA repair protein FpSae2. Both ΔFpFumB and ΔFpSae2 mutants displayed altered sensitivity to DNA-damaging agents and reduced virulence, indicating that FpFumB modulates DNA repair and pathogenicity through its interaction with FpSae2. Together, these findings highlight FpFumB as a key regulator of basic biological processes, DNA damage repair, and virulence in Fusarium proliferatum. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

14 pages, 3355 KiB  
Article
Establishment and Application of Loop-Mediated Isothermal Amplification Assays for Pathogens of Rice Bakanae Disease
by Xinchun Liu, Yan Wang, Yating Zhang, Jingzhao Xia, Chenxi Liu, Yu Song, Tao Han, Songhong Wei and Wenjing Zheng
Agriculture 2025, 15(12), 1319; https://doi.org/10.3390/agriculture15121319 - 19 Jun 2025
Viewed by 274
Abstract
Rice bakanae disease (RBD), a major threat in rice-cropping nations, can reduce rice yield and quality. As it is a seed-borne disease, effective seed detection is crucial. Loop-mediated isothermal amplification (LAMP) can rapidly and specifically amplify DNA at a constant temperature with high [...] Read more.
Rice bakanae disease (RBD), a major threat in rice-cropping nations, can reduce rice yield and quality. As it is a seed-borne disease, effective seed detection is crucial. Loop-mediated isothermal amplification (LAMP) can rapidly and specifically amplify DNA at a constant temperature with high sensitivity. This research uses LAMP to develop rapid RBD pathogen detection systems. Primers were designed targeting the NRPS31 gene of Fusarium fujikuroi and conserved TEF1α sequences of Fusarium asiaticum, Fusarium proliferatum, and Fusarium andiyazi. These reactions at 60 °C for 60 min had a detection limit of 100 pg·μL−1, and LAMP proved applicable in field trials. Full article
Show Figures

Figure 1

14 pages, 3109 KiB  
Article
Biocontrol and Mycotoxin Mitigation: An Endophytic Fungus from Maize Exhibiting Dual Antagonism Against Fusarium verticillioides and Fumonisin Reduction
by Qianhui Li, Dongbeng Zhang, Dongyan Ye, Shuo Zhang, Qiurui Ma, Helong Bai and Fanlei Meng
J. Fungi 2025, 11(6), 441; https://doi.org/10.3390/jof11060441 - 11 Jun 2025
Viewed by 1134
Abstract
Fusarium verticillioides is one of the pathogenic fungi causing maize ear rot, and its secreted fumonisins accumulated in plants pose significant threats to human health. To reduce the incidence of maize ear rot and fumonisin contamination, this study isolated numerous endophytic fungi from [...] Read more.
Fusarium verticillioides is one of the pathogenic fungi causing maize ear rot, and its secreted fumonisins accumulated in plants pose significant threats to human health. To reduce the incidence of maize ear rot and fumonisin contamination, this study isolated numerous endophytic fungi from maize plants. Through inhibition zone and dual culture assays, an endophytic fungal strain, FJ284, demonstrating notable antifungal activity against F. verticillioides was screened. 18S rDNA gene sequencing was employed for fungal identification, and the sequences were deposited in NCBI GenBank. FJ284 was identified as Penicillium oxalicum. The ethyl acetate extract of P. oxalicum was analyzed using gas chromatography–mass spectrometry (GC-MS), revealing 52 compounds, including several secondary metabolites with documented anticancer, antimicrobial, and antioxidant activities. Furthermore, a spectroscopic method was developed to assess the inhibitory effect of strain FJ284 against F. verticillioides, showing maximum inhibition at 48 h. Finally, Ultra-High-Performance Liquid Chromatography–Mass Spectrometry (UHPLC-MS) analyses confirmed that FJ284 significantly inhibited three fumonisins (suppression rates > 50%), with efficacy ranked as fumonisin B3 (FB3) > fumonisin B2 (FB2) > fumonisin B1 (FB1). Full article
Show Figures

Figure 1

14 pages, 2094 KiB  
Article
DNA Polymerase Theta Regulates the Growth and Development of Fusarium acuminatum and Its Virulence on Alfalfa
by Yuqing Jing, Jian Yang, Renyi Ma, Bo Lan, Siyang Li, Qian Zhang, Fang K. Du, Qianqian Guo and Kangquan Yin
Agriculture 2025, 15(11), 1128; https://doi.org/10.3390/agriculture15111128 - 23 May 2025
Viewed by 422
Abstract
Fusarium acuminatum is a major pathogenic fungus causing root rot in alfalfa (Medicago sativa). DNA polymerase theta is known to play a crucial role in repairing DNA double-strand breaks. However, its biological function in F. acuminatum remains unknown. In this study, [...] Read more.
Fusarium acuminatum is a major pathogenic fungus causing root rot in alfalfa (Medicago sativa). DNA polymerase theta is known to play a crucial role in repairing DNA double-strand breaks. However, its biological function in F. acuminatum remains unknown. In this study, the POLQ gene was deleted by homologous recombination using Agrobacterium tumefaciens-mediated transformation. Compared to the wild type (with the POLQ gene), the mutants (without the POLQ gene) showed significant phenotypic changes: they produced brown-yellow pigments instead of pink, slowed mycelial growth, and exhibited changes in macroconidia size and shape. The virulence of the mutants was greatly reduced, inducing only mild symptoms in alfalfa. In addition, FITC-WGA staining showed impaired spore germination and hyphal growth. These results suggest that POLQ is a key gene regulating growth and development of F. acuminatum, indicating that DNA repair may play an essential role in the pathogenicity of the pathogen in alfalfa. The POLQ gene could thus be a promising target for limiting F. acuminatum infections in alfalfa. Full article
(This article belongs to the Special Issue Research and Prevention of Grass Plant Diseases)
Show Figures

Figure 1

22 pages, 4995 KiB  
Article
Comprehensive In Vitro and In Silico Analysis of Antimicrobial and Insecticidal Properties of Essential Oil of Myrtus communis L. from Algeria
by Ghozlane Barboucha, Noureddine Rahim, Amina Bramki, Houssem Boulebd, Anna Andolfi, Khaoula Boulacheb, Amina Boulacel, Maria Michela Salvatore and Marco Masi
Int. J. Mol. Sci. 2025, 26(10), 4754; https://doi.org/10.3390/ijms26104754 - 15 May 2025
Viewed by 733
Abstract
This study investigated the phytochemical composition and biological activities of Myrtus communis essential oil (EO) from Algeria, focusing on its antimicrobial, antifungal, and insecticidal properties using in vitro and in silico approaches. Gas chromatography–mass spectrometry (GC-MS) analysis identified myrtenyl acetate (57.58%), 1,8-cineole (17.82%), [...] Read more.
This study investigated the phytochemical composition and biological activities of Myrtus communis essential oil (EO) from Algeria, focusing on its antimicrobial, antifungal, and insecticidal properties using in vitro and in silico approaches. Gas chromatography–mass spectrometry (GC-MS) analysis identified myrtenyl acetate (57.58%), 1,8-cineole (17.82%), and α-terpineol (6.82%) as the major constituents. M. communis EO exhibited significant antibacterial activity, particularly against Staphylococcus aureus (13.00 ± 0.70 mm) and Salmonella typhimurium (13.00 ± 1.50 mm), with moderate inhibition of Bacillus subtilis (10 ± 1.00 mm) and Escherichia coli (9.00 ± 0.70 mm), while Pseudomonas aeruginosa showed resistance. The antifungal activity was notable against Fusarium oxysporum (16.50 ± 0.50 mm), Aspergillus fumigatus (11.00 ± 1.00 mm), and Penicillium sp. (9.00 ± 0.60 mm) but ineffective against Aspergillus niger. Insecticidal activity against Tribolium castaneum was evaluated using contact toxicity, fumigation toxicity, and repellent activity assays. The EO demonstrated potent insecticidal effects, with an LC50 value of 0.029 µL/insect for contact toxicity and 162.85 µL/L air for fumigation after 96 h. Additionally, the EO exhibited strong repellent activity, achieving 99.44% repellency at a concentration of 0.23 mg/cm2 after 24 h. Density functional theory (DFT) calculations provided insights into the molecular geometry and electronic properties of the key bioactive compounds. Molecular docking studies evaluated their binding affinities to bacterial enzymes (DNA gyrase, dihydrofolate reductase6, and Gyrase B) and insecticidal targets (acetylcholinesterase), revealing strong interactions, particularly for geranyl acetate and methyleugenol. These findings highlight M. communis EO as a promising natural antimicrobial and insecticidal agent, with potential applications in plant protection and biopesticide development. Full article
(This article belongs to the Special Issue The Advances in Antimicrobial Biomaterials)
Show Figures

Graphical abstract

9 pages, 7578 KiB  
Communication
First Report of Fusarium annulatum Causing Bulb Rot Disease of Tulip
by Quanhong Liu, Shu Miura, Tianlan Liao, Jinyan Luo, Ying Shen, Lei Chen, Chengkai Li, Bin Li and Qianli An
Horticulturae 2025, 11(5), 518; https://doi.org/10.3390/horticulturae11050518 - 11 May 2025
Viewed by 504
Abstract
Bulb rot is one of the most destructive diseases of tulip (Tulipa gesneriana L.). In November 2022, rotten tulip bulbs and terminal buds were found in Songjiang District, Shanghai, China. Fungal isolates were isolated from the rotten bulbs and identified as Fusarium [...] Read more.
Bulb rot is one of the most destructive diseases of tulip (Tulipa gesneriana L.). In November 2022, rotten tulip bulbs and terminal buds were found in Songjiang District, Shanghai, China. Fungal isolates were isolated from the rotten bulbs and identified as Fusarium based on colony morphology and ITS sequences. Further analyses of tef1, rpb1, and rpb2 barcoding sequences and conidial micromorphology identified the Fusarium isolates as F. annulatum. The pathogenicity of the F. annulatum isolates was verified with Koch’s postulates. This is the first report of F. annulatum causing bulb rot disease of tulip. Full article
(This article belongs to the Special Issue Fungal Diseases in Horticultural Crops)
Show Figures

Figure 1

36 pages, 13548 KiB  
Article
Morpho-Molecular Characterization of Hypocrealean Fungi Isolated from Rice in Northern Thailand
by Sahar Absalan, Alireza Armand, Ruvishika S. Jayawardena, Nakarin Suwannarach, Jutamart Monkai, Nootjarin Jungkhun Gomes de Farias, Saisamorn Lumyong and Kevin D. Hyde
J. Fungi 2025, 11(4), 321; https://doi.org/10.3390/jof11040321 - 18 Apr 2025
Viewed by 866
Abstract
Hypocreales is one of the largest orders within the class Sordariomycetes and is renowned for its diversity of lifestyles, encompassing plant, insect, and human pathogens, as well as endophytes, parasites, and saprobes. In this study, we focused on saprobic hypocrealean fungi isolated from [...] Read more.
Hypocreales is one of the largest orders within the class Sordariomycetes and is renowned for its diversity of lifestyles, encompassing plant, insect, and human pathogens, as well as endophytes, parasites, and saprobes. In this study, we focused on saprobic hypocrealean fungi isolated from rice in northern Thailand. Species identification was conducted using morphological characteristics and multilocus phylogenetic analyses, including the internal transcribed spacer region (ITS), 28S large subunit nuclear ribosomal DNA (LSU), translation elongation factor 1–alpha (tef1-α), RNA polymerase II second-largest subunit (rpb2), and calmodulin (cmdA). This research confirmed the presence of 14 species of hypocrealean taxa, viz. Fusarium (9), Ochronectria (1), Sarocladium (2), Trichothecium (1), and Waltergamsia (1). Among these were two new species (Fusarium chiangraiense and F. oryzigenum), four new host records (Fusarium kotabaruense, Ochronectria thailandica, Sarocladium bactrocephalum, and Waltergamsia fusidioides), and three new geographical records (Fusarium commune, F. guilinense, and F. hainanese). Full article
(This article belongs to the Collection Fungal Biodiversity and Ecology)
Show Figures

Figure 1

16 pages, 1935 KiB  
Article
Evaluation of Luffa Rootstocks to Improve Resistance in Bitter Gourd (Momordica charantia L.) Against Fusarium Wilt
by Ahmed Namisy, Shu-Yun Chen, Benjapon Sritongkam, Jintana Unartngam, Chinnapan Thanarut and Wen-Hsin Chung
Plants 2025, 14(8), 1168; https://doi.org/10.3390/plants14081168 - 9 Apr 2025
Viewed by 835
Abstract
Fusarium wilt in bitter gourd caused by Fusarium oxysporum f. sp. momordicae (Fomo) is a severe plant disease that affects the world’s bitter gourd (Momordica charantia L.) cultivation. This study evaluated nine luffa hybrids for their performance as rootstocks with bitter gourd [...] Read more.
Fusarium wilt in bitter gourd caused by Fusarium oxysporum f. sp. momordicae (Fomo) is a severe plant disease that affects the world’s bitter gourd (Momordica charantia L.) cultivation. This study evaluated nine luffa hybrids for their performance as rootstocks with bitter gourd to control Fusarium oxysporum f. sp. luffae (Folu) isolate Fomh16 and Fomo isolate Fomo33. In the first evaluation, five hybrids (LF1, LF2, LF3, LF15, and LF16) exhibited resistance to the Fomh16 isolate and showed no symptoms. One hybrid, LF10, was resistant with a mean disease rating (MDR) of 0.9 at 28 days post-inoculation (dpi). Seven luff hybrids that displayed resistant and moderate resistance in the first evaluation were used as rootstocks with susceptible bitter gourd cultivars. Five rootstocks exhibited high resistance to Fomh16 and Fomo33 isolates, with their MDR ranging from 0.0 to 0.7. In addition, the findings revealed that both isolates could colonize the vascular bundle of all resistant luffa rootstocks at 28 dpi. However, the Fomo33 isolate could extend and colonize the vascular bundle of bitter gourd scion when grafted only with rootstock LF5 and LF11. The quantitative PCR results indicated that there were significant differences in the amount of the Fomo33 DNA between the bitter gourd grafted onto LF15 and LF16 rootstocks and the self-grafted plants; however, the pathogen cannot be detected in the bitter gourd scions grafted with resistant rootstocks. These findings provide valuable resistant sources that can be used as rootstocks to manage Fusarium wilt disease in bitter gourd. Full article
Show Figures

Figure 1

19 pages, 1887 KiB  
Article
Do Organic Amendments Foster Only Beneficial Bacteria in Agroecosystems?: The Case of Bacillus paranthracis TSO55
by Ixchel Campos-Avelar, Amelia C. Montoya-Martínez, Alina Escalante-Beltrán, Fannie I. Parra-Cota and Sergio de los Santos Villalobos
Plants 2025, 14(7), 1019; https://doi.org/10.3390/plants14071019 - 25 Mar 2025
Cited by 1 | Viewed by 978
Abstract
Bacterial strain TSO55 was isolated from a commercial field of wheat (Triticum turgidum L. subsp. durum), under organic amendments, located in the Yaqui Valley, Mexico. Morphological and microscopical characterization showed off-white irregular colonies and Gram-positive bacillus, respectively. The draft genome sequence [...] Read more.
Bacterial strain TSO55 was isolated from a commercial field of wheat (Triticum turgidum L. subsp. durum), under organic amendments, located in the Yaqui Valley, Mexico. Morphological and microscopical characterization showed off-white irregular colonies and Gram-positive bacillus, respectively. The draft genome sequence of this strain revealed a genomic size of 5,489,151 bp, with a G + C content of 35.21%, N50 value of 245,934 bp, L50 value of 8, and 85 contigs. Taxonomic affiliation showed that strain TSO55 belongs to Bacillus paranthracis, reported as an emergent human pathogen. Genome annotation identified 5743 and 5587 coding DNA sequences (CDSs), respectively, highlighting genes associated with indole production, phosphate and potassium solubilization, and iron acquisition. Further in silico analysis indicated the presence of three CDSs related to pathogenicity islands and a high pathogenic potential (77%), as well as the presence of multiple gene clusters related to antibiotic resistance. The in vitro evaluation of plant growth promotion traits was negative for indole production and phosphate and potassium solubilization, and it was positive but low (18%) for siderophore production. The biosynthetic gene cluster for bacillibactin (siderophore) biosynthesis was confirmed. Antifungal bioactivity of strain TSO55 evaluated against wheat pathogenic fungi (Alternaria alternata TF17, Bipolaris sorokiniana TPQ3, and Fusarium incarnatum TF14) showed minimal fungal inhibition. An antibiotic susceptibility assay indicated resistance to three of the six antibiotics evaluated, up to a concentration of 20 µg/mL. The beta hemolysis result on blood agar reinforced TSO55’s pathogenic potential. Inoculation of B. paranthracis TSO55 on wheat seedlings resulted in a significant decrease in root length (−8.4%), total plant height (−4.2%), root dry weight (−18.6%), stem dry weight (−11.1%), and total plant dry weight (−15.2%) compared to the control (uninoculated) treatment. This work highlights the importance of analyzing the microbiological safety of organic amendments before application. Comprehensive genome-based taxonomic affiliation and bioprospecting of microbial species introduced to the soil by organic agricultural practices and any microbial inoculant will prevent the introduction of dangerous species with non-beneficial traits for crops, which affect sustainability and generate potential health risks for plants and humans. Full article
Show Figures

Figure 1

Back to TopTop