Biocontrol and Mycotoxin Mitigation: An Endophytic Fungus from Maize Exhibiting Dual Antagonism Against Fusarium verticillioides and Fumonisin Reduction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Source of Endophytic Fungi
2.2. Isolation of Endophytic Fungi and Antifungal Experiment
2.3. Sequence Analysis of P. oxalicum
2.4. Fermentation and Extraction of Secondary Metabolites from Endophytic Fungus
2.5. Detection of Bioactive Compounds by a GC-MS Analysis
2.6. Preliminary Screening Method for Mitigating Fumonisin-Producing Fungi
2.7. Ultra-High-Performance Liquid Chromatography–Mass Spectrometry (UHPLC-MS) Analysis of Fungal Co-Culture Extracts
3. Results
3.1. Fungal Endophytes with Antibacterial Activity
3.2. Analysis of Secondary Metabolites
3.3. Results of Preliminary Screening and UHPLC-MS Evaluation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GC-MS | Gas Chromatography–Mass Spectrometry |
UHPLC-MS | Ultra-High-Performance Liquid Chromatography–Mass Spectrometry |
FB1 | Fumonisin B1 |
FB2 | Fumonisin B2 |
FB3 | Fumonisin B3 |
PDA | Potato Dextrose Agar |
PDB | Potato Dextrose Broth |
References
- Ekwomadu, T.I.; Dada, T.A.; Akinola, S.A.; Nleya, N.; Mwanza, M. Analysis of selected mycotoxins in maize from north-west South Africa using high performance liquid chromatography (HPLC) and other analytical techniques. Separations 2021, 8, 143. [Google Scholar] [CrossRef]
- Andriolli, C.F.; Casa, R.T.; Kuhnem, P.R.; Bogo, A.; Zancan, R.L.; Reis, E.M. Timing of fungicide application for the control of Gibberella ear rot of maize. Trop. Plant Pathol. 2016, 41, 264–269. [Google Scholar] [CrossRef]
- Masiello, M.; Somma, S.; Ghionna, V.; Logrieco, A.F.; Moretti, A. In vitro and in field response of different fungicides against Aspergillus flavus and Fusarium species causing ear rot disease of maize. Toxins 2019, 11, 11. [Google Scholar] [CrossRef]
- Wang, R.; Liu, N.; Huang, N.; Shu, F.; Lou, Y.; Zhang, S.; Zhu, H.; Chen, C. Combined toxicity assessment of a naturally occurring toxin and a triazole fungicide on different biological processes through toxicogenomic data mining with mixtures. Pestic. Biochem. Physiol. 2023, 193, 105440. [Google Scholar] [CrossRef]
- Venieraki, A.; Dimou, M.; Katinakis, P. Endophytic fungi residing in medicinal plants have the ability to produce the same or similar pharmacologically active secondary metabolites as their hosts. Hell. Plant Prot. J. 2017, 10, 51–66. [Google Scholar] [CrossRef]
- Long, F.; Hu, M.F.; Chen, S.; Bao, G.S.; Dan, H.; Chen, S.H. Endophytic fungi regulate HbNHX1 expression and ion balance in Hordeum bogdanii under alkaline stress. J. Fungi 2023, 9, 331. [Google Scholar] [CrossRef]
- Pokhriyal, A.; Kapoor, N.; Negi, S.; Sharma, G.; Chandra, S.; Gambhir, L.; Coutinho, H.D.M. Endophytic Fungi: Cellular factories of novel medicinal chemistries. Bioorg. Chem. 2024, 150, 107576. [Google Scholar] [CrossRef]
- Poveda, J.; Eugui, D.; Abril-Urías, P.; Velasco, P. Endophytic fungi as direct plant growth promoters for sustainable agricultural production. Symbiosis 2021, 85, 1–19. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Z.Y.; Cui, J.L.; Wang, M.L.; Wang, J.H. Biotransformation ability of endophytic fungi: From species evolution to industrial applications. Appl. Microbiol. Biotechnol. 2021, 105, 7095–7113. [Google Scholar] [CrossRef] [PubMed]
- Yang, E.F.; Karunarathna, S.C.; Tibpromma, S.; Stephenson, S.L.; Promputtha, I.; Elgorban, A.M.; Al-Rejaie, S.; Chomnunti, P. Endophytic fungi associated with mango show in vitro antagonism against bacterial and fungal pathogens. Agronomy 2023, 13, 169. [Google Scholar] [CrossRef]
- Latz, M.A.; Jensen, B.; Collinge, D.B.; Jørgensen, H.J. Endophytic fungi as biocontrol agents: Elucidating mechanisms in disease suppression. Plant Ecol. Divers. 2018, 11, 555–567. [Google Scholar] [CrossRef]
- Mousa, W.K.; Schwan, A.L.; Raizada, M.N. Characterization of antifungal natural products isolated from endophytic fungi of finger millet (Eleusine coracana). Molecules 2016, 21, 1171. [Google Scholar] [CrossRef] [PubMed]
- Rashid, T.S. Bioactive metabolites from tomato endophytic fungi with antibacterial activity against tomato bacterial spot disease. Rhizosphere 2021, 17, 100292. [Google Scholar] [CrossRef]
- de Fátima Dias Diniz, G.; Cota, L.V.; Figueiredo, J.E.F.; Aguiar, F.M.; da Silva, D.D.; de Paula Lana, U.G.; dos Santos, V.L.; Marriel, I.E.; de Oliveira-Paiva, C.A. Antifungal activity of bacterial strains from maize silks against Fusarium verticillioides. Arch. Microbiol. 2022, 204, 89. [Google Scholar] [CrossRef]
- Nguyen, P.A.; Strub, C.; Durand, N.; Alter, P.; Fontana, A.; Schorr-Galindo, S. Biocontrol of Fusarium verticillioides using organic amendments and their actinomycete isolates. Biol. Control 2018, 118, 55–66. [Google Scholar] [CrossRef]
- Dinango, V.N.; Eke, P.; Youmbi, D.Y.; Kouokap, L.R.K.; Kouipou, R.M.T.; Tamghe, G.G.; Nguemnang Mabou, L.C.; Wakam, L.N.; Boyom, F.F. Endophytic bacteria derived from the desert-spurge (Euphorbia antiquorum L.) suppress Fusarium verticillioides, the causative agent of maize ear and root rot. Rhizosphere 2022, 23, 100562. [Google Scholar] [CrossRef]
- Pham, V.C.; Nguyen, T.H.; Nguyen, T.L.; Nguyen, M.A.; Vu, T.Q.; Vu, T.T.H.; Huyen Vu, T.T.; Huong Doan, T.M. Antimicrobial Activities of a New Alkaloid from Marine-Derived Fungus, Penicillium sp. OM01. Nat. Prod. Commun. 2024, 19, 1934578X241250204. [Google Scholar] [CrossRef]
- Lai, C.; Tian, D.; Zheng, M.; Li, B.; Jia, J.; Wei, J.; Wu, B.; Bi, H.; Tang, J. Novel citrinin derivatives from fungus Penicillium sp. TW131-64 and their antimicrobial activities. Appl. Microbiol. Biotechnol. 2023, 107, 6607–6619. [Google Scholar] [CrossRef]
- Rojas, E.C.; Jensen, B.; Jørgensen, H.J.; Latz, M.A.; Esteban, P.; Collinge, D.B. The fungal endophyte Penicillium olsonii ML37 reduces Fusarium head blight by local induced resistance in wheat spikes. J. Fungi 2022, 8, 345. [Google Scholar] [CrossRef]
- Han, Z.; Wang, J.; Ding, Y.; Sun, Z.; Wang, Y.; Wang, Y.; Yang, L.; Wang, Y. New Observation in Biocontrol of Penicillium caperatum against Fusarium oxysporum on Saposhnikovia divaricata and as a Plant Growth Promoter. Fermentation 2023, 9, 361. [Google Scholar] [CrossRef]
- Alam, S.S.; Sakamoto, K.; Inubushi, K. Biocontrol efficiency of Fusarium wilt diseases by a root-colonizing fungus Penicillium sp. Soil. Sci. Plant Nutr. 2011, 57, 204–212. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, X.; Zhao, H.; Ni, Y.; Lian, Q.; Qian, H.; He, B.; Liu, H.; Ma, Q. Biological control of Fusarium wilt of sesame by Penicillium bilaiae 47M-1. Biol. Control 2021, 158, 104601. [Google Scholar] [CrossRef]
- Gupta, A.; Vasundhara, M. Withanolides production by the endophytic fungus Penicillium oxalicum associated with Withania somnifera (L.) Dunal. World J. Microbiol. Biotechnol. 2024, 40, 215. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Liu, X.; Zhao, K.; Ma, R.; Wu, W.; Zhang, Y.; Duan, L.; Li, X.; Xu, H.; Cheng, M.; et al. A new endophytic Penicillium oxalicum with aphicidal activity and its infection mechanism. Pest Manag. Sci. 2024, 80, 5706–5717. [Google Scholar] [CrossRef] [PubMed]
- Alvindia, D.G.; Natsuaki, K.T. Evaluation of fungal epiphytes isolated from banana fruit surfaces for biocontrol of banana crown rot disease. Crop Prot. 2008, 27, 1200–1207. [Google Scholar] [CrossRef]
- Kumar, V.; Prasher, I.B. Phytochemical Analysis and Antioxidant Activity of Endophytic Fungi Isolated from Dillenia indica Linn. Appl. Biochem. Biotechnol. 2024, 196, 332–349. [Google Scholar] [CrossRef] [PubMed]
- Mohamadpoor, M.; Amini, J.; Ashengroph, M.; Azizi, A. Evaluation of biocontrol potential of Achromobacter xylosoxidans strain CTA8689 against common bean root rot. Physiol. Mol. Plant Pathol. 2022, 117, 101769. [Google Scholar] [CrossRef]
- Angel, L.P.L.; Sundram, S.; Ping, B.T.Y.; Yusof, M.T.; Ismail, I.S. Profiling of anti-fungal activity of Trichoderma virens 159C involved in biocontrol assay of Ganoderma boninense. J. Oil Palm Res. 2018, 30, 83–93. [Google Scholar] [CrossRef]
- Mohd Fisall, U.F.; Ismail, N.Z.; Adebayo, I.A.; Arsad, H. Dichloromethane fraction of Moringa oleifera leaf methanolic extract selectively inhibits breast cancer cells (MCF7) by induction of apoptosis via upregulation of Bax, p53 and caspase 8 expressions. Mol. Biol. Rep. 2021, 48, 4465–4475. [Google Scholar] [CrossRef]
- Parasuraman, P.; Devadatha, B.; Sarma, V.V.; Ranganathan, S.; Ampasala, D.R.; Reddy, D.; Kumavath, R.; Kim, I.W.; Patel, S.K.S.; Kalia, V.C.; et al. Inhibition of microbial quorum sensing mediated virulence factors by Pestalotiopsis sydowiana. J. Microbiol. Biotechnol. 2020, 30, 571. [Google Scholar] [CrossRef]
- Vikram, V.; Hariram, N. Finding of antibiotic compounds pyrrolo [1,2-a] pyrazine-1,4-dione, hexahydro and Cyclo (prolyl-tyrosyl) isolated from the degradation of epoxy. Environ. Technol. 2024, 46, 2064–2079. [Google Scholar] [CrossRef]
- Awan, Z.A.; Shoaib, A.; Schenk, P.M.; Ahmad, A.; Alansi, S.; Paray, B.A. Antifungal potential of volatiles produced by Bacillus subtilis BS-01 against Alternaria solani in Solanum lycopersicum. Front. Plant Sci. 2023, 13, 1089562. [Google Scholar] [CrossRef]
- Shah, A.M.; Hussain, A.; Mushtaq, S.; Rather, M.A.; Shah, A.; Ahmad, Z.; Khan, I.A.; Bhat, K.A.; Hassan, Q.P. Antimicrobial investigation of selected soil actinomycetes isolated from unexplored regions of Kashmir Himalayas, India. Microb. Pathog. 2017, 110, 93–99. [Google Scholar] [CrossRef]
- Sharma, M.; Bharti, S.; Goswami, A.; Mallubhotla, S. Diversity, Antimicrobial, Antioxidant, and Anticancer Activity of Culturable Fungal Endophyte Communities in Cordia dichotoma. Molecules 2023, 28, 6926. [Google Scholar] [CrossRef]
- Afolayan, F.I.D.; Odeyemi, R.A.; Salaam, R.A. In silico and in vivo evaluations of multistage antiplasmodial potency and toxicity profiling of n-Hexadecanoic acid derived from Vernonia amygdalina. Front. Pharmacol. 2024, 15, 1445905. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, C.; Li, L.; Lei, P.; Shen, W.; Xu, H.; Gao, N. Effect of n-hexadecanoic acid on N2O emissions from vegetable soil and its synergism with Pseudomonas stutzeri NRCB010. Appl. Soil Ecol. 2024, 199, 105410. [Google Scholar] [CrossRef]
- Alghonaim, M.I.; Alsalamah, S.A.; Alsolami, A.; Ghany, T.A. Characterization and efficiency of Ganoderma lucidum biomass as an antimicrobial and anticancer agent. BioResources 2023, 18, 8037. [Google Scholar] [CrossRef]
- Dhanabalan, S.; Muthusamy, K.; Iruthayasamy, J.; Kumaresan, P.V.; Ravikumar, C.; Kandasamy, R.; Natesan, S.; Periyannan, S. Unleashing Bacillus species as versatile antagonists: Harnessing the biocontrol potentials of the plant growth-promoting rhizobacteria to combat Macrophomina phaseolina infection in Gloriosa superba. Microbiol. Res. 2024, 283, 127678. [Google Scholar] [CrossRef]
- Jia, K.; Wang, J.; Zhai, R.; Du, Y.; Kira, J.; Wu, C.; Qian, P.; Zhang, W. Abi Family Protein, DidK, Is Involved in the Maturation of Anticancer Depsipeptide, Didemnin B. ACS Chem. Biol. 2023, 18, 2300–2308. [Google Scholar] [CrossRef]
- Montgomery, D.W.; ZUKoski, C.F. Didemnin B: A new immunosuppressive cyclic peptide with potent activity in vitro and in vivo. Transplantation 1985, 40, 49–56. [Google Scholar] [CrossRef]
- Abdella, B.; Abdella, M.; ElSharif, H.A.; ElAhwany, A.M.; El-Sersy, N.A.; Ghozlan, H.A.; Sabry, S.A. Identification of potent anti-Candida metabolites produced by the soft coral associated Streptomyces sp. HC14 using chemoinformatics. Sci. Rep. 2023, 13, 12564. [Google Scholar] [CrossRef]
- Mia, M.A.R.; Ahmed, Q.U.; Ferdosh, S.; Helaluddin, A.B.M.; Azmi, S.N.H.; Al-Otaibi, F.A.; Parveen, H.; Mukhtar, S.; Ahmed, M.Z.; Sarker, M.Z.I. Anti-obesity and antihyperlipidemic effects of Phaleria macrocarpa fruit liquid CO2 extract: In vitro, in silico and in vivo approaches. J. King Saud Univ. Sci. 2023, 35, 102865. [Google Scholar]
- Guo, X.; Gu, D.; Wang, M.; Huang, Y.; Li, H.; Dong, Y.; Tian, J.; Wang, Y.; Yang, Y. Characterization of active compounds from Gracilaria lemaneiformis inhibiting the protein tyrosine phosphatase 1B activity. Food Funct. 2017, 8, 3271–3275. [Google Scholar] [CrossRef]
- Erasto, P.; Grierson, D.S.; Afolayan, A.J. Antioxidant constituents in Vernonia amygdalina Leaves. Pharm. Biol. 2007, 45, 195–199. [Google Scholar] [CrossRef]
- Wu, W.; Han, X.; Wu, C.; Wei, G.; Zheng, G.; Li, Y.; Yang, L.; He, D.; Zhao, Y.; Cai, Z. Vernodalol mediates antitumor effects in acute promyelocytic leukemia cells. Oncol. Lett. 2018, 15, 2227–2235. [Google Scholar] [CrossRef]
- Djeujo, F.M.; Stablum, V.; Pangrazzi, E.; Ragazzi, E.; Froldi, G. Luteolin and vernodalol as bioactive compounds of leaf and root Vernonia amygdalina extracts: Effects on α-glucosidase, glycation, ROS, cell viability, and in silico ADMET parameters. Pharmaceutics 2023, 15, 1541. [Google Scholar] [CrossRef]
- Thakur, R.S.; Ahirwar, B. A steroidal derivative from Trigonella foenum graecum L. that induces apoptosis in vitro and in vivo. J. Food Drug Anal. 2019, 27, 231–239. [Google Scholar] [CrossRef]
- Sini, A.; Bindu, T.K.; Raphael, V.P.; Shaju, K.S.; Sebastian, S. Growth inhibition of P. aeruginosa by methanol extract of Bridelia stipularis and identification of active components using in silico studies. Futur. J. Pharm. Sci. 2024, 10, 96. [Google Scholar] [CrossRef]
- Bensaad, M.S.; Verma, D.; Mitra, D.; Helal, M.; Banjer, H.J.; Shami, A.A.; Sami, R.; Moawadh, M.S.; Alharbi, Z.M.; Waggas, D.S.; et al. Estimating molecular properties, drug-likeness, cardiotoxic risk, liability profile, and molecular docking study to characterize binding process of key phyto-compounds against serotonin 5-HT2A receptor. Open Chem. 2024, 22, 20240088. [Google Scholar] [CrossRef]
- Kitchawalit, S.; Kanokmedhakul, K.; Kanokmedhakul, S.; Soytong, K. A new benzyl ester and ergosterol derivatives from the fungus Gymnoascus reessii. Nat. Prod. Res. 2014, 28, 1045–1051. [Google Scholar] [CrossRef]
- Corrêa, R.C.; Peralta, R.M.; Bracht, A.; Ferreira, I.C. The emerging use of mycosterols in food industry along with the current trend of extended use of bioactive phytosterols. Trends Food Sci. Technol. 2017, 67, 19–35. [Google Scholar] [CrossRef]
- Rodrigues, M.L. The multifunctional fungal ergosterol. mBio 2018, 9, e01755-18. [Google Scholar] [CrossRef]
- Syed, R.U.; Moni, S.S.; Alfaisal, R.H.; Alrashidi, R.H.; Alrashidi, N.F.; Wadeed, K.M.; Alshammary, F.N.; Alshammari, M.H.; Alharbi, F.M.; Rehman, Z.u.; et al. Spectral characterization of the bioactive principles and antibacterial properties of cold methanolic extract of Olea europaea from the Hail region of Saudi Arabia. Arab. J. Chem. 2022, 15, 104006. [Google Scholar] [CrossRef]
- Ottoboni, M.; Pinotti, L.; Tretola, M.; Giromini, C.; Fusi, E.; Rebucci, R.; Grillo, M.; Tassoni, L.; Foresta, S.; Gastaldello, S.; et al. Combining E-nose and lateral flow immunoassays (LFIAs) for rapid occurrence/co-occurrence aflatoxin and fumonisin detection in maize. Toxins 2018, 10, 416. [Google Scholar] [CrossRef]
- Park, J.; Kim, D.H.; Moon, J.Y.; An, J.A.; Kim, Y.W.; Chung, S.H.; Lee, C. Distribution analysis of twelve mycotoxins in corn and corn-derived products by LC-MS/MS to evaluate the carry-over ratio during wet-milling. Toxins 2018, 10, 319. [Google Scholar] [CrossRef]
No. | Name | RT/min | PCT | Bioactivity | References |
---|---|---|---|---|---|
1 | Benzene, 1,3-bis(1,1-dimethylethyl)- | 16.397 | 0.32% | Antimicrobial activity | [27] |
2 | dl-Mevalonic acid lactone | 16.594 | 0.24% | Antifungal activity | [28] |
3 | Benzeneacetonitrile, 4-hydroxy- | 24.131 | 2.75% | Inhibits cancer cells | [29] |
4 | 4-Hydroxyphenylacetamide | 32.376 | 1.72% | Antimicrobial activity | [30] |
5 | Cyclo(prolyl-tyrosyl) | 34.009 | 6.66% | [31] | |
6 | Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)- | 38.478 | 10.89% | Antimicrobial activity and enzyme inhibition | [32] |
7 | Actinomycin C2 | 38.842 | 3.46% | Antimicrobial activity | [33] |
8 | Dibutyl phthalate | 39.666 | 4.51% | Bioactive substance | [34] |
9 | n-Hexadecanoic acid | 40.106 | 5.53% | Antiplasmodial | [35,36] |
10 | 9,12-Octadecadienoic acid (Z,Z)- | 50.671 | 8.55% | Anticancer activity and antibiotic-resistant | [37] |
11 | l-Leucyl-d-leucine | 52.529 | 6.36% | Enzyme inhibition | [38] |
12 | Didemnin B | 55.412 | 0.83% | Antiviral and anticancer activity | [39,40] |
13 | Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(phenylmethyl)- | 65.623 | 9.57% | Antimicrobial activity | [34,41] |
14 | Phenol, 2,2′-methylenebis[6-(1,1-dimethylethyl)-4-methyl- | 69.532 | 2.17% | Anti-obesity activity and enzyme inhibition | [42,43] |
15 | Vernodalol | 86.820 | 1.31% | Antioxidant and antitumor activity; enzyme inhibition | [44,45,46] |
16 | Ethyl iso-allocholate | 90.460 | 0.30% | Antitumor and antimicrobial activity | [47,48] |
17 | 7,8-Epoxylanostan-11-ol, 3-acetoxy- | 94.907 | 0.21% | Bioactive substance | [49] |
18 | Ergosta-5,7,9(11),22-tetraen-3-ol, (3β,22E)- | 98.120 | 3.43% | Anticancer, antiproliferative, anti-inflammatory, and antimicrobial activity | [50] |
19 | Ergosterol | 98.936 | 16.30% | [51,52] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Q.; Zhang, D.; Ye, D.; Zhang, S.; Ma, Q.; Bai, H.; Meng, F. Biocontrol and Mycotoxin Mitigation: An Endophytic Fungus from Maize Exhibiting Dual Antagonism Against Fusarium verticillioides and Fumonisin Reduction. J. Fungi 2025, 11, 441. https://doi.org/10.3390/jof11060441
Li Q, Zhang D, Ye D, Zhang S, Ma Q, Bai H, Meng F. Biocontrol and Mycotoxin Mitigation: An Endophytic Fungus from Maize Exhibiting Dual Antagonism Against Fusarium verticillioides and Fumonisin Reduction. Journal of Fungi. 2025; 11(6):441. https://doi.org/10.3390/jof11060441
Chicago/Turabian StyleLi, Qianhui, Dongbeng Zhang, Dongyan Ye, Shuo Zhang, Qiurui Ma, Helong Bai, and Fanlei Meng. 2025. "Biocontrol and Mycotoxin Mitigation: An Endophytic Fungus from Maize Exhibiting Dual Antagonism Against Fusarium verticillioides and Fumonisin Reduction" Journal of Fungi 11, no. 6: 441. https://doi.org/10.3390/jof11060441
APA StyleLi, Q., Zhang, D., Ye, D., Zhang, S., Ma, Q., Bai, H., & Meng, F. (2025). Biocontrol and Mycotoxin Mitigation: An Endophytic Fungus from Maize Exhibiting Dual Antagonism Against Fusarium verticillioides and Fumonisin Reduction. Journal of Fungi, 11(6), 441. https://doi.org/10.3390/jof11060441