Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (50)

Search Parameters:
Keywords = Fourier lens

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1287 KiB  
Communication
0.74 W Broadband Degenerate Femtosecond MgO-Doped Periodically Poled Lithium Niobate (MgO: PPLN) Optical Parametric Oscillator at 2056 nm
by Yuxiang Zhao, Bobo Wang, Jinfang Yang, Taotao He, Hao Xu, Xue Qiu, Zhong Dong and Weijun Ling
Photonics 2025, 12(6), 543; https://doi.org/10.3390/photonics12060543 - 27 May 2025
Viewed by 378
Abstract
The degenerate optical parametric oscillator (OPO) is demonstrated to generate high-power, broadband mid-infrared MgO-doped periodically poled lithium niobate (MgO:PPLN) femtosecond laser at 151 MHz, synchronously pumped by a commercial Kerr-lens mode-locked Yb:KGW oscillator at 1028 nm. The average power of the degenerate OPO [...] Read more.
The degenerate optical parametric oscillator (OPO) is demonstrated to generate high-power, broadband mid-infrared MgO-doped periodically poled lithium niobate (MgO:PPLN) femtosecond laser at 151 MHz, synchronously pumped by a commercial Kerr-lens mode-locked Yb:KGW oscillator at 1028 nm. The average power of the degenerate OPO centered at 2056 nm is as high as 740 mW, which is the highest output power from a reported 2 μm degenerate femtosecond OPO, pumped by a bulk solid-state laser. The full width at half maximum (FWHM) spectral bandwidth of the degenerate OPO is 87.4 nm, corresponding to a theoretical, Fourier-limited pulse duration of 51 fs. These remarkable results indicate that degenerate OPO is a great potential candidate technology for generating high-power and few-cycle femtosecond pulses around 2 μm. Such mid-infrared sources are well-suited for high harmonic generation, a pumping source for mid- to far-infrared OPO. Full article
(This article belongs to the Special Issue Advances in Ultrafast Laser Science and Applications)
Show Figures

Figure 1

13 pages, 12682 KiB  
Article
Creation of Bessel–Gaussian Beams from Necklace Beams via Second-Harmonic Generation
by Nikolay Dimitrov, Kiril Hristov, Maya Zhekova and Alexander Dreischuh
Photonics 2025, 12(2), 119; https://doi.org/10.3390/photonics12020119 - 28 Jan 2025
Viewed by 868
Abstract
The interest in (quasi-)nondiffracting beams is rooted in applications spanning from secure sharing cryptographic keys real-world free-space optical communications and high-order harmonic generation to high-aspect-ratio nanochannel machining, photopolymerization, and nanopatterning, just to mention a few. In this work, we explore the robustness of [...] Read more.
The interest in (quasi-)nondiffracting beams is rooted in applications spanning from secure sharing cryptographic keys real-world free-space optical communications and high-order harmonic generation to high-aspect-ratio nanochannel machining, photopolymerization, and nanopatterning, just to mention a few. In this work, we explore the robustness of the approach for generating Bessel–Gaussian beams by Fourier transforming ring-shaped beams and push the limits further. Here, instead of ring-shaped beams, we use strongly azimuthally modulated necklace beams. Necklace structures are generated by interference of OV beams that carry equal topological charges of opposite signs. In order to effectively account for the azimuthal π-phase jumps in the necklace beams, we first generate their second harmonic, thereafter focusing (i.e., Fourier transforming) them with a thin lens. In this way, we successfully create Bessel–Gaussian beams in the second harmonic of a pump beam with strong azimuthal modulation. The experimental data presented are in good agreement with the developed analytical model. Full article
Show Figures

Figure 1

14 pages, 7448 KiB  
Article
Refractive Astigmatism Consistency Pre- and Post-Cycloplegia in Pediatric Population
by Agustin Peñaranda, Oscar Torrado, Ana Márquez, António M. Baptista and Pedro M. Serra
J. Clin. Transl. Ophthalmol. 2024, 2(4), 181-194; https://doi.org/10.3390/jcto2040015 - 18 Dec 2024
Viewed by 1609
Abstract
Background: Cycloplegic refraction is crucial in pediatric eye assessments. While spherical refraction changes due to cycloplegia are well-documented, astigmatic alterations remain unclear. This study assessed the agreement between spherical and astigmatic refraction pre- and post-cycloplegia. Methods: We enrolled 96 patients (mean age: 12.5 [...] Read more.
Background: Cycloplegic refraction is crucial in pediatric eye assessments. While spherical refraction changes due to cycloplegia are well-documented, astigmatic alterations remain unclear. This study assessed the agreement between spherical and astigmatic refraction pre- and post-cycloplegia. Methods: We enrolled 96 patients (mean age: 12.5 ± 2.4 years), including 35 myopes, 30 emmetropes, and 31 hyperopes. Pre- and post-cycloplegia autorefraction and keratometry (Myopia Master) were conducted using 1% cyclopentolate. Ocular residual astigmatism (ORA) was calculated as the difference between refractive and keratometric astigmatism. Astigmatism was analyzed using Fourier analysis (J0 and J45). Results: Cycloplegia resulted in a more positive spherical equivalent (SE) (+0.80 D), with myopes showing the smallest (+0.38 D) and hyperopes showing the highest variation (+1.47 D) in SE. With-the-rule (WTR) astigmatism predominated in the refractive and keratometric measurements, while ORA was against-the-rule (ATR). Cycloplegia shifted the refractive J0 (+0.06 D) towards more WTR and decreased ORA J0 (+0.05 D). No effect was observed in the J45 component. About 25% of patients exhibited astigmatism changes above 0.25 D, with refractive J0 variation being positively correlated with accommodation relaxation (0.044 D per D of relaxation). Conclusion: Cycloplegia induces clinically significant changes in the spherical component, but minimal variations in astigmatic components, predominantly in hyperopic eyes, likely reflecting alterations in crystalline lens anatomy. Full article
Show Figures

Figure 1

12 pages, 5099 KiB  
Article
Application of Single-Frequency Arbitrarily Directed Split Beam Metasurface Reflector in Refractive Index Measurements
by Brian M. Wells, Joseph F. Tripp, Nicholas W. Krupa, Andrew J. Rittenberg and Richard J. Williams
Sensors 2024, 24(20), 6519; https://doi.org/10.3390/s24206519 - 10 Oct 2024
Viewed by 1515
Abstract
We present a sensor that utilizes a modified single-frequency split beam metasurface reflector to measure the refractive index of materials ranging from one to three. Samples are placed into a cavity between a PCB-etched dielectric and a reflecting ground plane. It is illuminated [...] Read more.
We present a sensor that utilizes a modified single-frequency split beam metasurface reflector to measure the refractive index of materials ranging from one to three. Samples are placed into a cavity between a PCB-etched dielectric and a reflecting ground plane. It is illuminated using a 10.525 GHz free-space transmit horn with reflecting angles measured by sweeping a receiving horn around the setup. Predetermined changes in measured angles determined through simulations will coincide with the material’s index. The sensor is designed using the Fourier transform method of array synthesis and verified with FEM simulations. The device is fabricated using PCB milling and 3D printing. The quality of the sensor is verified by characterizing 3D printed dielectric samples of various infill percentages and thicknesses. Without changing the metasurface design, the sensing performance is extended to accommodate larger sample thicknesses by including a modified 3D printed fish-eye lens mounted in front of the beam splitter; this helps to exaggerate changes in reflected angles for those samples. All the methods presented are in agreement and verified with single-frequency index measurements using Snell’s law. This device may offer a viable alternative to traditional index characterization methods, which often require large sample sizes for single-frequency measurements or expensive equipment for multi-frequency parameter extraction. Full article
(This article belongs to the Special Issue Optoelectronic Functional Devices for Sensing Applications)
Show Figures

Figure 1

18 pages, 6297 KiB  
Article
Multi-Color Phosphor-Converted Wide Spectrum LED Light Source for Simultaneous Illumination and Visible Light Communication
by Aayushi Soni, Linthish Pulikkool, Ravibabu Mulaveesala, Satish Kumar Dubey and Dalip Singh Mehta
Photonics 2024, 11(10), 914; https://doi.org/10.3390/photonics11100914 - 27 Sep 2024
Cited by 3 | Viewed by 2224
Abstract
Simultaneous illumination and communication using solid-state lighting devices like white light-emitting diode (LED) light sources is gaining popularity. The white light LED comprises a single-colored yellow phosphor excited by the blue LED chip. Therefore, color-quality determining parameters like color-rendering index (CRI), correlated color [...] Read more.
Simultaneous illumination and communication using solid-state lighting devices like white light-emitting diode (LED) light sources is gaining popularity. The white light LED comprises a single-colored yellow phosphor excited by the blue LED chip. Therefore, color-quality determining parameters like color-rendering index (CRI), correlated color temperature (CCT), and CIE 1931 chromaticity coordinates of generic white LED sources are poor. This article presents the development of multi-color phosphors excited by a blue LED to improve light quality and bandwidth. A multi-layer stacking of phosphor layers excited by a blue LED led to the quenching of photoluminescence (PL) and showed limited bandwidth. To solve this problem, a lens-free, electrically powered, broadband white light source is designed by mounting multi-color phosphor LEDs in a co-planar ring-topology. The CRI, CCT, and CIE 1931 chromaticity coordinates of the designed lamp (DL) were found to be 90, 5114 K, and (0.33, 0.33), respectively, which is a good quality lamp for indoor lighting. CRI of DL was found to be 16% better than that of white LED (WL). Assessment of visible light communications (VLC) feasibility using the DL includes time interval error (TIE) of data pattern or jitter analysis, eye diagram, signal-to-noise ratio (SNR), fast Fourier transform (FFT), and power spectral density (PSD). DL transmits binary data stream faster than WL due to a reduction in rise time and total jitter by 31% and 39%, respectively. The autocorrelation function displayed a narrow temporal pulse for DL. The DL is beneficial for providing high-quality illumination indoors while minimizing PL quenching. Additionally, it is suitable for indoor VLC applications. Full article
(This article belongs to the Special Issue Recent Advances and Future Perspectives in LED Technology)
Show Figures

Figure 1

16 pages, 3734 KiB  
Article
Human Primary Lens Epithelial Cultures on Basal Laminas Studied by Synchrotron-Based FTIR Microspectroscopy for Understanding Posterior Capsular Opacification
by Sofija Andjelic and Marko Hawlina
Int. J. Mol. Sci. 2024, 25(16), 8858; https://doi.org/10.3390/ijms25168858 - 14 Aug 2024
Viewed by 1013
Abstract
Human primary lens epithelial cultures serve as an in vitro model for posterior capsular opacification (PCO) formation. PCO occurs when residual lens epithelial cells (LECs) migrate and proliferate after cataract surgery, differentiating into fibroblastic and lens fiber-like cells. This study aims to show [...] Read more.
Human primary lens epithelial cultures serve as an in vitro model for posterior capsular opacification (PCO) formation. PCO occurs when residual lens epithelial cells (LECs) migrate and proliferate after cataract surgery, differentiating into fibroblastic and lens fiber-like cells. This study aims to show and compare the bio-macromolecular profiles of primary LEC cultures and postoperative lens epithelia LECs on basal laminas (bls), while also analyzing bls and cultured LECs separately. Using synchrotron radiation-based Fourier transform infrared (SR-FTIR) (Bruker, Karlsruhe, Germany) microspectroscopy at the Spanish synchrotron light source ALBA, we observed that the SR-FTIR measurements were predominantly influenced by the strong collagen absorbance of the bls. Cultured LECs on bls showed a higher collagen contribution, indicated by higher vas CH3, CH2 and CH3 wagging and deformation, and the C–N stretching of collagen. In contrast, postoperative LECs on bls showed a higher cell contribution, indicated by the vsym CH2 peak and the ratio between vas CH2 and vas CH3 peaks. The primary difference revealed using SR-FTIR is the greater LEC contribution in spectra recorded from postoperative lens epithelia compared to cultured LECs on bls. IR spectra for bl, cultured LECs and postoperative lens epithelia could be valuable for future research. Full article
(This article belongs to the Special Issue FTIR Miscrospectroscopy: Opportunities and Challenges)
Show Figures

Figure 1

12 pages, 3079 KiB  
Article
Michelson Interferometric Methods for Full Optical Complex Convolution
by Haoyan Kang, Hao Wang, Jiachi Ye, Zibo Hu, Jonathan K. George, Volker J. Sorger, Maria Solyanik-Gorgone and Behrouz Movahhed Nouri
Nanomaterials 2024, 14(15), 1262; https://doi.org/10.3390/nano14151262 - 28 Jul 2024
Cited by 2 | Viewed by 1640
Abstract
Optical real-time data processing is advancing fields like tensor algebra acceleration, cryptography, and digital holography. This technology offers advantages such as reduced complexity through optical fast Fourier transform and passive dot-product multiplication. In this study, the proposed Reconfigurable Complex Convolution Module (RCCM) is [...] Read more.
Optical real-time data processing is advancing fields like tensor algebra acceleration, cryptography, and digital holography. This technology offers advantages such as reduced complexity through optical fast Fourier transform and passive dot-product multiplication. In this study, the proposed Reconfigurable Complex Convolution Module (RCCM) is capable of independently modulating both phase and amplitude over two million pixels. This research is relevant for applications in optical computing, hardware acceleration, encryption, and machine learning, where precise signal modulation is crucial. We demonstrate simultaneous amplitude and phase modulation of an optical two-dimensional signal in a thin lens’s Fourier plane. Utilizing two spatial light modulators (SLMs) in a Michelson interferometer placed in the focal plane of two Fourier lenses, our system enables full modulation in a 4F system’s Fourier domain. This setup addresses challenges like SLMs’ non-linear inter-pixel crosstalk and variable modulation efficiency. The integration of these technologies in the RCCM contributes to the advancement of optical computing and related fields. Full article
Show Figures

Figure 1

11 pages, 5345 KiB  
Article
Development and Assessment of Multiple Illumination Color Fourier Ptychographic Microscopy for High Throughput Sample Digitization
by Patrik Gilley, Ke Zhang, Neman Abdoli, Youkabed Sadri, Laura Adhikari, Kar-Ming Fung and Yuchen Qiu
Sensors 2024, 24(14), 4505; https://doi.org/10.3390/s24144505 - 12 Jul 2024
Cited by 3 | Viewed by 1523
Abstract
In this study, we proposed a multiplexed color illumination strategy to improve the data acquisition efficiency of Fourier ptychography microscopy (FPM). Instead of sequentially lighting up one single channel LED, our method turns on multiple white light LEDs for each image acquisition via [...] Read more.
In this study, we proposed a multiplexed color illumination strategy to improve the data acquisition efficiency of Fourier ptychography microscopy (FPM). Instead of sequentially lighting up one single channel LED, our method turns on multiple white light LEDs for each image acquisition via a color camera. Thus, each raw image contains multiplexed spectral information. An FPM prototype was developed, which was equipped with a 4×/0.13 NA objective lens to achieve a spatial resolution equivalent to that of a 20×/0.4 NA objective lens. Both two- and four-LED illumination patterns were designed and applied during the experiments. A USAF 1951 resolution target was first imaged under these illumination conditions, based on which MTF curves were generated to assess the corresponding imaging performance. Next, H&E tissue samples and analyzable metaphase chromosome cells were used to evaluate the clinical utility of our strategy. The results show that the single and multiplexed (two- or four-LED) illumination results achieved comparable imaging performance on all the three channels of the MTF curves. Meanwhile, the reconstructed tissue or cell images successfully retain the definition of cell nuclei and cytoplasm and can better preserve the cell edges as compared to the results from the conventional microscopes. This study initially validates the feasibility of multiplexed color illumination for the future development of high-throughput FPM scanning systems. Full article
(This article belongs to the Special Issue Optical Sensors for Biological and Biomedical Applications)
Show Figures

Figure 1

10 pages, 6832 KiB  
Communication
Simultaneous Multifocal Plane Fourier Ptychographic Microscopy Utilizing a Standard RGB Camera
by Giseok Oh and Hyun Choi
Sensors 2024, 24(14), 4426; https://doi.org/10.3390/s24144426 - 9 Jul 2024
Cited by 1 | Viewed by 1684
Abstract
Fourier ptychographic microscopy (FPM) is a computational imaging technology that can acquire high-resolution large-area images for applications ranging from biology to microelectronics. In this study, we utilize multifocal plane imaging to enhance the existing FPM technology. Using an RGB light emitting diode (LED) [...] Read more.
Fourier ptychographic microscopy (FPM) is a computational imaging technology that can acquire high-resolution large-area images for applications ranging from biology to microelectronics. In this study, we utilize multifocal plane imaging to enhance the existing FPM technology. Using an RGB light emitting diode (LED) array to illuminate the sample, raw images are captured using a color camera. Then, exploiting the basic optical principle of wavelength-dependent focal length variation, three focal plane images are extracted from the raw image through simple R, G, and B channel separation. Herein, a single aspherical lens with a numerical aperture (NA) of 0.15 was used as the objective lens, and the illumination NA used for FPM image reconstruction was 0.08. Therefore, simultaneous multifocal plane FPM with a synthetic NA of 0.23 was achieved. The multifocal imaging performance of the enhanced FPM system was then evaluated by inspecting a transparent organic light-emitting diode (OLED) sample. The FPM system was able to simultaneously inspect the individual OLED pixels as well as the surface of the encapsulating glass substrate by separating R, G, and B channel images from the raw image, which was taken in one shot. Full article
(This article belongs to the Collection Computational Imaging and Sensing)
Show Figures

Figure 1

11 pages, 4623 KiB  
Article
Feasibility Study of Scanning Spectral Imaging Based on a Birefringence Flat Plate
by Ilan Gadasi and Yoel Arieli
Sensors 2024, 24(10), 3092; https://doi.org/10.3390/s24103092 - 13 May 2024
Viewed by 1205
Abstract
Hyper-spectral imaging (HSI) systems can be divided into two main types as follows: a group of systems that includes a dedicated dispersion/filtering component whose role is to physically separate the different wavelengths and a group of systems that sample all wavelengths in parallel, [...] Read more.
Hyper-spectral imaging (HSI) systems can be divided into two main types as follows: a group of systems that includes a dedicated dispersion/filtering component whose role is to physically separate the different wavelengths and a group of systems that sample all wavelengths in parallel, so that the separation into wavelengths is performed by signal processing (interferometric method). There is a significant advantage to systems of the second type in terms of the integration time required to obtain a signal with a high signal-to-noise ratio since the signal-to-noise ratio of methods based on scanning interferometry (Windowing method) is better compared to methods based on dispersion. The current research deals with the feasibility study of a new concept for an HSI system that is based on scanning interferometry using the “push-broom” method. In this study, we investigated the viability of incorporating a simple birefringent plate into a scanning optical system. By exploiting the motion of the platform on which the system is mounted, we extracted the spectral information of the scanned region. This approach combines the benefits of scanning interferometry with the simplicity of the setup. According to the theory, a chirped cosine-shaped interferogram is obtained for each wavelength due to the nonlinear behavior of the optical path difference of light in the birefringent plate as a function of the angle. An algorithm converts the signal from a superposition of chirped cosine signals to a scaled interferogram such that Fourier transforming (FT) the interferogram retrieves the spectral information. This innovative idea can turn a simple monochrome camera into a hyperspectral camera by adding a relief lens and a birefringent plate. Full article
(This article belongs to the Topic Hyperspectral Imaging and Signal Processing)
Show Figures

Figure 1

16 pages, 10520 KiB  
Article
Engineering Orbital Angular Momentum in Structured Beams in General Astigmatic Systems via Symplectic Matrix Approach
by Alexander Volyar, Eugeny Abramochkin, Mikhail Bretsko and Yana Akimova
Photonics 2024, 11(3), 191; https://doi.org/10.3390/photonics11030191 - 20 Feb 2024
Cited by 7 | Viewed by 1702
Abstract
We studied theoretically and experimentally the propagation of structured Laguerre–Gaussian (sLG) beams through an optical system with general astigmatism based on symplectic ABCD transforms involving geometry of the second-order intensity moments symplectic matrices. The evolution of the coordinate submatrix ellipses accompanying the transformation [...] Read more.
We studied theoretically and experimentally the propagation of structured Laguerre–Gaussian (sLG) beams through an optical system with general astigmatism based on symplectic ABCD transforms involving geometry of the second-order intensity moments symplectic matrices. The evolution of the coordinate submatrix ellipses accompanying the transformation of intensity patterns at different orientations of the cylindrical lens was studied. It was found that the coordinate submatrix W and the twistedness submatrix M of the symplectic matrix P degenerate in the astigmatic sLG beam with simple astigmatism, which sharply reduces the number of degrees of freedom, while general astigmatism removes the degeneracy. Nevertheless, degeneracy entails a simple relationship between the coordinate element Wxy and the twistedness elements Mxy and Myx of the submatrix M, which greatly simplifies the measurement of the total orbital angular momentum (OAM), reducing the full cycle of measurements of the Hermite–Gaussian (HG) mode spectrum (amplitudes and phases) of the structured beam to the only measurement of the intensity moment. Moreover, we have shown that Fourier transform by a spherical lens enables us to suppress the astigmatic OAM component and restore the original free-astigmatic sLG beam structure. However, with further propagation, the sLG beam restores its astigmatic structure while maintaining the maximum OAM. Full article
(This article belongs to the Special Issue Advances in Structured Light Generation and Manipulation)
Show Figures

Figure 1

17 pages, 53310 KiB  
Article
Generation of Perfect Vortex Beams with Complete Control over the Ring Radius and Ring Width
by Xin Tao, Yong Liang, Shirui Zhang, Yueqing Li, Minghao Guo and Peng Li
Photonics 2023, 10(12), 1382; https://doi.org/10.3390/photonics10121382 - 15 Dec 2023
Cited by 6 | Viewed by 3223
Abstract
We have experimentally created perfect vortex beams (PVBs) by Fourier transformation of Bessel–Gaussian vortex beams, which are generated by modulating the fundamental Gaussian beam with the spiral phase plates and the axicons, respectively. Although the method has been used many times by other [...] Read more.
We have experimentally created perfect vortex beams (PVBs) by Fourier transformation of Bessel–Gaussian vortex beams, which are generated by modulating the fundamental Gaussian beam with the spiral phase plates and the axicons, respectively. Although the method has been used many times by other authors, as far as we know, few people pay attention to the quantitative relationship between the control parameters of the PVB and ring width. The effects of the waist radius of the fundamental Gaussian beam wg, base angle of the axicon γ, and focal length of the lens f on the spot parameters (ring radius ρ, and ring half-width Δ) of PVB are systematically studied. The beam pattern of the generated Bessel–Gaussian beam for different propagation distances behind the axicon and the fundamental Gaussian beam wg is presented. We showed experimentally that the ring radius ρ increases linearly with the increase of the base angle γ and focal length f, while the ring half-width Δ decreases with the increase of the fundamental beam waist radius wg, and increases with enlarging the focal length f. We confirmed the topological charge (TC) of the PVB by the interferogram between the PVB and the reference fundamental Gaussian beam. We also studied experimentally that the size of the generated PVB in the Fourier plane is independent of the TCs. Our approach to generate the PVB has the advantages of high-power tolerance and high efficiency. Full article
Show Figures

Figure 1

18 pages, 8493 KiB  
Article
Investigation of the Space-Variance Effect of Imaging Systems with Digital Holography
by Xingyu Yang, Rong Zhao, Huan Chen, Yijun Du, Chen Fan, Gaopeng Zhang and Zixin Zhao
Photonics 2023, 10(12), 1350; https://doi.org/10.3390/photonics10121350 - 7 Dec 2023
Cited by 1 | Viewed by 1447
Abstract
In classical Fourier optics, an optical imaging system is regarded as a linear space-invariant system, which is only an approximation. Especially in digital holography, the space-variance effect has a great impact on the image quality and cannot be ignored. Therefore, it is comprehensively [...] Read more.
In classical Fourier optics, an optical imaging system is regarded as a linear space-invariant system, which is only an approximation. Especially in digital holography, the space-variance effect has a great impact on the image quality and cannot be ignored. Therefore, it is comprehensively investigated in this article. Theoretical analyses indicate that the space-variance effect is caused by linear frequency modulation and ideal low-pass filtering, and it can be divided into three states: the approximate space-invariance state, the high-frequency distortion state, and the boundary-diffraction state. Classical Fourier optics analysis of optical imaging systems only considers the first. Regarding the high-frequency distortion state, the closer the image field is to the edge, the more severe the distortion of high-frequency information is. As for the boundary-diffraction state, in addition to the distortion of high-frequency information in the margin, a prominent boundary-diffraction phenomenon is observed. If the space-variance effect of the imaging lens is ignored, we predict that no space-variance effect in image holography will occur when the hologram is recorded at the back focal plane of the imaging lens. Simulation and experimental results are presented to validate our theoretical prediction. Full article
(This article belongs to the Special Issue Optical Imaging and Measurements)
Show Figures

Figure 1

12 pages, 4493 KiB  
Article
Structurally Stable Astigmatic Vortex Beams with Super-High Orbital Angular Momentum (ABCD Matrix Approach)
by Alexander Volyar, Mikhail Bretsko, Server Khalilov and Yana Akimova
Photonics 2023, 10(9), 1048; https://doi.org/10.3390/photonics10091048 - 15 Sep 2023
Cited by 5 | Viewed by 1944
Abstract
We have demonstrated efficiency of employing the ABCD matrix approach to transform higher-order structured Laguerre–Gaussian (sLG) beams into structurally stable astigmatic sLG (asLG) beams, highlighting their dynamics at propagating. Radical transformations of the beam structure by a cylindrical lens form not only orbital [...] Read more.
We have demonstrated efficiency of employing the ABCD matrix approach to transform higher-order structured Laguerre–Gaussian (sLG) beams into structurally stable astigmatic sLG (asLG) beams, highlighting their dynamics at propagating. Radical transformations of the beam structure by a cylindrical lens form not only orbital angular momentum (OAM) fast oscillations and bursts, but also make the asLG beams structurally unstable in propagation through cylindrical and spherical lenses when focusing paraxially. But, if the spherical lens performs a Fourier transform of the asLG beam after a cylindrical lens, the symmetric beam emerges at the lens focal plane with a sharp OAM dip; then, the OAM restores its former astigmatism, becoming structurally stable at the far diffraction domain. By investigating the beam structure at the focal area, we have showed that the OAM sharp dip is associated with nothing less than the process of dividing the OAM into the vortex and astigmatic constitutes predicted by Anan’ev and Bekshaev. Full article
(This article belongs to the Special Issue Advances and Application of Structured Light)
Show Figures

Figure 1

24 pages, 10476 KiB  
Article
Slightly Off-Axis Digital Holography Using a Transmission Grating and GPU-Accelerated Parallel Phase Reconstruction
by Hongyi Bai, Jia Chen, Laijun Sun, Liyang Li and Jian Zhang
Photonics 2023, 10(9), 982; https://doi.org/10.3390/photonics10090982 - 28 Aug 2023
Cited by 2 | Viewed by 1948
Abstract
Slightly off-axis digital holography is proposed using transmission grating to obtain quantitative phase distribution. The experimental device is based on an improved 4f optical system in which a two-window input plane is used to form the object beam and reference beam. Then, the [...] Read more.
Slightly off-axis digital holography is proposed using transmission grating to obtain quantitative phase distribution. The experimental device is based on an improved 4f optical system in which a two-window input plane is used to form the object beam and reference beam. Then, the two beams are diffracted into multiple orders by the transmission grating placed at the Fourier plane. By applying a modified Michelson configuration, the interference patterns can be generated by the object and reference beams from different diffraction orders. After translating the grating, a random phase shift can be introduced to the hologram. To demonstrate the feasibility of our method, both thick and thin phase specimens are retrieved using two carrier phase-shifting holograms. Furthermore, we use the phase reconstruction algorithm based on the NVIDIA CUDA programming model to reduce the retrieval time. Meanwhile, we optimize the discrete cosine transform (DCT)-based least-squares unwrapping algorithm to unwrap the phase. By porting the entire phase reconstruction process to the graphics processing unit (GPU), the phase retrieval acceleration and execution efficiency significantly improve. To demonstrate the feasibility of our method, it is found that our method can measure the surface profiles of standard elements, such as a plano-convex cylinder lens and a microlens array, with a relative error of about 0.5%. For holograms with a different phase shift, the root-mean-square (RMS) value of the phase difference for the main imaging region is about 0.2 rad. By accelerating the phase reconstruction with GPU implementation, a speedup ratio of about 20× for the thick phase specimen and a speedup ratio of about 15× for the thin-phase specimen can be obtained for holograms with a pixel size of 1024 × 1024. Full article
(This article belongs to the Special Issue Optical Measurement Systems)
Show Figures

Figure 1

Back to TopTop